Distinctive autophagy/mitophagy biomarker profiles in frontotemporal lobar degeneration and Alzheimer's disease

. 2025 Feb 20 ; 13 (1) : 37. [epub] 20250220

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39972393

Grantová podpora
TO01000215 KAPPA programme
LX22NPO5107 National Institute for Neurological Research
6980382 Institutional Support of Excellence

Odkazy

PubMed 39972393
PubMed Central PMC11841012
DOI 10.1186/s40478-025-01954-9
PII: 10.1186/s40478-025-01954-9
Knihovny.cz E-zdroje

Maintaining cellular homeostasis by removing damaged and senescent mitochondria, a process termed mitophagy, is crucial in preventing Alzheimer's disease (AD) and represents a promising therapeutic target. Our previous research revealed altered mitophagy biomarkers, such as increased CSF and serum PINK1 and serum BNIP3L and decreased serum TFEB levels, indicating impaired autophagy-lysosomal degradation in the AD continuum. However, the role of autophagy/mitophagy in frontotemporal lobar degeneration (FTLD) remains unclear. This study investigated the biomarkers of autophagy/mitophagy and lysosomal biogenesis (PINK1, ULK1, BNIP3L, and TFEB) in biofluids (CSF and serum) from 308 biomarker-defined individuals across the FTLD continuum (FTLD-dementia, n = 29; FTLD-MCI, n = 33) and compared them with those across the AD continuum (MCI-AD, n = 100; AD-dementia, n = 100) and cognitively unimpaired (CU) controls (n = 46) recruited from Czech Brain Aging Study. Additionally, we compared the mitophagy biomarkers across different FTLD clinical subtypes (frontal, semantic and nonfluent variant) with CU, and explored the association between mitophagy biomarkers and clinical phenotypes of FTLD (biomarkers of tau, biomarkers of neurodegeneration, cognition and ATN profile).Our findings indicated a significantly lower CSF PINK1 and ULK1 levels in FTLD compared to AD, with FTLD dementia showing particularly low CSF PINK1 levels compared to AD-dementia. Conversely, CSF ULK1 levels were higher in FTLD-MCI compared to AD-dementia. Serum analyses revealed lower PINK1 and higher TFEB levels in FTLD dementia compared to AD dementia. This study provides compelling evidence of distinct alterations in autophagy/mitophagy biomarkers between FTLD and AD, indicating that these neurodegenerative diseases may affect the cellular waste disposal system through different pathways. This is the first study to explore mitophagy biomarkers in human CSF and serum in FTLD, opening avenues for further research and potential clinical applications.

Zobrazit více v PubMed

Fang EF, Tavernarakis N, Palikaras K, Editorial (2023) Mitophagy in health and disease. Front Cell Dev Biol II:11:1242664. 10.3389/FCELL.2023.1242664/BIBTEX PubMed PMC

Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B et al (2019) Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 2019 22:3. 10.1038/s41593-018-0332-9 PubMed PMC

Xie C, Zhuang XX, Niu Z, Ai R, Lautrup S, Zheng S et al (2022) Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat Biomed Eng 6:76. 10.1038/S41551-021-00819-5 PubMed PMC

Veverová K, Laczó J, Katonová A, Horáková H, Matušková V, Angelucci F et al Alterations of human CSF and serum-based mitophagy biomarkers in the continuum of Alzheimer disease. Autophagy 2024:1–11. 10.1080/15548627.2024.2340408 PubMed PMC

Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A et al (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64:113–122. 10.1093/jnen/64.2.113 PubMed

Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J et al (2011) Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477. 10.1093/BRAIN/AWR179 PubMed PMC

Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF et al (2011) Classification of primary progressive aphasia and its variants. Neurology 76:1006. 10.1212/WNL.0B013E31821103E6 PubMed PMC

Mann DMA, Snowden JS (2017) Frontotemporal lobar degeneration: pathogenesis, pathology and pathways to phenotype. Brain Pathol 27:723–736. 10.1111/BPA.12486 PubMed PMC

Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A 95:7737–7741. 10.1073/PNAS.95.13.7737 PubMed PMC

Irwin DJ, Cairns NJ, Grossman M, McMillan CT, Lee EB, Van Deerlin VM et al (2015) Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathol 129:469–491. 10.1007/S00401-014-1380-1 PubMed PMC

Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256:183–194. 10.1111/J.1365-2796.2004.01388.X PubMed

McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH et al (2011) The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:263. 10.1016/J.JALZ.2011.03.005 PubMed PMC

Gobom J, Parnetti L, Rosa-Neto P, Vyhnalek M, Gauthier S, Cataldi S et al (2022) Validation of the LUMIPULSE automated immunoassay for the measurement of core AD biomarkers in cerebrospinal fluid. Clin Chem Lab Med 60:207–219. 10.1515/CCLM-2021-0651/MACHINEREADABLECITATION/RIS PubMed

Scheltens P, Kuiper M, Ch Wolters E, Barkhof F, Valk J, Weinsten HC et al (1992) Atrophy of medial temporal lobes on MRI in probable Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55:967–972. 10.1136/JNNP.55.10.967 PubMed PMC

Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270. 10.1016/J.JALZ.2011.03.008 PubMed PMC

Jessen F, Amariglio RE, Van Boxtel M, Breteler M, Ceccaldi M, Chételat G et al (2014) A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement 10:844. 10.1016/J.JALZ.2014.01.001 PubMed PMC

Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB et al (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14:535. 10.1016/J.JALZ.2018.02.018 PubMed PMC

Štěpánková H, Nikolai T, Lukavský J, Bezdíček O, Vrajová M, Kopeček M (2015) Mini-mental state examination— Czech normative study. Ceska Slov Neurologie Neurochirurgie 78:57–63. 10.14735/amcsnn201557

Nikolai T, Stepankova H, Kopecek M, Sulc Z, Vyhnalek M, Bezdicek O (2018) The uniform data set, Czech Version: normative data in older adults from an international perspective. J Alzheimers Dis 61:1233. 10.3233/JAD-170595 PubMed PMC

Bezdicek O, Motak L, Axelrod BN, Preiss M, Nikolai T, Vyhnalek M et al (2012) Czech version of the trail making test: normative data and clinical utility. Arch Clin Neuropsychol 27:906–914. 10.1093/ARCLIN/ACS084 PubMed

Bezdicek O, Rosická AM, Mana J, Libon DJ, Kopeček M, Georgi H (2022) The 30-item and 15-item Boston naming test Czech version: Item response analysis and normative values for healthy older adults. 43:890–905. 10.1080/13803395.2022.2029360 PubMed

Nikolai T, Štěpánková H, Michalec J, Bezdíček O, Horáková K, Marková H et al (2015) Verbal fluency tests—Czech normative study for older persons. Ceska Slov Neurologie Neurochirurgie 78:292–299. 10.14735/amcsnn2015292

Mazancova AF, Nikolai T, Stepankova H, Kopecek M, Bezdicek O (2017) The reliability of clock drawing test scoring systems modeled on the normative data in healthy aging and nonamnestic mild cognitive. Impairment Assess 24:945–957. 10.1177/1073191116632586 PubMed

Sheikh JI, Yesavage JA (1986) Geriatric Depression Scale (GDS): recent evidence and development of a shorter version. Clin Gerontologist: J Aging Mental Health 5:165–173. 10.1300/J018V05N01_09

Beck AT, Epstein N, Brown G, Steer RA (1988) An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol 56:893–897. 10.1037/0022-006X.56.6.893 PubMed

Amlerova J, Laczó J, Nedelska Z, Laczó M, Vyhnálek M, Zhang B et al (2022) Emotional prosody recognition is impaired in Alzheimer’s disease. Alzheimers Res Ther 14. 10.1186/S13195-022-00989-7 PubMed PMC

Van Der Fischl B, Destrieux C, Halgren E, Ségonne F, Salat DH et al (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22. 10.1093/CERCOR/BHG087 PubMed

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355. 10.1016/S0896-6273(02)00569-X PubMed

Voevodskaya O (2014) The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease. Front Aging Neurosci 6:264. 10.3389/FNAGI.2014.00264/BIBTEX PubMed PMC

Schwarz CG, Gunter JL, Wiste HJ, Przybelski SA, Weigand SD, Ward CP et al (2016) A large-scale comparison of cortical thickness and volume methods for measuring Alzheimer’s disease severity. Neuroimage Clin 11:802. 10.1016/J.NICL.2016.05.017 PubMed PMC

RStudio Team RStudio: Integrated Development for R 2020

Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H (2019) Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry 90:870–881. 10.1136/JNNP-2018-320106 PubMed

Landqvist Waldö M, Frizell Santillo A, Passant U, Zetterberg H, Rosengren L, Nilsson C et al (2013) Cerebrospinal fluid neurofilament light chain protein levels in subtypes of frontotemporal dementia. BMC Neurol 13. 10.1186/1471-2377-13-54 PubMed PMC

Scherling CS, Hall T, Berisha F, Klepac K, Karydas A, Coppola G et al (2014) Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann Neurol 75:116–126. 10.1002/ANA.24052 PubMed PMC

Li J, Yang D, Li Z, Zhao M, Wang D, Sun Z et al (2023) PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Res Rev 84:101817. 10.1016/J.ARR.2022.101817 PubMed

Rodríguez-Periñán G, de la Encarnación A, Moreno F, López de Munain A, Martínez A, Martín-Requero Á et al (2023) Progranulin deficiency induces mitochondrial dysfunction in frontotemporal lobar degeneration with TDP-43 inclusions. Antioxidants 12:581. 10.3390/ANTIOX12030581/S1 PubMed PMC

Sun X, Duan Y, Qin C, Li JC, Duan G, Deng X et al Distinct multilevel misregulations of Parkin and PINK1 revealed in cell and animal models of TDP-43 proteinopathy. Cell Death Dis 2018;9. 10.1038/s41419-018-1022-y PubMed PMC

Zachari M, Ganley IG (2017) The mammalian ULK1 complex and autophagy initiation. Essays Biochem 61:585–596. 10.1042/EBC20170021 PubMed PMC

Yang M, Chen L, Swaminathan K, Herrlinger S, Lai F, Shiekhattar R et al (2016) A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy. Sci Adv 2. 10.1126/SCIADV.1601167 PubMed PMC

Ugolino J, Ji YJ, Conchina K, Chu J, Nirujogi RS, Pandey A et al (2016) Loss of C9orf72 enhances autophagic activity via deregulated mTOR and TFEB Signaling. PLoS Genet 12. 10.1371/journal.pgen.1006443 PubMed PMC

Webster CP, Smith EF, Bauer CS, Moller A, Hautbergue GM, Ferraiuolo L et al (2016) The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J 35:1656. 10.15252/EMBJ.201694401 PubMed PMC

Vanden Broeck L, Callaerts P, Dermaut B (2014) TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis? Trends Mol Med 20:66–71. 10.1016/j.molmed.2013.11.003 PubMed

Xia Q, Wang H, Hao Z, Fu C, Hu Q, Gao F et al (2016) TDP-43 loss of function increases TFEB activity and blocks autophagosome–lysosome fusion. EMBO J 35:121–142. 10.15252/embj.201591998 PubMed PMC

Martini-Stoica H, Cole AL, Swartzlander DB, Chen F, Wan YW, Bajaj L et al (2018) TFEB enhances astroglial uptake of extracellular tau species and reduces tau spreading. J Exp Med 215:2355. 10.1084/JEM.20172158 PubMed PMC

Antonioni A, Raho EM, Lopriore P, Pace AP, Latino RR, Assogna M et al (2023) Frontotemporal Dementia, where do we stand? A narrative review. Int J Mol Sci 24. 10.3390/IJMS241411732 PubMed PMC

Rascovsky K, Salmon DP, Ho GJ, Galasko D, Peavy GM, Hansen LA et al (2002) Cognitive profiles differ in autopsy-confirmed frontotemporal dementia and AD. Neurology 58:1801–1808. 10.1212/WNL.58.12.1801 PubMed

Park JS, Lee DH, Lee YS, Oh E, Bae KH, Oh KJ et al (2020) Dual roles of ULK1 (unc-51 like autophagy activating kinase 1) in cytoprotection against lipotoxicity. Autophagy 16:86–105. 10.1080/15548627.2019.1598751 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...