Utilization of Wheat with Enhanced Carotenoid Levels and Various Fat Sources in Hen Diets

. 2025 Apr 23 ; 15 (9) : . [epub] 20250423

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40362011

Grantová podpora
MZE-RO0723 Ministry of Agriculture of the Czech Republic

In this study, we evaluated the effects of two wheat varieties with different carotenoid concentrations (Pexeso and Tercie) and two fat sources with contrasting fatty acid profiles (rapeseed oil and lard) on hen performance, egg quality, and egg yolk retention of carotenoids. The feed conversion ratio of hens that received Tercie wheat and lard in their diet were greater than those of hens that received other diets (p = 0.002). Greater (p ˂ 0.001) eggshell thickness and strength occurred when hens were fed a Pexeso wheat diet. Moreover, Pexeso wheat and lard increased lutein (p ˂ 0.001 and p = 0.001) and zeaxanthin (p ˂ 0.001 and p = 0.001) contents in egg yolks. The highest lutein retention (p = 0.010) occurred in the groups that received Pexeso wheat (46.4 and 47.4%), and the highest zeaxanthin retention (p = 0.011) occurred with a Pexeso wheat and lard diet (59.5%). The lowest lutein and zeaxanthin retention occurred in hens fed a Tercie wheat and rapeseed oil diet (23.6% for lutein retention and 24.1% for zeaxanthin retention). The Pexeso wheat and rapeseed oil diet increased the concentrations of α- and γ-tocopherol (p ˂ 0.001 and p ˂ 0.001) in egg yolks, which influenced the oxidative stability of the eggs. Compared with other diets, a Tercie wheat and rapeseed oil diet led to the lowest oxidative stability in fresh eggs (p = 0.041). In conclusion, Pexeso wheat had greater retention of biologically active substances and higher mineral contents than Tercie wheat, which was reflected in the performance of hens and the quality of eggs. The combination of Pexeso wheat with rapeseed oil, which is rich in tocopherols and polyunsaturated fatty acids and has a favorable n-6/n-3 ratio, increased the tocopherol content and the oxidative stability of egg yolk fats.

Zobrazit více v PubMed

Englmaierová M., Skřivan M., Taubner T., Skřivanová V., Čermák L. Effect of housing system and feed restriction on meat quality of medium-growing chickens. Poult. Sci. 2021;100:101223. doi: 10.1016/j.psj.2021.101223. PubMed DOI PMC

Karadas F., Grammenidis E., Surai P.F., Acamovic T., Sparks C. Effects of carotenoids from lucerne, marigold and tomato on egg yolk pigmentation and carotenoid composition. Br. Poult. Sci. 2006;47:561–566. doi: 10.1080/00071660600962976. PubMed DOI

Zurak D., Svečnjak Z., Kiš G., Janječić Z., Bedeković D., Duvnjak M., Pirgozliev V., Grbeša D., Kljak K. Carotenoid deposition in yolks of laying hens fed with corn diets differing in grain hardness and supplemented with rapeseed oil and emulsifier. Poult. Sci. 2024;103:103922. doi: 10.1016/j.psj.2024.103922. PubMed DOI PMC

Hamershøj M., Kidmose U., Steenfeldt S. Deposition of carotenoids in egg yolk by short-term supplement of coloured carrot (Daucus carota) varieties as forage material for egg-laying hens. J. Sci. Food Agric. 2010;90:1163–1171. doi: 10.1002/jsfa.3937. PubMed DOI

Kljak K., Carović-Stanko K., Kos I., Janječić Z., Kiš G., Duvnjak M., Safner T., Bedeković D. Plant Carotenoids as Pigment Sources in Laying Hen Diets: Effect on Yolk Color, Carotenoid Content, Oxidative Stability and Sensory Properties of Eggs. Foods. 2021;10:721. doi: 10.3390/foods10040721. PubMed DOI PMC

Gao Y.Y., Xie Q.M., Ma J.Y., Zhang X.B., Zhu J.M., Shu D.M., Sun B.L., Jin L., Bi Y.Z. Supplementation of xanthophylls increased antioxidant capacity and decreased lipid peroxidation in hens and chicks. Br. J. Nutr. 2013;109:977–983. doi: 10.1017/S0007114512002784. PubMed DOI

Dansou D.M., Zhang H., Yu Y., Wang H., Tang C., Zhao Q., Qin Y., Zhang J. Carotenoid enrichment in eggs: From biochemistry perspective. Anim. Nutr. 2023;14:315–333. doi: 10.1016/j.aninu.2023.05.012. PubMed DOI PMC

Moreno J.A., Díaz-Gómez J., Nogareda C., Angulo E., Sandmann G., Portero-Otin M., Serrano J.C.E., Twyman R.M., Capell T., Zhu C., et al. The distribution of carotenoids in hens fed on biofortified maize is influenced by feed composition, absorption, resource allocation and storage. Sci. Rep. 2016;6:35346. doi: 10.1038/srep35346. PubMed DOI PMC

Becerra M.O., Contreras L.M., Lo M.H., Díaz J.M., Herrera G.C. Lutein as a functional food ingredient: Stability and bioavailability. J. Funct. Food. 2020;66:103771. doi: 10.1016/j.jff.2019.103771. DOI

Pandey S., Gupta A., Mahato D.K., Paul V., Tripathi A.D., Rasane P., Kumar P., Kamle M., Haque S. Lutein and Zeaxanthin: Source, Extraction, Stability, Bioactivity, and Functional Food Applications. Curr. Pharm. Biotechnol. 2025. in press . PubMed

White P.J., Broadley M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005;10:586–593. doi: 10.1016/j.tplants.2005.10.001. PubMed DOI

Awulachew M.T. The Role of Wheat in Human Nutrition and Its Medicinal Value. Glob. Acad. J. Med. Sci. 2020;2:50–54.

Seal C.J., Courtin C.M., Venema K., de Vries J. Health benefits of whole grain: Effects on dietarycarbohydrate quality, the gut microbiome, andconsequences of processing. Compr. Rev. Food Sci. Food Saf. 2021;20:2742–2768. doi: 10.1111/1541-4337.12728. PubMed DOI

Zou C., Du Y., Rashid A., Ram A., Savasli E., Pieterse P.J., Ortiz-Monasterio I., Yazici A., Kaur C., Mahmood K., et al. Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. J. Agric. Food Chem. 2019;67:8096–8106. doi: 10.1021/acs.jafc.9b01829. PubMed DOI

Swamy B.P.M., Marundan S., Samia M., Ordonio R.L., Rebong D.B., Miranda R., Alibuyog A., Rebong A.T., Tabil M.A., Suralta R.R., et al. Development and characterization of GR2E Golden rice introgression lines. Sci. Rep. 2021;11:2496. doi: 10.1038/s41598-021-82001-0. PubMed DOI PMC

Sharma R., Bakshi P., Kumar R., Sharma A., Maanik, Thakur N., Kumar V., Gheware K.M. Enhancing nutritional value in fruit crops through biofortification: A comprehensive review. Indian J. Agric. Sci. 2023;93:1167–1174. doi: 10.56093/ijas.v93i11.140995. DOI

Palomar M., Soler M.D., Roura E., Sala R., Piquer O., Garcés-Narro C. Degree of saturation and free fatty acid content of fats determine dietary preferences in laying hens. Animals. 2020;10:2437. doi: 10.3390/ani10122437. PubMed DOI PMC

Zaazaa A., Sabbah M., Omar J.A. Effects of Oil Source on Egg Quality and Yolk Fatty Acid Profile of Layer Hens. Braz. J. Poult. Sci. 2022;24:eRBCA-2020-1434. doi: 10.1590/1806-9061-2020-1434. DOI

Van Dael P. Role of n-3 long-chain polyunsaturated fatty acids in human nutrition and health: Review of recent studies and recommendations. Nutr. Res. Pract. 2021;15:137–159. doi: 10.4162/nrp.2021.15.2.137. PubMed DOI PMC

Konieczka P., Czauderna M., Smulikowska S. The enrichment of chicken meat with omega-3 fatty acids by dietary fish oil or its mixture with rapeseed or flaxseed—Effect of feeding duration: Dietary fish oil, flaxseed, and rapeseed and n-3 enriched broiler meat. Anim. Feed Sci. Technol. 2017;223:42–52. doi: 10.1016/j.anifeedsci.2016.10.023. DOI

Faitarone B.G., Garcia E.A., Roça R.O., Andrade E.N., Vercese F.V., Pelícia K. Yolk color and lipid oxidation of the eggs of commercial white layers fed diets supplemented with vegetable oils. Rev. Bras. Cienc. Avic. 2016;18:9–15. doi: 10.1590/1516-635X1801009-016. DOI

Javed A., Imran M., Ahmad N., Hussain A.I. Fatty acids characterization and oxidative stability of spray dried designer egg powder. Lipids Health Dis. 2018;17:282. doi: 10.1186/s12944-018-0931-1. PubMed DOI PMC

Gul M., Yoruk M.A., Aksu T., Kaya A., Kaynar O. The effect of different levels of canola oil on performance, egg shell quality and fatty acid composition of laying hens. Int. J. Poult. Sci. 2012;11:769–776. doi: 10.3923/ijps.2012.769.776. DOI

Gao Z., Duan Z., Zhang J., Zheng J., Li F., Xu G. Effects of Oil Types and Fat Concentrations on Production Performance, Egg Quality, and Antioxidant Capacity of Laying Hens. Animals. 2022;12:315. doi: 10.3390/ani12030315. PubMed DOI PMC

AOAC . Official Methods of Analysis. 18th ed. Association of Official Analytical Chemists; Gaithersburg, MD, USA: 2005.

Folch J.M., Lees M., Sloane-Stanley G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI

Raes K., De Smet S., Balcaen A., Claeys E., Demeyer D. Effects of diets rich in N-3 polyunsatured fatty acids on muscle lipids and fatty acids in Belgian Blue double-muscled young bulls. Reprod. Nutr. Dev. 2003;43:331–345. doi: 10.1051/rnd:2003029. PubMed DOI

Froescheis O., Moalli S., Liechti H., Bausch J. Determination of lycopene in tissues and plasma of rats by normal-phase high-performance liquid chromatography with photometric detection. J. Chromatogr. B. 2000;739:291–299. doi: 10.1016/S0378-4347(99)00562-9. PubMed DOI

Foodstuffs—Determination of Vitamin E by High Performance Liquid Chromatography—Measurement of α-, β-, γ- and δ-Tocopherols. European Committee for Standardization; Brussels, Belgium: 2000.

Foodstuffs—Determination of Vitamin A by High Performance Liquid Chromatography—Part 1: Measurement of All-Trans-Retinol and 13-Cis-Retinol. European Committee for Standardization; Brussels, Belgium: 2000.

Czauderna M., Kowalczyk J., Marounek M. The simple and sensitive measurement of malondialdehyde in selected specimens of biological origin and some feed by reversed phase high performance liquid chromatography. J. Chromatogr. B. 2011;879:2251–2258. doi: 10.1016/j.jchromb.2011.06.008. PubMed DOI

SAS . SAS/STAT User’s Guide (Release 9.3) SAS Institute; Cary, NC, USA: 2003.

Ficco D.B.M., Mastrangelo A.M., Trono D., Borrelli G.M., De Vita P., Fares C., Beleggia R., Platani C., Papa R. The colours of durum wheat: A review. Crop Pasture Sci. 2014;65:1–15. doi: 10.1071/CP13293. DOI

Kusumiyati K., Putri I.E., Hadiwijaya Y., Kartika A., Maulana Y.E., Wawan S. Quality Assurance of Total Carotenoids and Quercetin in Marigold Flowers (Tagetes erecta L.) as Edible Flowers. Int. J. Food Sci. 2025;2025:277288. doi: 10.1155/ijfo/3277288. PubMed DOI PMC

Naqvi S., Zhu C., Farre G., Ramessar K., Bassie L., Breitenbach J., Conesa D.P., Ros G., Sandmann G., Capell T., et al. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc. Natl. Acad. Sci. USA. 2009;106:7762–7767. doi: 10.1073/pnas.0901412106. PubMed DOI PMC

Nabi F., Arain M.A., Rajput N., Alagawany M., Soomro J., Umer M., Soomro F., Wang Z., Ye R., Liu J. Health benefits of carotenoids and potential application in poultry industry: A review. J. Anim. Physiol. Anim. Nutr. 2020;104:1809–1818. doi: 10.1111/jpn.13375. PubMed DOI

Dansou D.M., Chen H., Yu Y., Yang Y., Tchan I.N., Zhao L., Tang C., Zhao Q., Qin Y., Zhang J. Enrichment efficiency of lutein in eggs and its function in improving fatty liver hemorrhagic syndrome in aged laying hens. Poult. Sci. 2024;103:103286. doi: 10.1016/j.psj.2023.103286. PubMed DOI PMC

Shi H.Y., Deng X.J., Ji X.Y., Liu N., Cai H.Y. Sources, dynamics in vivo, and application of astaxanthin and lutein in laying hens: A review. Anim. Nutr. 2023;13:324–333. doi: 10.1016/j.aninu.2023.02.008. PubMed DOI PMC

Saleh A.A., Gawish E., Mahmoud S.F., Amber K., Awad W., Alzawqari M.H., Shukry M., Abdel-Moneim A.M.E. Effect of natural and chemical colorant supplementation on performance, egg-quality characteristics, yolk fatty-acid profile, and blood constituents in laying hens. Sustainability. 2021;13:4503. doi: 10.3390/su13084503. DOI

Cui Y., Diao Z., Fan W., Wei J., Zhou J., Zhu H., Li D., Guo L., Tian Y., Song H., et al. Effects of dietary inclusion of alfalfa meal on laying performance, egg quality, intestinal morphology, caecal microbiota and metabolites in Zhuanghe Dagu chickens. Ital. J. Anim. Sci. 2022;21:831–846. doi: 10.1080/1828051X.2022.2067009. DOI

Yunitasari F., Jayanegara A., Ulupi N. Performance, egg quality, and immunity of laying hens due to natural carotenoid supplementation: A meta-analysis. Food Sci. Anim. Resour. 2023;43:282–304. doi: 10.5851/kosfa.2022.e76. PubMed DOI PMC

Kim C.H., Paik I.K., Kil D.Y. Effects of increasing supplementation of magnesium in diets on productive performance and eggshell quality of aged laying hens. Biol. Trace Elem. Res. 2013;151:38–42. doi: 10.1007/s12011-012-9537-z. PubMed DOI

Belkameh M.M., Sedghi M., Azarfar A. The effect of different levels of dietary magnesium on eggshell quality and laying hen’s performance. Biol. Trace Elem. Res. 2021;199:1566–1573. doi: 10.1007/s12011-020-02259-9. PubMed DOI

Kim J.H., Choi W.J., Kwon C.H., Kil D.Y. Improvement of eggshell strength and intensity of brown eggshell color by dietary magnesium and δ-aminolevulinic acid supplementation in laying hens. Poult. Sci. 2022;101:101676. doi: 10.1016/j.psj.2021.101676. PubMed DOI PMC

Gleize B., Tourniaire F., Depezay L., Bott R., Nowicki M., Albino L., Lairon D., Kesse-Guyot E., Galan P., Hercberg S., et al. Effect of type of TAG fatty acids on lutein and zeaxanthin bioavailability. Br. J. Nutr. 2013;110:1–10. doi: 10.1017/S0007114512004813. PubMed DOI PMC

Conlon L.E., King R.D., Moran N.E., Erdman J.W. Coconut oil enhances tomato carotenoid tissue accumulation compared to safflower oil in the Mongolian gerbil (Meriones unguiculatus) J. Agric. Food Chem. 2012;60:8386–8394. doi: 10.1021/jf301902k. PubMed DOI

Hu X., Jandacek R.J., White W.S. Intestinal absorption of beta-carotene ingested with a meal rich in sunflower oil or beef tallow: Postprandial appearance in triacylglycerol-rich lipoproteins in women. Am. J. Clin. Nutr. 2000;71:1170–1180. doi: 10.1093/ajcn/71.5.1170. PubMed DOI

Marounek M., Skřivan M., Englmaierová M. Effect of dietary fat on the content of vitamins and carotenoids in egg yolks. Europ. Poult. Sci. 2019;83:1–7. doi: 10.1399/eps.2019.265. DOI

Prévéraud D.P., Devillard E., Borel P. Dietary fat modulates dl-α-tocopheryl acetate (vitamin E) bioavailability in adult cockerels. Br. Poult. Sci. 2015;56:94–102. doi: 10.1080/00071668.2014.982074. PubMed DOI

Mortensen A., Skibsted L.H., Truscott T.G. The interaction of dietary carotenoids with radical species. Arch. Biochem. Biophys. 2001;385:13–19. doi: 10.1006/abbi.2000.2172. PubMed DOI

Reboul E., Thap S., Perrot E., Amiot M.-J., Lairon D., Borel P. Effect of the main dietary antioxidants (carotenoids, gamma-tocopherol, polyphenols, and vitamin C) on alpha-tocopherol absorption. Eur. J. Clin. Nutr. 2007;61:1167–1173. doi: 10.1038/sj.ejcn.1602635. PubMed DOI

Woodall A.A., Britton G., Jackson M.J. Dietary supplementation with carotenoids: Effects on alpha-tocopherol levels and susceptibility of tissues to oxidative stress. Br. J. Nutr. 1996;76:307–317. doi: 10.1079/BJN19960034. PubMed DOI

Untea A.E., Varzaru I., Panaite T.D., Gavris T., Lupu A., Ropota M. The effects of dietary inclusion of bilberry and walnut leaves in laying hens’ diets on the antioxidant properties of eggs. Animals. 2020;10:191. doi: 10.3390/ani10020191. PubMed DOI PMC

Liu N., Ji X., Song Z., Deng Y., Wang J. Effect of dietary lutein on the egg production, fertility, and oxidative injury indexes of aged hens. Anim. Biosci. 2023;36:1221–1227. doi: 10.5713/ab.22.0473. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...