Marker Placement Reliability and Objectivity for Biomechanical Cohort Study: Healthy Aging in Industrial Environment (HAIE-Program 4)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000798
European union and Ministry of Education, Youth and Sports of the Czech Republic
PubMed
33807948
PubMed Central
PMC7961569
DOI
10.3390/s21051830
PII: s21051830
Knihovny.cz E-zdroje
- Klíčová slova
- lower limb, minimal detectable change, multi-segment foot model, optoelectronic stereophotogrammetry, standard error of measurement,
- MeSH
- biomechanika MeSH
- chůze (způsob) MeSH
- kohortové studie MeSH
- lidé MeSH
- reprodukovatelnost výsledků MeSH
- zdravé stárnutí * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In large cohort studies, due to the time-consuming nature of the measurement of movement biomechanics, more than one evaluator needs to be involved. This may increase the potential occurrence of error due to inaccurate positioning of markers to the anatomical locations. The purpose of this study was to determine the reliability and objectivity of lower limb segments length by multiple evaluators in a large cohort study concerning healthy aging in an industrial environment. A total of eight evaluators performed marker placements on five participants on three different days. Evaluators placed markers bilaterally on specific anatomical locations of the pelvis, thigh, shank and foot. On the right foot, markers were placed in anatomical locations to define a multi-segmental foot model. The position of the marker at the anatomical locations was recorded by a motion capture system. The reliability and objectivity of lower limb segment lengths was determined by the intraclass correlation coefficient of a two-way random model and of the two-way mixed model, respectively. For all evaluators for all segments, the average reliability and objectivity was greater than 0.8, except for the metatarsus segment (0.683). Based on these results, we can conclude that multiple evaluators can be engaged in a large cohort study in the placement of anatomical markers.
Department of Kinesiology University of Massachusetts Amherst MA 01003 USA
Department of Mathematics with Didactics University of Ostrava 70900 Ostrava Czech Republic
Zobrazit více v PubMed
Briggs A.M., Cross M.J., Hoy D.G., Sànchez-Riera L., Blyth F.M., Woolf A.D., March L. Musculoskeletal Health Conditions Represent a Global Threat to Healthy Aging: A Report for the 2015 World Health Organization World Report on Ageing and Health. Gerontologist. 2016;56:S243–S255. doi: 10.1093/geront/gnw002. PubMed DOI
Joshipura M., Mock C., Gosselin R.A. Global burden of musculoskeletal conditions. Glob. Orthop. Caring Musculoskelet. Cond. Inj. Austere Settings. 2014:9–11.
Hetsroni I., Finestone A., Milgrom C., Ben Sira D., Nyska M., Radeva-Petrova D., Ayalon M. A prospective biomechanical study of the association between foot pronation and the incidence of anterior knee pain among military recruits. J. Bone Jt. Surg.-Ser. B. 2006;88:905–908. doi: 10.1302/0301-620X.88B7.17826. PubMed DOI
Sancho I., Malliaras P., Barton C., Willy R.W., Morrissey D. Biomechanical alterations in individuals with Achilles tendinopathy during running and hopping: A systematic review with meta-analysis. Gait Posture. 2019;73:189–201. doi: 10.1016/j.gaitpost.2019.07.121. PubMed DOI
Ceyssens L., Vanelderen R., Barton C., Malliaras P., Dingenen B. Biomechanical Risk Factors Associated with Running-Related Injuries: A Systematic Review. Sport. Med. 2019;49:1095–1115. doi: 10.1007/s40279-019-01110-z. PubMed DOI
Bahl J.S., Nelson M.J., Taylor M., Solomon L.B., Arnold J.B., Thewlis D. Biomechanical changes and recovery of gait function after total hip arthroplasty for osteoarthritis: A systematic review and meta-analysis. Osteoarthr. Cartil. 2018;26:847–863. doi: 10.1016/j.joca.2018.02.897. PubMed DOI
Buldt A.K., Murley G.S., Butterworth P., Levinger P., Menz H.B., Landorf K.B. The relationship between foot posture and lower limb kinematics during walking: A systematic review. Gait Posture. 2013;38:363–372. doi: 10.1016/j.gaitpost.2013.01.010. PubMed DOI
Cheung A.S., Gray H., Schache A.G., Hoermann R., Lim Joon D., Zajac J.D., Pandy M.G., Grossmann M. Androgen deprivation causes selective deficits in the biomechanical leg muscle function of men during walking: A prospective case–control study. J. Cachexia Sarcopenia Muscle. 2017;8:102–112. doi: 10.1002/jcsm.12133. PubMed DOI PMC
Schwartz M.H., Trost J.P., Wervey R.A. Measurement and management of errors in quantitative gait data. Gait Posture. 2004;20:196–203. doi: 10.1016/j.gaitpost.2003.09.011. PubMed DOI
Jandacka D., Uchytil J., Zahradnik D., Farana R., Vilimek D., Skypala J., Urbaczka J., Plesek J., Motyka A., Blaschova D., et al. Running and Physical Activity in an Air-Polluted Environment: The Biomechanical and Musculoskeletal Protocol for a Prospective Cohort Study 4HAIE (Healthy Aging in Industrial Environment—Program 4) Int. J. Environ. Res. Public Health. 2020;17:9142. doi: 10.3390/ijerph17239142. PubMed DOI PMC
McGinley J.L., Baker R., Wolfe R., Morris M.E. The reliability of three-dimensional kinematic gait measurements: A systematic review. Gait Posture. 2009;29:360–369. doi: 10.1016/j.gaitpost.2008.09.003. PubMed DOI
Gorton G.E., Hebert D.A., Gannotti M.E. Assessment of the kinematic variability among 12 motion analysis laboratories. Gait Posture. 2009;29:398–402. doi: 10.1016/j.gaitpost.2008.10.060. PubMed DOI
Wilken J.M., Rodriguez K.M., Brawner M., Darter B.J. Reliability and minimal detectible change values for gait kinematics and kinetics in healthy adults. Gait Posture. 2012;35:301–307. doi: 10.1016/j.gaitpost.2011.09.105. PubMed DOI
Hamill J., Selbie W., Kepple T. Three-dimensional Kinematics. In: Robertson D., Caldwell G., Hamill J., Kamen G., Whittlesey S., editors. Research Methods in Biomechanics. Human Kinetics; Champaign, IL, USA: 2013. pp. 35–60.
Robertson D.G.E., Caldwell G.E., Hamill J., Kamen G., Whittlesey S.N. Research Methods in Biomechanics. Human Kinetics; Champaign, IL, USA: 2014.
Maynard V., Bakheit A.M.O., Oldham J., Freeman J. Intra-rater and inter-rater reliability of gait measurements with CODA mpx30 motion analysis system. Gait Posture. 2003;17:59–67. doi: 10.1016/S0966-6362(02)00051-6. PubMed DOI
McGinley J., Baker R., Wolfe R. Quantification of kinematic measurement variability in gait analysis. Gait Posture. 2006;24:S55–S56. doi: 10.1016/j.gaitpost.2006.11.040. DOI
Kadaba M., Ramakrishnan H., Wooten M., Gainey J., Gorton G., Cochran G.V.B. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J. Orthop. Res. 1989;7:849–860. doi: 10.1002/jor.1100070611. PubMed DOI
Ferber R., McClay-Davis I., Williams D., Laughton C. A comparison of within- and between-day reliability of discrete 3D lower extremity variables in runners. J. Orthop. Res. 1989;20:1139–1145. doi: 10.1016/S0736-0266(02)00077-3. PubMed DOI
Ford K., Myer G., Hewett T. Reliability of landing 3D motion analysis: Implications for longitudinal analyses. Med. Sci. Sport. Exerc. 2007;39:2021–2028. doi: 10.1249/mss.0b013e318149332d. PubMed DOI
Besier T., Sturnicks D., Alderson J.A., Lloyd D.G. Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. J. Biomech. 2003;36:1159–1168. doi: 10.1016/S0021-9290(03)00087-3. PubMed DOI
Rast F.M., Graf E.S., Meichtry A., Kool J., Bauer C.M. Between-day reliability of three-dimensional motion analysis of the trunk: A comparison of marker based protocols. J. Biomech. 2016;49:807–811. doi: 10.1016/j.jbiomech.2016.02.030. PubMed DOI
Noehren B., Manal K., Davis I. Improving between-day kinematic reliability using a marker placement device. J. Orthop. Res. 2010;28:1405–1410. doi: 10.1002/jor.21172. PubMed DOI
Kainz H., Hoang H., Stockton C., Boyd R.N., Lloyd D.G., Carty C.P. Accuracy and reliability of marker based approaches to scale the pelvis, thigh and shank segments in musculoskeletal models. J. Appl. Biomech. 2017 doi: 10.1123/jab.2016-0282. in press. PubMed DOI
Bishop C., Thewlis D., Uden H., Ogilvie D., Paul G. A radiological method to determine the accuracy of motion capture marker placement on palpable anatomical landmarks through a shoe. Footwear Sci. 2011;3:169–177. doi: 10.1080/19424280.2011.635386. DOI
Mcclay I., Manal K. Three-dimensional kinetic analysis of running: Significance of secondary planes of motion. Med. Sci. Sport. Exerc. 1999;31:1629–1637. doi: 10.1097/00005768-199911000-00021. PubMed DOI
Leardini A., Benedetti M.G., Berti L., Bettinelli D., Nativo R., Giannini S. Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait Posture. 2007;25:453–462. doi: 10.1016/j.gaitpost.2006.05.017. PubMed DOI
Portinaro N., Leardini A., Panou A., Monzani V., Caravaggi P. Modifying the Rizzoli foot model to improve the diagnosis of pes-planus: Application to kinematics of feet in teenagers. J. Foot Ankle Res. 2014;7:754. doi: 10.1186/s13047-014-0057-2. PubMed DOI PMC
Hanavan E.P.J. A mathematical model of the human body. Aerosp. Med. Res. Lab. 1964:1–149. PubMed
C-motion Tutorial: IOR Gait Full-Body Model. [(accessed on 10 December 2020)]; Available online: https://www.c-motion.com/v3dwiki/index.php?title=Tutorial%3A_IOR_Gait_Full-Body_Model&fbclid=IwAR0fv2MbKy1KaYVL99ShLc061bZtKIt6W7zZnPnl5mGtfJ6WwGwG0ywwVRc.
C-motion Tutorial: Building a Model. [(accessed on 10 December 2020)]; Available online: https://www.c-motion.com/v3dwiki/index.php?title=Tutorial:_Building_a_Model.
C-motion Tutorial: IOR Foot Model. [(accessed on 10 December 2020)]; Available online: https://www.c-motion.com/v3dwiki/index.php?title=Tutorial:_IOR_Foot_Model.
Weir J.P. Quantifying Test-Retest Reliability Using the Intraclass Correlation Coefficient and the SEM. J. Strength Cond. Res. 2005;19:231. doi: 10.1519/15184.1. PubMed DOI
Richard L. Computing Intraclass Correlations (ICC) as Estimates of Interrater Reliability in SPSS. Winnower. 2015;8:1–4. doi: 10.15200/winn.143518.81744. DOI
Portney L.G., Watkins M.P. Foundations of Clinical Research: Applications to Practice. Prentice Hall; Upper Saddle River, NJ, USA: 2000.
Pourahmadi M.R., Takamjani I.E., Jaberzadeh S., Sarrafzadeh J., Sanjari M.A., Bagheri R., Taghipour M. Kinematics of the spine during sit-to-stand movement using motion analysis systems: A systematic review of literature. J. Sport Rehabil. 2019;28:77–93. doi: 10.1123/jsr.2017-0147. PubMed DOI
Lempereur M., Brochard S., Leboeuf F., Rémy-Néris O. Validity and reliability of 3D marker based scapular motion analysis: A systematic review. J. Biomech. 2014;47:2219–2230. doi: 10.1016/j.jbiomech.2014.04.028. PubMed DOI
Topley M., Richards J.G. A comparison of currently available optoelectronic motion capture systems. J. Biomech. 2020;106:109820. doi: 10.1016/j.jbiomech.2020.109820. PubMed DOI
Richards J.G. The measurement of human motion: A comparison of commercially available systems. Hum. Mov. Sci. 1999;18:589–602. doi: 10.1016/S0167-9457(99)00023-8. DOI
Valevicius A.M., Jun P.Y., Hebert J.S., Vette A.H. Use of optical motion capture for the analysis of normative upper body kinematics during functional upper limb tasks: A systematic review. J. Electromyogr. Kinesiol. 2018;40:1–15. doi: 10.1016/j.jelekin.2018.02.011. PubMed DOI
Hamill J., van Emmerik R.E., Heiderscheit B.C., Li L. A dynamical systems approach to lower extremity running injuries. Clin. Biomech. 1999;14:297–308. doi: 10.1016/S0268-0033(98)90092-4. PubMed DOI
Effect of Footwear Type on Biomechanical Risk Factors for Knee Osteoarthritis