Marker Placement Reliability and Objectivity for Biomechanical Cohort Study: Healthy Aging in Industrial Environment (HAIE-Program 4)

. 2021 Mar 05 ; 21 (5) : . [epub] 20210305

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33807948

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000798 European union and Ministry of Education, Youth and Sports of the Czech Republic

In large cohort studies, due to the time-consuming nature of the measurement of movement biomechanics, more than one evaluator needs to be involved. This may increase the potential occurrence of error due to inaccurate positioning of markers to the anatomical locations. The purpose of this study was to determine the reliability and objectivity of lower limb segments length by multiple evaluators in a large cohort study concerning healthy aging in an industrial environment. A total of eight evaluators performed marker placements on five participants on three different days. Evaluators placed markers bilaterally on specific anatomical locations of the pelvis, thigh, shank and foot. On the right foot, markers were placed in anatomical locations to define a multi-segmental foot model. The position of the marker at the anatomical locations was recorded by a motion capture system. The reliability and objectivity of lower limb segment lengths was determined by the intraclass correlation coefficient of a two-way random model and of the two-way mixed model, respectively. For all evaluators for all segments, the average reliability and objectivity was greater than 0.8, except for the metatarsus segment (0.683). Based on these results, we can conclude that multiple evaluators can be engaged in a large cohort study in the placement of anatomical markers.

Zobrazit více v PubMed

Briggs A.M., Cross M.J., Hoy D.G., Sànchez-Riera L., Blyth F.M., Woolf A.D., March L. Musculoskeletal Health Conditions Represent a Global Threat to Healthy Aging: A Report for the 2015 World Health Organization World Report on Ageing and Health. Gerontologist. 2016;56:S243–S255. doi: 10.1093/geront/gnw002. PubMed DOI

Joshipura M., Mock C., Gosselin R.A. Global burden of musculoskeletal conditions. Glob. Orthop. Caring Musculoskelet. Cond. Inj. Austere Settings. 2014:9–11.

Hetsroni I., Finestone A., Milgrom C., Ben Sira D., Nyska M., Radeva-Petrova D., Ayalon M. A prospective biomechanical study of the association between foot pronation and the incidence of anterior knee pain among military recruits. J. Bone Jt. Surg.-Ser. B. 2006;88:905–908. doi: 10.1302/0301-620X.88B7.17826. PubMed DOI

Sancho I., Malliaras P., Barton C., Willy R.W., Morrissey D. Biomechanical alterations in individuals with Achilles tendinopathy during running and hopping: A systematic review with meta-analysis. Gait Posture. 2019;73:189–201. doi: 10.1016/j.gaitpost.2019.07.121. PubMed DOI

Ceyssens L., Vanelderen R., Barton C., Malliaras P., Dingenen B. Biomechanical Risk Factors Associated with Running-Related Injuries: A Systematic Review. Sport. Med. 2019;49:1095–1115. doi: 10.1007/s40279-019-01110-z. PubMed DOI

Bahl J.S., Nelson M.J., Taylor M., Solomon L.B., Arnold J.B., Thewlis D. Biomechanical changes and recovery of gait function after total hip arthroplasty for osteoarthritis: A systematic review and meta-analysis. Osteoarthr. Cartil. 2018;26:847–863. doi: 10.1016/j.joca.2018.02.897. PubMed DOI

Buldt A.K., Murley G.S., Butterworth P., Levinger P., Menz H.B., Landorf K.B. The relationship between foot posture and lower limb kinematics during walking: A systematic review. Gait Posture. 2013;38:363–372. doi: 10.1016/j.gaitpost.2013.01.010. PubMed DOI

Cheung A.S., Gray H., Schache A.G., Hoermann R., Lim Joon D., Zajac J.D., Pandy M.G., Grossmann M. Androgen deprivation causes selective deficits in the biomechanical leg muscle function of men during walking: A prospective case–control study. J. Cachexia Sarcopenia Muscle. 2017;8:102–112. doi: 10.1002/jcsm.12133. PubMed DOI PMC

Schwartz M.H., Trost J.P., Wervey R.A. Measurement and management of errors in quantitative gait data. Gait Posture. 2004;20:196–203. doi: 10.1016/j.gaitpost.2003.09.011. PubMed DOI

Jandacka D., Uchytil J., Zahradnik D., Farana R., Vilimek D., Skypala J., Urbaczka J., Plesek J., Motyka A., Blaschova D., et al. Running and Physical Activity in an Air-Polluted Environment: The Biomechanical and Musculoskeletal Protocol for a Prospective Cohort Study 4HAIE (Healthy Aging in Industrial Environment—Program 4) Int. J. Environ. Res. Public Health. 2020;17:9142. doi: 10.3390/ijerph17239142. PubMed DOI PMC

McGinley J.L., Baker R., Wolfe R., Morris M.E. The reliability of three-dimensional kinematic gait measurements: A systematic review. Gait Posture. 2009;29:360–369. doi: 10.1016/j.gaitpost.2008.09.003. PubMed DOI

Gorton G.E., Hebert D.A., Gannotti M.E. Assessment of the kinematic variability among 12 motion analysis laboratories. Gait Posture. 2009;29:398–402. doi: 10.1016/j.gaitpost.2008.10.060. PubMed DOI

Wilken J.M., Rodriguez K.M., Brawner M., Darter B.J. Reliability and minimal detectible change values for gait kinematics and kinetics in healthy adults. Gait Posture. 2012;35:301–307. doi: 10.1016/j.gaitpost.2011.09.105. PubMed DOI

Hamill J., Selbie W., Kepple T. Three-dimensional Kinematics. In: Robertson D., Caldwell G., Hamill J., Kamen G., Whittlesey S., editors. Research Methods in Biomechanics. Human Kinetics; Champaign, IL, USA: 2013. pp. 35–60.

Robertson D.G.E., Caldwell G.E., Hamill J., Kamen G., Whittlesey S.N. Research Methods in Biomechanics. Human Kinetics; Champaign, IL, USA: 2014.

Maynard V., Bakheit A.M.O., Oldham J., Freeman J. Intra-rater and inter-rater reliability of gait measurements with CODA mpx30 motion analysis system. Gait Posture. 2003;17:59–67. doi: 10.1016/S0966-6362(02)00051-6. PubMed DOI

McGinley J., Baker R., Wolfe R. Quantification of kinematic measurement variability in gait analysis. Gait Posture. 2006;24:S55–S56. doi: 10.1016/j.gaitpost.2006.11.040. DOI

Kadaba M., Ramakrishnan H., Wooten M., Gainey J., Gorton G., Cochran G.V.B. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J. Orthop. Res. 1989;7:849–860. doi: 10.1002/jor.1100070611. PubMed DOI

Ferber R., McClay-Davis I., Williams D., Laughton C. A comparison of within- and between-day reliability of discrete 3D lower extremity variables in runners. J. Orthop. Res. 1989;20:1139–1145. doi: 10.1016/S0736-0266(02)00077-3. PubMed DOI

Ford K., Myer G., Hewett T. Reliability of landing 3D motion analysis: Implications for longitudinal analyses. Med. Sci. Sport. Exerc. 2007;39:2021–2028. doi: 10.1249/mss.0b013e318149332d. PubMed DOI

Besier T., Sturnicks D., Alderson J.A., Lloyd D.G. Repeatability of gait data using a functional hip joint centre and a mean helical knee axis. J. Biomech. 2003;36:1159–1168. doi: 10.1016/S0021-9290(03)00087-3. PubMed DOI

Rast F.M., Graf E.S., Meichtry A., Kool J., Bauer C.M. Between-day reliability of three-dimensional motion analysis of the trunk: A comparison of marker based protocols. J. Biomech. 2016;49:807–811. doi: 10.1016/j.jbiomech.2016.02.030. PubMed DOI

Noehren B., Manal K., Davis I. Improving between-day kinematic reliability using a marker placement device. J. Orthop. Res. 2010;28:1405–1410. doi: 10.1002/jor.21172. PubMed DOI

Kainz H., Hoang H., Stockton C., Boyd R.N., Lloyd D.G., Carty C.P. Accuracy and reliability of marker based approaches to scale the pelvis, thigh and shank segments in musculoskeletal models. J. Appl. Biomech. 2017 doi: 10.1123/jab.2016-0282. in press. PubMed DOI

Bishop C., Thewlis D., Uden H., Ogilvie D., Paul G. A radiological method to determine the accuracy of motion capture marker placement on palpable anatomical landmarks through a shoe. Footwear Sci. 2011;3:169–177. doi: 10.1080/19424280.2011.635386. DOI

Mcclay I., Manal K. Three-dimensional kinetic analysis of running: Significance of secondary planes of motion. Med. Sci. Sport. Exerc. 1999;31:1629–1637. doi: 10.1097/00005768-199911000-00021. PubMed DOI

Leardini A., Benedetti M.G., Berti L., Bettinelli D., Nativo R., Giannini S. Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait Posture. 2007;25:453–462. doi: 10.1016/j.gaitpost.2006.05.017. PubMed DOI

Portinaro N., Leardini A., Panou A., Monzani V., Caravaggi P. Modifying the Rizzoli foot model to improve the diagnosis of pes-planus: Application to kinematics of feet in teenagers. J. Foot Ankle Res. 2014;7:754. doi: 10.1186/s13047-014-0057-2. PubMed DOI PMC

Hanavan E.P.J. A mathematical model of the human body. Aerosp. Med. Res. Lab. 1964:1–149. PubMed

C-motion Tutorial: IOR Gait Full-Body Model. [(accessed on 10 December 2020)]; Available online: https://www.c-motion.com/v3dwiki/index.php?title=Tutorial%3A_IOR_Gait_Full-Body_Model&fbclid=IwAR0fv2MbKy1KaYVL99ShLc061bZtKIt6W7zZnPnl5mGtfJ6WwGwG0ywwVRc.

C-motion Tutorial: Building a Model. [(accessed on 10 December 2020)]; Available online: https://www.c-motion.com/v3dwiki/index.php?title=Tutorial:_Building_a_Model.

C-motion Tutorial: IOR Foot Model. [(accessed on 10 December 2020)]; Available online: https://www.c-motion.com/v3dwiki/index.php?title=Tutorial:_IOR_Foot_Model.

Weir J.P. Quantifying Test-Retest Reliability Using the Intraclass Correlation Coefficient and the SEM. J. Strength Cond. Res. 2005;19:231. doi: 10.1519/15184.1. PubMed DOI

Richard L. Computing Intraclass Correlations (ICC) as Estimates of Interrater Reliability in SPSS. Winnower. 2015;8:1–4. doi: 10.15200/winn.143518.81744. DOI

Portney L.G., Watkins M.P. Foundations of Clinical Research: Applications to Practice. Prentice Hall; Upper Saddle River, NJ, USA: 2000.

Pourahmadi M.R., Takamjani I.E., Jaberzadeh S., Sarrafzadeh J., Sanjari M.A., Bagheri R., Taghipour M. Kinematics of the spine during sit-to-stand movement using motion analysis systems: A systematic review of literature. J. Sport Rehabil. 2019;28:77–93. doi: 10.1123/jsr.2017-0147. PubMed DOI

Lempereur M., Brochard S., Leboeuf F., Rémy-Néris O. Validity and reliability of 3D marker based scapular motion analysis: A systematic review. J. Biomech. 2014;47:2219–2230. doi: 10.1016/j.jbiomech.2014.04.028. PubMed DOI

Topley M., Richards J.G. A comparison of currently available optoelectronic motion capture systems. J. Biomech. 2020;106:109820. doi: 10.1016/j.jbiomech.2020.109820. PubMed DOI

Richards J.G. The measurement of human motion: A comparison of commercially available systems. Hum. Mov. Sci. 1999;18:589–602. doi: 10.1016/S0167-9457(99)00023-8. DOI

Valevicius A.M., Jun P.Y., Hebert J.S., Vette A.H. Use of optical motion capture for the analysis of normative upper body kinematics during functional upper limb tasks: A systematic review. J. Electromyogr. Kinesiol. 2018;40:1–15. doi: 10.1016/j.jelekin.2018.02.011. PubMed DOI

Hamill J., van Emmerik R.E., Heiderscheit B.C., Li L. A dynamical systems approach to lower extremity running injuries. Clin. Biomech. 1999;14:297–308. doi: 10.1016/S0268-0033(98)90092-4. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Effect of Footwear Type on Biomechanical Risk Factors for Knee Osteoarthritis

. 2023 Jul ; 11 (7) : 23259671231183416. [epub] 20230720

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...