Running and Physical Activity in an Air-Polluted Environment: The Biomechanical and Musculoskeletal Protocol for a Prospective Cohort Study 4HAIE (Healthy Aging in Industrial Environment-Program 4)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33297585
PubMed Central
PMC7730319
DOI
10.3390/ijerph17239142
PII: ijerph17239142
Knihovny.cz E-zdroje
- Klíčová slova
- ACL, MRI, achilles tendon, ankle, cartilage, environment, knee, running, walking cutting,
- MeSH
- běh * MeSH
- biomechanika MeSH
- dospělí MeSH
- klinické protokoly MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- prospektivní studie MeSH
- senioři MeSH
- zdravé stárnutí * MeSH
- znečištění ovzduší * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Far too little attention has been paid to health effects of air pollution and physical (in)activity on musculoskeletal health. The purpose of the Healthy aging in industrial environment study (4HAIE) is to investigate the potential impact of physical activity in highly polluted air on musculoskeletal health. A total of 1500 active runners and inactive controls aged 18-65 will be recruited. The sample will be recruited using quota sampling based on location (the most air-polluted region in EU and a control region), age, sex, and activity status. Participants will complete online questionnaires and undergo a two-day baseline laboratory assessment, including biomechanical, physiological, psychological testing, and magnetic resonance imaging. Throughout one-year, physical activity data will be collected through Fitbit monitors, along with data regarding the incidence of injuries, air pollution, psychological factors, and behavior collected through a custom developed mobile application. Herein, we introduce a biomechanical and musculoskeletal protocol to investigate musculoskeletal and neuro-mechanical health in this 4HAIE cohort, including a design for controlling for physiological and psychological injury factors. In the current ongoing project, we hypothesize that there will be interactions of environmental, biomechanical, physiological, and psychosocial variables and that these interactions will cause musculoskeletal diseases/protection.
Cardiff School of Sport and Health Sciences Cardiff Metropolitan University Cardiff CF5 2YB UK
Department of Kinesiology University of Massachusetts Amherst MA 01003 USA
Institute of Experimental Medicine AS CR 142 20 Prague Czech Republic
Research Unit of Medical Imaging Physics and Technology University of Oulu FI 90014 Oulu Finland
Zobrazit více v PubMed
Briggs A.M., Cross M.J., Hoy D.G., Sànchez-Riera L., Blyth F.M., Woolf A.D., March L. Musculoskeletal Health Conditions Represent a Global Threat to Healthy Aging: A Report for the 2015 World Health Organization World Report on Ageing and Health. Gerontologist. 2016;56:S243–S255. doi: 10.1093/geront/gnw002. PubMed DOI
Briggs A.M., Woolf A.D., Dreinhöfer K., Homb N., Hoy D.G., Kopansky-Giles D., Åkesson K., March L. Reducing the global burden of musculoskeletal conditions. Bull. World Health Organ. 2018;96:366–368. PubMed PMC
Shepherd A., Mullins J.T. Arthritis diagnosis and early-life exposure to air pollution. Environ. Pollut. 2019;253:1030–1037. doi: 10.1016/j.envpol.2019.07.054. PubMed DOI
Mueller N., Rojas-Rueda D., Cole-Hunter T., de Nazelle A., Dons E., Gerike R., Götschi T., Int Panis L., Kahlmeier S., Nieuwenhuijsen M. Health impact assessment of active transportation: A systematic review. Prev. Med. 2015;76:103–114. doi: 10.1016/j.ypmed.2015.04.010. PubMed DOI
Tainio M., de Nazelle A.J., Götschi T., Kahlmeier S., Rojas-Rueda D., Nieuwenhuijsen M.J., de Sá T.H., Kelly P., Woodcock J. Can air pollution negate the health benefits of cycling and walking? Prev. Med. 2016;87:233–236. doi: 10.1016/j.ypmed.2016.02.002. PubMed DOI PMC
Peng K.T., Liu J.F., Chiang Y.C., Chen P.C., Chiang M.H., Shih H.N., Chang P.J., Lee C.W. Particulate matter exposure aggravates osteoarthritis severity. Clin. Sci. 2019;133:2171–2187. doi: 10.1042/CS20190458. PubMed DOI
Hart J.E., Laden F., Puett R.C., Costenbader K.H., Karlson E.W. Exposure to traffic pollution and increased risk of rheumatoid arthritis. Environ. Health Perspect. 2009;117:1065–1069. doi: 10.1289/ehp.0800503. PubMed DOI PMC
Chang K.H., Hsu C.C., Muo C.H., Hsu C.Y., Liu H.C., Kao C.H., Chen C.Y., Chang M.Y., Hsu Y.C. Air pollution exposure increases the risk of rheumatoid arthritis: A longitudinal and nationwide study. Environ. Int. 2016;94:495–499. doi: 10.1016/j.envint.2016.06.008. PubMed DOI
Neogi T. The Epidemioloy and Impact of Pain in Osteoarthritis. Osteoarthr. Cartil. 2014;21:1145–1153. doi: 10.1016/j.joca.2013.03.018. PubMed DOI PMC
Chehab E.F., Favre J., Erhart-Hledik J.C., Andriacchi T.P. Baseline knee adduction and flexion moments during walking are both associated with 5year cartilage changes in patients with medial knee osteoarthritis. Osteoarthr. Cartil. 2014;22:1833–1839. doi: 10.1016/j.joca.2014.08.009. PubMed DOI PMC
Hart H.F., Birmingham T.B., Primeau C.A., Pinto R., Leitch K., Giffin J.R. Associations between cadence and knee loading in patients with knee osteoarthritis. Arthritis Care Res. 2020:1–10. doi: 10.1002/acr.24400. PubMed DOI
Lee D.C., Brellenthin A.G., Thompson P.D., Sui X., Lee I.M., Lavie C.J. Running as a Key Lifestyle Medicine for Longevity. Prog. Cardiovasc. Dis. 2017;60:45–55. doi: 10.1016/j.pcad.2017.03.005. PubMed DOI
The Health Impact of Air Pollution; An expert report of the International Society for Environmental Epidemiology and the European Respiratory Society. [(accessed on 5 December 2020)]; Available online: http://www.youreventinfo.org/ISEE/Documents/HZ_Positionspapier_ENG_190318.pdf.
Dai S., Carroll D.D., Watson K.B., Paul P., Carlson S.A., Fulton J.E. Participation in Types of Physical Activities Among US Adults--National Health and Nutrition Examination Survey 1999–2006. J. Phys. Act. Health. 2015;12:S128–S140. doi: 10.1123/jpah.2015-0038. PubMed DOI PMC
Lopes A.D., Hespanhol Júnior L.C., Yeung S.S., Costa L.O.P. What are the main running-related musculoskeletal injuries? A Systematic Review. Sports Med. 2012;42:891–905. doi: 10.1007/BF03262301. PubMed DOI PMC
Saragiotto B.T., Yamato T.P., Hespanhol Junior L.C., Rainbow M.J., Davis I.S., Lopes A.D. What are the main risk factors for running-related injuries? Sports Med. 2014;44:1153–1163. doi: 10.1007/s40279-014-0194-6. PubMed DOI
Bredeweg S.W., Kluitenberg B., Bessem B., Buist I. Differences in kinetic variables between injured and noninjured novice runners: A prospective cohort study. J. Sci. Med. Sport. 2013;16:205–210. doi: 10.1016/j.jsams.2012.08.002. PubMed DOI
Bredeweg S.W., Buist I., Kluitenberg B. Differences in kinetic asymmetry between injured and noninjured novice runners: A prospective cohort study. Gait Posture. 2013;38:847–852. doi: 10.1016/j.gaitpost.2013.04.014. PubMed DOI
Hamill J., Miller R., Noehren B., Davis I. A prospective study of iliotibial band strain in runners. Clin. Biomech. 2008;23:1018–1025. doi: 10.1016/j.clinbiomech.2008.04.017. PubMed DOI
Ceyssens L., Vanelderen R., Barton C., Malliaras P., Dingenen B. Biomechanical Risk Factors Associated with Running-Related Injuries: A Systematic Review. Sport. Med. 2019;49:1095–1115. doi: 10.1007/s40279-019-01110-z. PubMed DOI
Boden B.P., Dean G.S., Feagin J.A., Garrett W.E. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23:573–578. doi: 10.3928/0147-7447-20000601-15. PubMed DOI
Arendt E.A., Agel J., Dick R. Anterior Cruciate Ligament Injury Patterns among Collegiate Men and Women. J. Athl. Train. 1999;34:86–92. PubMed PMC
Bjordal J.M., Arnøy F., Hannestad B., Strand T. Epidemiology of anterior cruciate ligament injuries in soccer. Am. J. Sports Med. 1997;25:341–345. doi: 10.1177/036354659702500312. PubMed DOI
Messina D.F., Farney W.C., DeLee J.C. The incidence of injury in Texas high school basketball: A prospective study among male and female athletes. Am. J. Sports Med. 1999;27:294–299. doi: 10.1177/03635465990270030401. PubMed DOI
Lively M.W., Fethers C.C. Increasing Prevalence of Anterior Cruciate Ligament Injuries in a Collegiate Population. W. Va. Med. J. 2012;108:8–11. PubMed
Lin C.C., Yang S.K., Lin K.C., Ho W.C., Hsieh W.S., Shu B.C., Chen P.C. Multilevel analysis of air pollution and early childhood neurobehavioral development. Int. J. Environ. Res. Public Health. 2014;11:6827–6841. doi: 10.3390/ijerph110706827. PubMed DOI PMC
Wang S., Zhang J., Zeng X., Zeng Y., Wang S., Chen S. Association of traffic-related air pollution with children’s neurobehavioral functions in Quanzhou, China. Environ. Health Perspect. 2009;117:1612–1618. doi: 10.1289/ehp.0800023. PubMed DOI PMC
Swanik C.B., Covassin T., Stearne D.J., Schatz P. The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am. J. Sports Med. 2007;35:943–948. doi: 10.1177/0363546507299532. PubMed DOI
Hůnová I. Ambient air quality in the czech republic: Past and present. Atmosphere. 2020;11:214. doi: 10.3390/atmos11020214. DOI
Sram R.J., Binkova B., Dostal M., Merkerova-Dostalova M., Libalova H., Milcova A., Rossner P., Rossnerova A., Schmuczerova J., Svecova V., et al. Health impact of air pollution to children. Int. J. Hyg. Environ. Health. 2013;216:533–540. doi: 10.1016/j.ijheh.2012.12.001. PubMed DOI
Šrám R.J., Beneš I., Binková B., Dejmek J., Horstman D., Kotěšovec F., Otto D., Perreault S.D., Rubeš J., Selevan S.G., et al. Teplice Program—The impact of air pollution on human health. Environ. Health Perspect. 1996;104:699–714. doi: 10.1289/ehp.104-1469669. PubMed DOI PMC
CSO Czech Statistical Office. [(accessed on 1 December 2020)]; Available online: http://www.czso.cz/eng/redakce.nsf/i/bvz_ts.
Air Quality Information System . Air Pollution in the Czech Republic 2018—Benzoapyren. CHMI; Prague, Czech Republic: 2018.
WHO Physical activity. Prim. Health Care. 2003;13:1–8. doi: 10.7748/phc.13.5.8.s8. DOI
McClay I., Manal K. Three-dimensional kinetic analysis of running: Significance of secondary planes of motion. Med. Sci. Sport. Exerc. 1999;31:1629–1637. doi: 10.1097/00005768-199911000-00021. PubMed DOI
Portinaro N., Leardini A., Panou A., Monzani V., Caravaggi P. Modifying the Rizzoli foot model to improve the diagnosis of pes-planus: Application to kinematics of feet in teenagers. J. Foot Ankle Res. 2014;7:754. doi: 10.1186/s13047-014-0057-2. PubMed DOI PMC
Leardini A., Benedetti M.G., Berti L., Bettinelli D., Nativo R., Giannini S. Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait Posture. 2007;25:453–462. doi: 10.1016/j.gaitpost.2006.05.017. PubMed DOI
Samson W., Van Hamme A., Desroches G., Dohin B., Dumas R., Chèze L. Biomechanical maturation of joint dynamics during early childhood: Updated conclusions. J. Biomech. 2013;46:2258–2263. doi: 10.1016/j.jbiomech.2013.06.017. PubMed DOI
D’Août K., Pataky T.C., De Clercq D., Aerts P. The effects of habitual footwear use: Foot shape and function in native barefoot walkers. Footwear Sci. 2009;1:81–94. doi: 10.1080/19424280903386411. DOI
Hardcastle P., Nade S. The significance of the Trendelenburg test. J. Bone Jt. Surg.Ser. B. 1985;67:741–746. doi: 10.1302/0301-620X.67B5.4055873. PubMed DOI
Youdas J.W., Mraz S.T., Norstad B.J., Schinke J.J., Hollman J.H. Determining meaningful changes in pelvic-on-femoral position during the trendelenburg test. J. Sport Rehabil. 2007;16:326–335. doi: 10.1123/jsr.16.4.326. PubMed DOI
Makhmalbaf H., Moradi A., Ganji S., Omidi-Kashani F. Accuracy of lachman and anterior drawer tests. Arch Bone Jt. Surg. 2013;94:94–97. doi: 10.5330/prsc.10.4.m30u883238642703. PubMed DOI PMC
Sun K., Tian S., Zhang J., Xia C., Zhang C., Yu T. Anterior cruciate ligament reconstruction with BPTB autograft, irradiated versus non-irradiated allograft: A prospective randomized clinical study. Knee Surg. Sport. Traumatol. Arthrosc. 2009;17:464–474. doi: 10.1007/s00167-008-0714-8. PubMed DOI
Lee K.T., Park Y.U., Jegal H., Park J.W., Choi J.P., Kim J.S. New method of diagnosis for chronic ankle instability: Comparison of manual anterior drawer test, stress radiography and stress ultrasound. Knee Surg. Sport. Traumatol. Arthrosc. 2014;22:1701–1707. doi: 10.1007/s00167-013-2690-x. PubMed DOI
Vicenzino B., Branjerdporn M., Teys P., Jordan K. Initial changes in posterior talar glide and dorsiflexion of the ankle after mobilization with movement in individuals with recurrent ankle sprain. J. Orthop. Sports Phys. Ther. 2006;36:464–471. doi: 10.2519/jospt.2006.2265. PubMed DOI
Hoffman M., Schrader J., Applegate T., Koceja D. Unilateral postural control of the functionally dominant and nondominant extremities of healthy subjects. J. Athl. Train. 1998;33:319–322. PubMed PMC
Stanhope S.J., Kepple T.M., McGuire D., Roman N.L. Kinematic-based technique for event time determination during gait. Med. Biol. Eng. Comput. 1990;28:355–360. doi: 10.1007/BF02446154. PubMed DOI
Jandacka D., Plesek J., Skypala J., Uchytil J., Silvernail J.F., Hamill J. Knee Joint Kinematics and Kinetics During Walking and Running After Surgical Achilles Tendon Repair. Orthop. J. Sport. Med. 2018;6:232596711877986. doi: 10.1177/2325967118779862. PubMed DOI PMC
Weir G., van Emmerik R., Jewell C., Hamill J. Coordination and variability during anticipated and unanticipated sidestepping. Gait Posture. 2019;67:1–8. doi: 10.1016/j.gaitpost.2018.09.007. PubMed DOI
Gruber A.H., Silvernail J.F., Brueggemann P., Rohr E., Hamill J. Footfall patterns during barefoot running on harder and softer surfaces. Footwear Sci. 2013;5:39–44. doi: 10.1080/19424280.2012.742141. DOI
Dixon P.C., Böhm H., Döderlein L. Ankle and midfoot kinetics during normal gait: A multi-segment approach. J. Biomech. 2012;45:1011–1016. doi: 10.1016/j.jbiomech.2012.01.001. PubMed DOI
Hamill J., Selbie W., Kepple T. Three-dimensional Kinematics. In: Robertson D., Caldwell G., Hamill J., Kamen G., Whittlesey S., editors. Research Methods in Biomechanics. Human Kinetics; Champaign, IL, USA: 2013. pp. 35–60.
Robertson D.G.E., Caldwell G.E., Hamill J., Kamen G., Whittlesey S.N. Research Methods in Biomechanics. 2nd ed. Human Kinetics; Champaign, IL, USA: 2014.
Yong J.R., Silder A., Delp S.L. Differences in muscle activity between natural forefoot and rearfoot strikers during running. J. Biomech. 2014;47:3593–3597. doi: 10.1016/j.jbiomech.2014.10.015. PubMed DOI PMC
Hayes C.W., Conway W.F. Evaluation of articular cartilage: Radiographic and cross-sectional imaging techniques. Radiographics. 1992;12:409–428. doi: 10.1148/radiographics.12.3.1609135. PubMed DOI
Cameron M.L., Briggs K.K., Steadman J.R. Reproducibility and reliability of the outerbridge classification for grading chondral lesions of the knee arthroscopically. Am. J. Sports Med. 2003;31:83–86. doi: 10.1177/03635465030310012601. PubMed DOI
Jack C.M., Rajaratnam S.S., Khan H.O., Keast-Butler O., Butler-Manuel P.A., Heatley F.W. The modified tibial tubercle osteotomy for anterior knee pain due to chondromalacia patellae in adults. Bone Joint Res. 2012;1:167–173. doi: 10.1302/2046-3758.18.2000083. PubMed DOI PMC
Jungius K.-P., Schmid M.R., Zanetti M., Hodler J., Koch P., Pfirrmann C.W.A. Cartilaginous Defects of the Femorotibial Joint:Accuracy of Coronal Short Inversion Time Inversion-Recovery MR Sequence. Radiol. Clin. N. Am. 2006;240:483–488. doi: 10.1148/radiol.2401050077. PubMed DOI
Araujo P., van Eck C.F., Torabi M., Fu F.H. How to optimize the use of MRI in anatomic ACL reconstruction. Knee Surgery Sport. Traumatol. Arthrosc. 2013;21:1495–1501. doi: 10.1007/s00167-012-2153-9. PubMed DOI PMC
Hong S.H., Choi J.-Y., Lee G.K., Choi J.-A., Chung H.W., Kang H.S. Grading of Anterior Cruciate Ligament Injury. J. Comput. Assist. Tomogr. 2003;27:814–819. doi: 10.1097/00004728-200309000-00022. PubMed DOI
Apprich S., Friedrich K., Veronika S. Siegfried Trattnig VIMATS—Vienna Morphological Achilles Tendon Score Target Audience. Proc. Intl. Soc. Mag. Reson. Med. 2013;14:3472.
Casula V., Hirvasniemi J., Lehenkari P., Ojala R., Haapea M., Saarakkala S., Lammentausta E., Nieminen M.T. Association between quantitative MRI and ICRS arthroscopic grading of articular cartilage. Knee Surg. Sport. Traumatol. Arthrosc. 2016;24:2046–2054. doi: 10.1007/s00167-014-3286-9. PubMed DOI
Casula V., Nissi M.J., Podlipská J., Haapea M., Koski J.M., Saarakkala S., Guermazi A., Lammentausta E., Nieminen M.T. Elevated adiabatic T1ρ and T2ρ in articular cartilage are associated with cartilage and bone lesions in early osteoarthritis: A preliminary study. J. Magn. Reson. Imaging. 2017;46:678–689. doi: 10.1002/jmri.25616. PubMed DOI
Juras V., Apprich S., Szomolanyi P., Bieri O., Deligianni X., Trattnig S. Bi-exponential T2* analysis of healthy and diseased Achilles tendons: An in vivo preliminary magnetic resonance study and correlation with clinical score. Eur. Radiol. 2013;23:2814–2822. doi: 10.1007/s00330-013-2897-8. PubMed DOI PMC
Herzog W. The problem with running injuries. J. Sport Heal. Sci. 2016;5:171. doi: 10.1016/j.jshs.2016.03.001. PubMed DOI PMC
Novacheck T.F. The biomechanics of running. Gait Posture. 1998;7:77–95. doi: 10.1016/S0966-6362(97)00038-6. PubMed DOI
Vanrenterghem J., Venables E., Pataky T., Robinson M.A. The effect of running speed on knee mechanical loading in females during side cutting. J. Biomech. 2012;45:2444–2449. doi: 10.1016/j.jbiomech.2012.06.029. PubMed DOI
Pollard C.D., Davis I.M., Hamill J. Influence of gender on hip and knee mechanics during a randomly cued cutting maneuver. Clin. Biomech. 2004;19:1022–1031. doi: 10.1016/j.clinbiomech.2004.07.007. PubMed DOI
McClay I., Manal K. A comparison of three-dimensional lower extremity kinematics during running between excessive pronators and normals. Clin. Biomech. 1998;13:195–203. doi: 10.1016/S0268-0033(97)00029-6. PubMed DOI
Rautiainen J., Nissi M.J., Salo E.N., Tiitu V., Finnilä M.A.J., Aho O.M., Saarakkala S., Lehenkari P., Ellermann J., Nieminen M.T. Multiparametric MRI assessment of human articular cartilage degeneration: Correlation with quantitative histology and mechanical properties. Magn. Reson. Med. 2015;74:249–259. doi: 10.1002/mrm.25401. PubMed DOI PMC
Li X., Ma C.B., Link T.M., Castillo D., Blumenkrantz G., Lozano J., Carballido-gamio J. In vivo t1rho and t2 mapping of articular cartilage in osteoarthritis of the knee using 3 tesla mri. Osteoarthr. Cartil. 2007;15:789–797. doi: 10.1016/j.joca.2007.01.011. PubMed DOI PMC
Nieminen M.T., Casula V., Nevalainen M.T., Saarakkala S. Osteoarthritis year in review 2018: Imaging. Osteoarthr. Cartil. 2019;27:401–411. doi: 10.1016/j.joca.2018.12.009. PubMed DOI
Schmitz J.R., Wang H., Kraft A.R., Shultz J.S., Ross E.S., Henson A.R., Perrin H.D. Regional differences in anterior cruciate ligament imaging biomarkers: T2 and T2 star values. Muscles. Ligaments Tendons J. 2018;8:238–245. doi: 10.32098/mltj.02.2018.13. DOI
Comparison of bone mineral density of runners with inactive males: A cross-sectional 4HAIE study
Effect of Footwear Type on Biomechanical Risk Factors for Knee Osteoarthritis