Comparison of bone mineral density of runners with inactive males: A cross-sectional 4HAIE study

. 2024 ; 19 (8) : e0306715. [epub] 20240809

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid39121106

The purpose of the study was to determine whether running is associated with greater bone mineral density (BMD) by comparing the BMD of regularly active male runners (AR) with inactive nonrunner male controls (INC). This cross-sectional study recruited 327 male AR and 212 male INC (aged 18-65) via a stratified recruitment strategy. BMD of the whole body (WB) and partial segments (spine, lumbar spine (LS), leg, hip, femoral neck (FN), and arm for each side) were measured by dual-energy x-ray absorptiometry (DXA) and lower leg dominance (dominant-D/nondominant-ND) was established by functional testing. An ANCOVA was used to compare AR and INC. The AR had greater BMD for all segments of the lower limb (p<0.05), but similar BMD for all segments of the upper limb (p>0.05) compared with INC. Based on the pairwise comparison of age groups, AR had greater BMD of the ND leg in every age group compared with INC (p<0.05). AR had grater BMD of the D leg in every age group except for (26-35 and 56-65) compare with INC (p<0.05). In the youngest age group (18-25), AR had greater BMD in every measured part of lower extremities (legs, hips, femoral necks) compared with INC (p<0.05). In the 46-55 age group AR had greater BMD than INC (p < 0.05) only in the WB, D Leg, D neck, and ND leg. In the 56-65 age group AR had greater BMD than INC (p<0.05) only in the ND leg. Overall, AR had greater BMD compared with INC in all examined sites except for the upper limbs, supporting the notion that running may positively affect bone parameters. However, the benefits differ in the skeletal sites specifically, as the legs had the highest BMD difference between AR and INC. Moreover, the increase in BMD from running decreased with age.

Zobrazit více v PubMed

Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis International. 2006;17: 1726–1733. doi: 10.1007/s00198-006-0172-4 PubMed DOI

Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA, Berger M. Patients with prior fractures have an increased risk of future fractures: A summary of the literature and statistical synthesis. Journal of Bone and Mineral Research. 2000;15: 721–739. doi: 10.1359/jbmr.2000.15.4.721 PubMed DOI

Cummings SR, Nevitt MC, Browner WS, Stone K, Fox KM, Ensrud KE, et al.. Risk Factors for Hip Fracture in White Women. New England Journal of Medicine. 1995;332: 767–773. doi: 10.1056/nejm199503233321202 PubMed DOI

Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. Journal of Bone and Mineral Research. 2007;22: 465–475. doi: 10.1359/jbmr.061113 PubMed DOI

Bachrach LK, Hastie T, Wang MC, Narasimhan B, Marcus R. Bone mineral acquisition in healthy Asian, Hispanic, black, and Caucasian youth: A longitudinal study. Journal of Clinical Endocrinology and Metabolism. 1999;84: 4702–4712. doi: 10.1210/jcem.84.12.6182 PubMed DOI

Zhu X, Zheng H. Factors influencing peak bone mass gain. Front Med. 2021;15: 53–69. doi: 10.1007/s11684-020-0748-y PubMed DOI

Melton LI, Khosla S, Atkinson E, O’connor M, O’fallon W, Riggs B. Cross-Sectional Versus Longitudinal Evaluation of Bone Loss in Men and Women. Osteoporosis international. 2000;11: 592–599. doi: 10.1007/s001980070080 PubMed DOI

Szulc P, Marchand F, Duboeuf F, Delmas PD. Cross-Sectional Assessment of Age-Related Bone Loss in Men: The MINOS Study. Bone. 2000;26: 123–129. doi: 10.1016/s8756-3282(99)00255-0 PubMed DOI

Warming L, Hassager C, Christiansen C. Changes in bone mineral density with age in men and women: A longitudinal study. Osteoporosis International. 2002;13: 105–112. doi: 10.1007/s001980200001 PubMed DOI

Elliott-Sale KJ, Minahan CL, de Jonge XAKJ, Ackerman KE, Sipilä S, Constantini NW, et al.. Methodological Considerations for Studies in Sport and Exercise Science with Women as Participants: A Working Guide for Standards of Practice for Research on Women. Sports Medicine. 2021;51: 843–861. doi: 10.1007/s40279-021-01435-8 PubMed DOI PMC

Tenforde AS, Fredericson M, Sayres LC, Cutti P, Sainani KL. Identifying Sex-Specific Risk Factors for Low Bone Mineral Density in Adolescent Runners. American Journal of Sports Medicine. 2015;43: 1494–1504. doi: 10.1177/0363546515572142 PubMed DOI

Audí L, García-Ramírez M, Carrascosa A. Genetic determinants of bone mass. Horm Res. 1999;51: 105–123. doi: 10.1159/000023343 PubMed DOI

Ralston SH. Genetic determinants of osteoporosis. Curr Opin Rheumatol. 2005;17: 475–479. doi: 10.1097/01.bor.0000166385.62851.92 PubMed DOI

Saggese G, Baroncelli GI, Bertelloni S. Osteoporosis in children and adolescents: Diagnosis, risk factors, and prevention. Journal of Pediatric Endocrinology and Metabolism. 2001;14: 833–859. doi: 10.1515/jpem.2001.14.7.833 PubMed DOI

Kenkre J, Bassett J. The bone remodelling cycle. Annals of Clinical Biochemistry: International Journal of Laboratory Medicine. 2018;55: 308–327. doi: 10.1177/0004563218759371 PubMed DOI

Hadjidakis DJ, Androulakis II. Bone Remodeling. Ann N Y Acad Sci. 2006;1092: 385–396. doi: 10.1196/annals.1365.035 PubMed DOI

Brooke-Wavell K, Skelton DA, Barker KL, Clark EM, de Biase S, Arnold S, et al.. Strong, steady and straight: UK consensus statement on physical activity and exercise for osteoporosis. Br J Sports Med. 2022; bjsports-2021–104634. doi: 10.1136/bjsports-2021-104634 PubMed DOI PMC

Karlsson MK, Rosengren BE. Training and bone—from health to injury. Scand J Med Sci Sports. 2012;22: 15–23. doi: 10.1111/j.1600-0838.2012.01461.x PubMed DOI

Gruber AH, Boyer KA, Derrick TR, Hamill J. Impact shock frequency components and attenuation in rearfoot and forefoot running. J Sport Health Sci. 2014;3: 113–121. doi: 10.1016/j.jshs.2014.03.004 DOI

Hamill J Derrick TR, Holt KG. Shock attenuation and stride frequency during running. Hum Mov Sci. 1995;14: 45–60. doi: 10.1016/0167-9457(95)00004-C DOI

21. Heinonen A, Sievänen H, Kyröläinen H, Perttunen J, Kannus P. Mineral mass, size, and estimated mechanical strength of triple jumpers’ lower limb. Bone. 2001;29: 279–285. doi: 10.1016/s8756-3282(01)00574-9 PubMed DOI

Hind K, Gannon L, Whatley E, Cooke C, Truscott J. Bone cross-sectional geometry in male runners, gymnasts, swimmers and non-athletic controls: A hip-structural analysis study. Eur J Appl Physiol. 2012;112: 535–541. doi: 10.1007/s00421-011-2008-y PubMed DOI

Infantino NA, McCormack WP, Almstedt HC. Bone mineral density and hip structure changes over one-year in collegiate distance runners and non-athlete controls. Bone Rep. 2021;14: 101056. doi: 10.1016/j.bonr.2021.101056 PubMed DOI PMC

Saers JPP, DeMars LJ, Stephens NB, Jashashvili T, Carlson KJ, Gordon AD, et al. Combinations of trabecular and cortical bone properties distinguish various loading modalities between athletes and controls. Am J Phys Anthropol. 2020; 1–17. doi: 10.1002/ajpa.24176 PubMed DOI

Alonso AC, Ernandes R de C, Pereira RHM, Becker RA, Machado-Lima A, Silva-Santos PR, et al. Bone mineral density and body composition in elderly runners: Six-year follow-up. Acta Ortop Bras. 2019;27: 92–94. doi: 10.1590/1413-785220192702214897 PubMed DOI PMC

Fredericson M, Chew K, Ngo J, Cleek T, Kiratli J, Cobb K. Regional bone mineral density in male athletes: A comparison of soccer players, runners and controls. Br J Sports Med. 2007;41: 664–668. doi: 10.1136/bjsm.2006.030783 PubMed DOI PMC

Kemmler W, Engelke K, Baumann H, Beeskow C, Stengel S, Weineck J, et al.. Bone status in elite male runners. Eur J Appl Physiol. 2006;96: 78–85. doi: 10.1007/s00421-005-0060-1 PubMed DOI

McCormack WP, Shoepe TC, LaBrie J, Almstedt HC. Bone mineral density, energy availability, and dietary restraint in collegiate cross-country runners and non-running controls. Eur J Appl Physiol. 2019;119: 1747–1756. doi: 10.1007/s00421-019-04164-z PubMed DOI PMC

Piasecki J, McPhee JS, Hannam K, Deere KC, Elhakeem A, Piasecki M, et al.. Hip and spine bone mineral density are greater in master sprinters, but not endurance runners compared with non-athletic controls. Arch Osteoporos. 2018;13. doi: 10.1007/s11657-018-0486-9 PubMed DOI PMC

Aloia JF, Cohn SH, Babu T, Abesamis C, Kalici N, Ellis K. Skeletal mass and body composition in marathon runners. Metabolism. 1978;27: 1793–1796. doi: 10.1016/0026-0495(78)90265-2 PubMed DOI

Brahm H, Ström H, Piehl-Aulin K, Mallmin H, Ljunghall S. Bone metabolism in endurance trained athletes: A comparison to population-based controls based on DXA, SXA, quantitative ultrasound, and biochemical markers. Calcif Tissue Int. 1997;61: 448–454. doi: 10.1007/s002239900366 PubMed DOI

Heinonen A, Oja P, Kannus P, Sievänen H, Mänttäri A, Vuori I. Bone mineral density of female athletes in different sports. Bone Miner. 1993;23: 1–14. doi: 10.1016/s0169-6009(08)80086-4 PubMed DOI

Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR. Physical activity and bone health. Med Sci Sports Exerc. 2004;36: 1985–1996. doi: 10.1249/01.MSS.0000142662.21767.58 PubMed DOI

Tam N, Santos-Concejero J, Tucker R, Lamberts RP, Micklesfield LK. Bone health in elite Kenyan runners. Sports Medicine. 2018;36: 456–461. doi: 10.1080/02640414.2017.1313998 PubMed DOI

Bilanin JE, Blanchard MS, Russek-Cohen E. Lower vertebral bone density in male long distance runners. Med Sci Sports Exerc. 1989;21: 66–70. doi: 10.1249/00005768-198902000-00012 PubMed DOI

Goodpaster BH, Costill DL, Trappe SW, Hughes GM. The relationship of sustained exercise training and bone mineral density in aging male runners. Scand J Med Sci Sports. 1996;6: 216–221. doi: 10.1111/j.1600-0838.1996.tb00094.x PubMed DOI

Hetland ML, Haarbo J, Christiansen C. Low bone mass and high bone turnover in male long distance runners. J Clin Endocrinol Metab. 1993;77: 770–775. doi: 10.1210/jcem.77.3.8370698 PubMed DOI

Wolman RL, Faulmann L, Clark P, Hesp R, Harries MG. Different training patterns and bone mineral density of the femoral shaft in elite, female athletes. Ann Rheum Dis. 1991;50: 487–489. doi: 10.1136/ard.50.7.487 PubMed DOI PMC

Mitchell UH, Bailey B, Owen PJ. Examining Bone, Muscle and Fat in Middle-Aged Long-Term Endurance Runners: A Cross-Sectional Study. J Clin Med. 2020;9: 522. doi: 10.3390/jcm9020522 PubMed DOI PMC

Düz S, Arik M. The Effect of Ultramarathon Running on Bone Mineral Density in Male Athletes. International Journal of Applied Exercise Physiology. 2020;9: 100–108. doi: 10.26655/IJAEP.2020.5.1 DOI

Herbert AJ, Williams AG, Lockey SJ, Erskine RM, Sale C, Hennis PJ, et al.. Bone mineral density in high-level endurance runners: part A—site-specific characteristics. Eur J Appl Physiol. 2021;121: 3437–3445. doi: 10.1007/s00421-021-04793-3 PubMed DOI PMC

Cipryan L, Kutac P, Dostal T, Zimmermann M, Krajcigr M, Jandackova V, et al.. Regular running in an air-polluted environment: physiological and anthropometric protocol for a prospective cohort study (Healthy Aging in Industrial Environment Study–Program 4). BMJ Open. 2020;10: 1–8. doi: 10.1136/bmjopen-2020-040529 PubMed DOI PMC

Elavsky S, Jandačková V, Knapová L, Vašendová V, Sebera M, Kaštovská B, et al.. Physical activity in an air-polluted environment: behavioral, psychological and neuroimaging protocol for a prospective cohort study (Healthy Aging in Industrial Environment study–Program 4). BMC Public Health. 2021;21: 1–14. doi: 10.1186/s12889-021-10166-4 PubMed DOI PMC

Jandacka D, Uchytil J, Zahradnik D, Farana R, Vilimek D, Skypala J, et al.. Running and Physical Activity in an Air-Polluted Environment: The Biomechanical and Musculoskeletal Protocol for a Prospective Cohort Study 4HAIE (Healthy Aging in Industrial Environment—Program 4). Int J Environ Res Public Health. 2020;17: 1–20. doi: doi.org/10.3390/ijerph17239142 PubMed PMC

Fact Sheet Physical Activity Global recommendations on physical activity for health Consequences of physical inactivity. [cited 4 Dec 2022]. Available: www.euro.who.int/physical-activity

Hologic. QDR for Windows XP Reference Manual. Hologic Inc. 2013.

Hoffman M, Schrader J, Applegate T, Koceja D. Unilateral postural control of the functionally dominant and nondominant extremities of healthy subjects. J Athl Train. 1998;33: 319–322. PubMed PMC

Jacob Cohen. A power primer. Psychol Bull. 1992;112: 155–159. doi: 10.1037//0033-2909.112.1.155 PubMed DOI

Oldroyd A, Dubey S. The association between bone mineral density and higher body mass index in men. Int J Clin Pract. 2015;69: 145–147. doi: 10.1111/ijcp.12523 PubMed DOI

Hind K, Truscott JG, Evans JA. Low lumbar spine bone mineral density in both male and female endurance runners. Bone. 2006;39: 880–885. doi: 10.1016/j.bone.2006.03.012 PubMed DOI

Burrows M, Nevill AM, Bird S, Simpson D. Physiological factors associated with low bone mineral density in female endurance runners. Br J Sports Med. 2003;37: 67–71. doi: 10.1136/bjsm.37.1.67 PubMed DOI PMC

MacKelvie KJ. Bone mineral density and serum testosterone in chronically trained, high mileage 40–55 year old male runners. Br J Sports Med. 2000;34: 273–278. doi: 10.1136/bjsm.34.4.273 PubMed DOI PMC

MacDougall JD, Webber CE, Martin J, Ormerod S, Chesley A, Younglai E V., et al.. Relationship among running mileage, bone density, and serum testosterone in male runners. J Appl Physiol. 1992;73: 1165–1170. doi: 10.1152/jappl.1992.73.3.1165 PubMed DOI

Barrack MT, Fredericson M, Tenforde AS, Nattiv A. Evidence of a cumulative effect for risk factors predicting low bone mass among male adolescent athletes. Br J Sports Med. 2017;51: 200–205. doi: 10.1136/bjsports-2016-096698 PubMed DOI

Gunter KB, Almstedt HC, Janz KF. Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exerc Sport Sci Rev. 2012;40: 13–21. doi: 10.1097/JES.0b013e318236e5ee PubMed DOI PMC

Scofield KL, Hecht S. Bone health in endurance athletes: Runners, cyclists, and swimmers. Curr Sports Med Rep. 2012;11: 328–334. doi: 10.1249/JSR.0b013e3182779193 PubMed DOI

Stojanović E, Radovanović D, Dalbo VJ, Jakovljević V, Ponorac N, Agostinete RR, et al.. Basketball players possess a higher bone mineral density than matched non-athletes, swimming, soccer, and volleyball athletes: a systematic review and meta-analysis. Arch Osteoporos. 2020;15. doi: 10.1007/s11657-020-00803-7 PubMed DOI

Bellew JW, Gehrig L. A Comparison of Bone Mineral Density in Adolescent Female Swimmers, Soccer Players, and Weight Lifters. Pediatric Physical Therapy. 2006;18: 19–22. doi: 10.1097/01.pep.0000200952.63544.16 PubMed DOI

Burt LA, Greene DA, Naughton GA. Bone Health of Young Male Gymnasts: A Systematic Review. Pediatr Exerc Sci. 2017;29: 456–464. doi: 10.1123/pes.2017-0046 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...