High levels of glycated haemoglobin (HbA1c) are associated with lower knee joint cartilage quality and higher knee joint symptoms in healthy individuals

. 2025 Mar ; 125 (3) : 885-894. [epub] 20241101

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39482452

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000798 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 39482452
DOI 10.1007/s00421-024-05646-5
PII: 10.1007/s00421-024-05646-5
Knihovny.cz E-zdroje

In an asymptomatic population, we investigated the relationships between glycated haemoglobin (HbA1c) and cartilage T2 relaxation time at the knee joint level. Fourteen and 17 participants with high and normal levels of HbA1c were recruited, respectively. A blood sample was used to determine the HbA1c level. T2 relaxation time (T2) of the superficial and deep parts of the femoral cartilage in the anterior, central, and posterior topographical sites was calculated using magnetic resonance (1.5 T) images. Each participant completed a knee injury and osteoarthritis outcome score questionnaire (KOOS) and a series of biomechanical analyses while running at their self-selected speed. The group with a high level of HbA1c had a lower score of KOOS symptoms than the other group (P < 0.05). HbA1c was found to be negatively related to the KOOS symptoms score. The group with a high level of HbA1c had low T2 values in all of the investigated topographical sites of the knee femoral cartilage (P < 0.05 in all cases). T2 was negatively correlated with HbA1c levels in all investigated knee femoral cartilage regions. Our data suggest that the subjects with high levels of HbA1c were those with low knee joint symptoms and lower values of T2. These results indicate that HbA1c could be correlated with cartilage deterioration due to its ability to dehydrate collagen fibre, possibly acting as a risk factor for the development of osteoarthritis.

Zobrazit více v PubMed

Bank RA, Bayliss MT, Lafeber FP et al (1998) Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. the age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem J 330(1):345–351. https://doi.org/10.1042/bj3300345 PubMed DOI PMC

Basser PJ, Schneiderman R, Bank RA et al (1998) Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. Arch Biochem Biophys 351:207–219. https://doi.org/10.1006/abbi.1997.0507 PubMed DOI

Baynes JW (2001) The role of AGEs in aging: causation or correlation. Exp Gerontol 36:1527–1537. https://doi.org/10.1016/s0531-5565(01)00138-3 PubMed DOI

Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46:223–234. https://doi.org/10.1146/annurev.med.46.1.223 PubMed DOI

Brownlee M, Cerami A, Vlassara H (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 318:1315–1321. https://doi.org/10.1056/NEJM198805193182007 PubMed DOI

Buckwalter JA, Mankin HJ (1998) Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 47:477–486 PubMed

Burt VL, Harris T (1994) The Third National Health and Nutrition Examination Survey: contributing data on aging and health. Gerontologist 34:486–490. https://doi.org/10.1093/geront/34.4.486 PubMed DOI

Cameron ML, Briggs KK, Steadman JR (2003) Reproducibility and reliability of the outerbridge classification for grading chondral lesions of the knee arthroscopically. Am J Sports Med 31:83–86. https://doi.org/10.1177/03635465030310012601 PubMed DOI

Chou M-C, Tsai P-H, Huang G-S et al (2009) Correlation between the MR T2 value at 4.7 T and relative water content in articular cartilage in experimental osteoarthritis induced by ACL transection. Osteoarthr Cartil 17:441–447. https://doi.org/10.1016/j.joca.2008.09.009 DOI

Couppé C, Svensson RB, Kongsgaard M et al (2016) Human Achilles tendon glycation and function in diabetes. J Appl Physiol 120:130–137. https://doi.org/10.1152/japplphysiol.00547.2015 PubMed DOI

de Oliveira RR, Lemos A, de Castro Silveira PV et al (2011) Alterations of tendons in patients with diabetes mellitus: a systematic review: tendon alterations in diabetes. Diabet Med 28:886–895. https://doi.org/10.1111/j.1464-5491.2010.03197.x PubMed DOI

DeGroot J, Verzijl N, Jacobs KM et al (2001) Accumulation of advanced glycation endproducts reduces chondrocyte-mediated extracellular matrix turnover in human articular cartilage. Osteoarthr Cartil 9:720–726. https://doi.org/10.1053/joca.2001.0469 DOI

Driban JB, Eaton CB, Amin M et al (2017) Glucose homeostasis influences the risk of incident knee osteoarthritis: data from the osteoarthritis initiative. J Orthop Res 35:2282–2287. https://doi.org/10.1002/jor.23531 PubMed DOI PMC

Dubey NK, Ningrum DNA, Dubey R et al (2018) Correlation between diabetes mellitus and knee osteoarthritis: a dry-to-wet lab approach. Int J Mol Sci 19:E3021. https://doi.org/10.3390/ijms19103021 DOI

Dunn OJ, Clark V (1971) Comparison of tests of the equality of dependent correlation coefficients. J Am Stat Assoc 66:904–908. https://doi.org/10.1080/01621459.1971.10482369 DOI

Elavsky S, Jandačková V, Knapová L et al (2021) Physical activity in an air-polluted environment: behavioral, psychological and neuroimaging protocol for a prospective cohort study (Healthy Aging in Industrial Environment study - Program 4). BMC Public Health 21:126. https://doi.org/10.1186/s12889-021-10166-4 PubMed DOI PMC

Foreman SC, Ashmeik W, Baal JD et al (2021) Patients with type 2 diabetes exhibit a more mineralized deep cartilage layer compared with nondiabetic controls: a pilot study. Cartilage 13:428S-436S. https://doi.org/10.1177/1947603519870853 PubMed DOI

Gautieri A, Passini FS, Silván U et al (2017) Advanced glycation end-products: mechanics of aged collagen from molecule to tissue. Matrix Biol 59:95–108. https://doi.org/10.1016/j.matbio.2016.09.001 PubMed DOI

Handl M, Filová E, Kubala M et al (2007) Fluorescent advanced glycation end products in the detection of factual stages of cartilage degeneration. Physiol Res. https://doi.org/10.33549/physiolres.930934 PubMed DOI

Hayes CW, Conway WF (1992) Evaluation of articular cartilage: radiographic and cross-sectional imaging techniques. Radiographics 12:409–428. https://doi.org/10.1148/radiographics.12.3.1609135 PubMed DOI

Jack CM, Rajaratnam SS, Khan HO et al (2012) The modified tibial tubercle osteotomy for anterior knee pain due to chondromalacia patellae in adults. Bone Joint Res 1:167–173. https://doi.org/10.1302/2046-3758.18.2000083 PubMed DOI PMC

Jandacka D, Uchytil J, Zahradnik D et al (2020) Running and physical activity in an air-polluted environment: the biomechanical and musculoskeletal protocol for a prospective cohort study 4HAIE (healthy aging in industrial environment—program 4). IJERPH 17:9142. https://doi.org/10.3390/ijerph17239142 PubMed DOI PMC

Jandacka D, Casula V, Hamill J et al (2024) Regular running is related to the knee joint cartilage structure in healthy adults. Med Sci Sports Exerc 56:1026–1035. https://doi.org/10.1249/MSS.0000000000003386 PubMed DOI

Jazini E, Sharan AD, Morse LJ et al (2012) Alterations in T2 relaxation magnetic resonance imaging of the ovine intervertebral disc due to nonenzymatic glycation. Spine 37:E209–E215. https://doi.org/10.1097/BRS.0b013e31822ce81f PubMed DOI PMC

Kent P, Jensen RK, Kongsted A (2014) A comparison of three clustering methods for finding subgroups in MRI, SMS or clinical data: SPSS twostep cluster analysis, latent gold and SNOB. BMC Med Res Methodol 14:113. https://doi.org/10.1186/1471-2288-14-113 PubMed DOI PMC

Lammentausta E, Kiviranta P, Nissi MJ et al (2006) T2 relaxation time and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) of human patellar cartilage at 1.5 T and 9.4 T: relationships with tissue mechanical properties. J Orthop Res 24:366–374. https://doi.org/10.1002/jor.20041 PubMed DOI

Liebl H, Joseph G, Nevitt MC et al (2015) Early T2 changes predict onset of radiographic knee osteoarthritis: data from the osteoarthritis initiative. Ann Rheum Dis 74:1353–1359. https://doi.org/10.1136/annrheumdis-2013-204157 PubMed DOI

Liess C, Lüsse S, Karger N et al (2002) Detection of changes in cartilage water content using MRI T2-mapping in vivo. Osteoarthr Cartil 10:907–913. https://doi.org/10.1053/joca.2002.0847 DOI

MacKay JW, Low SBL, Smith TO et al (2018) Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis. Osteoarthr Cartil 26:1140–1152. https://doi.org/10.1016/j.joca.2017.11.018 DOI

Magris R, Monte A, Nardello F et al (2024) Effects of minute oscillation stretching training on muscle and tendon stiffness and walking capability in people with type 2 diabetes. Eur J Appl Physiol. https://doi.org/10.1007/s00421-024-05596-y PubMed DOI PMC

Neumann J, Hofmann FC, Heilmeier U et al (2018) Type 2 diabetes patients have accelerated cartilage matrix degeneration compared to diabetes free controls: data from the Osteoarthritis Initiative. Osteoarthr Cartil 26:751–761. https://doi.org/10.1016/j.joca.2018.03.010 DOI

Nieminen MT, Rieppo J, Töyräs J et al (2001) T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med 46:487–493. https://doi.org/10.1002/mrm.1218 PubMed DOI

Rahbar S (2005) The discovery of glycated hemoglobin: a major event in the study of nonenzymatic chemistry in biological systems. Ann N Y Acad Sci 1043:9–19. https://doi.org/10.1196/annals.1333.002 PubMed DOI

Rautiainen J, Nieminen MT, Salo E-N et al (2016) Effect of collagen cross-linking on quantitative MRI parameters of articular cartilage. Osteoarthr Cartil 24:1656–1664. https://doi.org/10.1016/j.joca.2016.04.017 DOI

Reddy GK (2004) Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness in rabbit achilles tendon. Exp Diabesity Res 5:143–153. https://doi.org/10.1080/15438600490277860 PubMed DOI PMC

Rehling T, Bjørkman A-SD, Andersen MB et al (2019) Diabetes is associated with musculoskeletal pain, osteoarthritis, osteoporosis, and rheumatoid arthritis. J Diabetes Res 2019:6324348. https://doi.org/10.1155/2019/6324348 PubMed DOI PMC

Schett G, Kleyer A, Perricone C et al (2013) Diabetes is an independent predictor for severe osteoarthritis: results from a longitudinal cohort study. Diabetes Care 36:403–409. https://doi.org/10.2337/dc12-0924 PubMed DOI PMC

Sinclair A, Saeedi P, Kaundal A et al (2020) Diabetes and global ageing among 65–99-year-old adults: findings from the International diabetes federation diabetes Atlas, 9th edition. Diabetes Res Clin Pract 162:108078. https://doi.org/10.1016/j.diabres.2020.108078 PubMed DOI

Stel VS, Smit JH, Pluijm SMF et al (2004) Comparison of the LASA physical activity questionnaire with a 7-day diary and pedometer. J Clin Epidemiol 57:252–258. https://doi.org/10.1016/j.jclinepi.2003.07.008 PubMed DOI

Stürmer T, Brenner H, Brenner RE, Günther KP (2001) Non-insulin dependent diabetes mellitus (NIDDM) and patterns of osteoarthritis. the Ulm osteoarthritis study. Scand J Rheumatol 30:169–171. https://doi.org/10.1080/030097401300162969 PubMed DOI

Suzuki A, Yabu A, Nakamura H (2020) Advanced glycation end products in musculoskeletal system and disorders. Methods. https://doi.org/10.1016/j.ymeth.2020.09.012 PubMed DOI

Trellu S, Courties A, Jaisson S et al (2019) Impairment of glyoxalase-1, an advanced glycation end-product detoxifying enzyme, induced by inflammation in age-related osteoarthritis. Arthritis Res Ther 21:18. https://doi.org/10.1186/s13075-018-1801-y PubMed DOI PMC

Verzijl N, DeGroot J, Oldehinkel E et al (2000) Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem J 350(Pt 2):381–387 PubMed DOI PMC

Verzijl N, DeGroot J, Zaken CB et al (2002) Crosslinking by advanced glycation end products increases the stiffness of the collagen network in human articular cartilage: a possible mechanism through which age is a risk factor for osteoarthritis. Arthritis Rheum 46:114–123. https://doi.org/10.1002/1529-0131(200201)46:1%3c114::AID-ART10025%3e3.0.CO;2-P PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...