A 2024 inventory of test methods relevant to thyroid hormone system disruption for human health and environmental regulatory hazard assessment
Status PubMed-not-MEDLINE Language English Country Belgium Media electronic-ecollection
Document type Journal Article, Review
PubMed
39931575
PubMed Central
PMC11809485
DOI
10.12688/openreseurope.18739.1
Knihovny.cz E-resources
- Keywords
- One Health, Thyroid hormone system disruption, endocrine disruption, new approach methods,
- Publication type
- Journal Article MeSH
- Review MeSH
Thyroid hormone system disruption (THSD) is a growing concern in chemical hazard assessment due to its impact on human and environmental health and the scarce methods available for assessing the THSD potential of chemicals. In particular, the general lack of validated in silico and in vitro methods for assessing THS activity is of high concern. This manuscript provides an inventory of test methods relevant to THSD. Building on the Organisation for Economic Co-operation and Development (OECD) Guidance Document 150 and recent international developments, we highlight progress in in silico and in vitro methods, as well as in vivo assays. The provided inventory categorizes available methods according to the levels of the OECD Conceptual Framework, with an assessment of the validation status of each method. At Level 1, 12 in silico models that have been statistically validated and are directly related to THSD have been identified. At Level 2, 67 in vitro methods have been listed including those assessed in key initiatives such as the European Union Network of Laboratories for the Validation of Alternative Methods (EU-NETVAL) validation study to identify potential thyroid disruptors. At Levels 3-5, THSD-sensitive endpoints are being included in existing fish-based OECD Test Guidelines to complement amphibian assays. In total, the inventory counts 108 entries comprising established methods (e.g., OECD Test Guidelines) as well as citable methods that are under further development and in some cases are ready for validation or in the initial stages of validation. This work aims to support the ongoing development of strategies for regulatory hazard assessment, such as integrated approaches to testing and assessment (IATAs), for endocrine disruptors, addressing critical gaps in the current testing landscape for THSD in both human and environmental health contexts.
Endocrine disruption - the potential of chemicals, such as industrial chemicals or pesticides, to disrupt hormonal systems and cause adverse health effects - is of growing concern due to its impact on human and environmental health and the scarce methods available for assessing such hazards. In particular, the limited methods available for assessing disruption of the thyroid hormone system, is of high concern. This manuscript provides an inventory of test methods relevant for the assessment of thyroid hormone system disruption. We highlight progress in different types of methods such as computer simulations, cell-based methods, non-mammalian embryo-based methods and animal methods and include an assessment of the readiness of each method for implementation in chemical evaluations. In total, the inventory counts 108 entries comprising already established methods as well as recent developments. This work aims to support the ongoing development of strategies for evaluating endocrine disruption, addressing critical gaps in the current testing landscape for thyroid hormone system disruption in both human and environmental health contexts.
Center for Gender Specific Medicine Istituto Superiore di Sanità Rome 00161 Italy
Department of Biology University of Southern Denmark Odense 5230 Denmark
European Commission Joint Research Centre Ispra Ispra Lombardy 21027 Italy
Faculty of Chemistry University of Gdansk Gdańsk 80 308 Poland
National Institute for Public Health and the Environment Bilthoven Utrecht 3721 The Netherlands
RECETOX Faculty of Science Masaryk University Brno 611 37 Czech Republic
Zebrafishlab Veterinary Physiology and Biochemistry University of Antwerp Wilrijk 2610 Belgium
See more in PubMed
Alexandre E, Baze A, Parmentier C, et al. : Plateable cryopreserved human hepatocytes for the assessment of cytochrome P450 inducibility: experimental condition-related variables affecting their response to inducers. Xenobiotica. 2012;42(10):968–979. 10.3109/00498254.2012.676693 PubMed DOI
Aqai P, Fryganas C, Mizuguchi M, et al. : Triple Bioaffinity Mass Spectrometry concept for thyroid transporter ligands. Anal Chem. 2012;84(15):6488–6493. 10.1021/ac300543u PubMed DOI
Atzei A, Jense I, Zwart EP, et al. : Developmental Neurotoxicity of environmentally relevant pharmaceuticals and mixtures thereof in a zebrafish embryo behavioural test. Int J Environ Res Public Health. 2021;18(15): 6717. 10.3390/ijerph18136717 PubMed DOI PMC
Audouze K, Sarigiannis D, Alonso-Magdalena P, et al. : Integrative Strategy of Testing Systems for identification of Endocrine Disruptors inducing metabolic disorders-an introduction to the OBERON Project. Int J Mol Sci. 2020;21(8): 2988. 10.3390/ijms21082988 PubMed DOI PMC
Audouze K, van Duursen M, Holbech H, et al. : EURION methods table (Version v1). Zenodo. 2024. 10.5281/zenodo.13643083 DOI
Bai X, Yan L, Ji C, et al. : A combination of ternary classification models and reporter gene assays for the comprehensive thyroid hormone disruption profiles of 209 Polychlorinated Biphenyls. Chemosphere. 2018;210:312–319. 10.1016/j.chemosphere.2018.07.023 PubMed DOI
Baze A, Wiss L, Horbal L, et al. : Comparison of in vitro thyroxine (T4) metabolism between Wistar rat and human hepatocyte cultures. Toxicol In Vitro. 2024;96: 105763. 10.1016/j.tiv.2023.105763 PubMed DOI
Beetstra JB, van Engelen JG, Karels P, et al. : Thyroxine and 3,3',5-triiodothyronine are glucuronidated in rat liver by different Uridine Diphosphate-Glucuronyltransferases. Endocrinology. 1991;128(2):741–746. 10.1210/endo-128-2-741 PubMed DOI
Bernasconi C, Langezaal I, Bartnicka J, et al. : Validation of a battery of mechanistic methods relevant for the detection of chemicals that can disrupt the Thyroid Hormone system.JRC132532. Publications Office of the European Union, Luxembourg,2023. 10.2760/862948 DOI
Bernasconi C, Pelkonen O, Andersson TB, et al. : Validation of in vitro methods for human cytochrome P450 enzyme induction: outcome of a multi-laboratory study. Toxicol In Vitro. 2019;60:212–228. 10.1016/j.tiv.2019.05.019 PubMed DOI PMC
Bilotta J, Saszik S, Givin CM, et al. : Effects of embryonic exposure to ethanol on zebrafish visual function. Neurotoxicol Teratol. 2002;24(6):759–766. 10.1016/s0892-0362(02)00319-7 PubMed DOI
Blum J, Masjosthusmann S, Bartmann K, et al. : Establishment of a human cell-based in vitro battery to assess Developmental Neurotoxicity hazard of chemicals. Chemosphere. 2023;311(Pt 2): 137035. 10.1016/j.chemosphere.2022.137035 PubMed DOI
Burke MD, Mayer RT: Ethoxyresorufin: direct fluorimetric assay of a microsomal O-dealkylation which is preferentially inducible by 3–methylcholanthrene. Drug Metab Dispos. 1974;2(6):583–588. PubMed
Burke MD, Thompson S, Elcombe CR, et al. : Ethoxy-, pentoxy- and benzyloxyphenoxazones and homologues: a series of substrates to distinguish between different induced cytochromes P-450. Biochem Pharmacol. 1985;34(18):3337–3345. 10.1016/0006-2952(85)90355-7 PubMed DOI
Butt CM, Stapleton HM: Inhibition of Thyroid Hormone sulfotransferase activity by brominated flame retardants and halogenated phenolics. Chem Res Toxicol. 2013;26(11):1692–1702. 10.1021/tx400342k PubMed DOI PMC
Butt CM, Wang D, Stapleton HM: Halogenated phenolic contaminants inhibit the in vitro activity of the thyroid-regulating deiodinases in human liver. Toxicol Sci. 2011;124(2):339–347. 10.1093/toxsci/kfr117 PubMed DOI PMC
Cao J, Lin Y, Guo LH, et al. : Structure-based investigation on the binding interaction of hydroxylated Polybrominated Diphenyl Ethers with thyroxine transport proteins. Toxicology. 2010;277(1–3):20–28. 10.1016/j.tox.2010.08.012 PubMed DOI
Carvalho DJ, Kip AM, Romitti M, et al. : Thyroid-on-a-Chip: an organoid platform for in vitro assessment of Endocrine Disruption. Adv Healthc Mater. 2023;12(8): e2201555. 10.1002/adhm.202201555 PubMed DOI PMC
Carvalho DJ, Kip AM, Tegel A, et al. : A modular microfluidic organoid platform using LEGO-like bricks. Adv Healthc Mater. 2024;13(13): 2303444. 10.1002/adhm.202303444 PubMed DOI PMC
Chesnut M, Paschoud H, Repond C, et al. : Human IPSC-derived model to study myelin disruption. Int J Mol Sci. 2021;22(17):9473. 10.3390/ijms22179473 PubMed DOI PMC
Collet B, Simon E, van der Linden S, et al. : Evaluation of a panel of in vitro methods for assessing thyroid receptor beta and transthyretin transporter disrupting activities. Reprod Toxicol. 2020;96:432–444. 10.1016/j.reprotox.2019.05.011 PubMed DOI
De Vito MJ, Maier WE, Diliberto JJ, et al. : Comparative ability of various PCBs, PCDFs, and TCDD to induce cytochrome P450 1A1 and 1A2 activity following 4 weeks of treatment. Fundam Appl Toxicol. 1993;20(1):125–130. 10.1006/faat.1993.1015 PubMed DOI
Deisenroth C, Soldatow VY, Ford J, et al. : Development of an in vitro human thyroid microtissue model for chemical screening. Toxicol Sci. 2020;174(1):63–78. 10.1093/toxsci/kfz238 PubMed DOI PMC
Divi RL, Doerge DR: Inhibition of thyroid peroxidase by dietary flavonoids. Chem Res Toxicol. 1996;9(1):16–23. 10.1021/tx950076m PubMed DOI
Doerge DR, Takazawa RS: Mechanism of thyroid peroxidase inhibition by ethylenethiourea. Chem Res Toxicol. 1990;3(2):98–101. 10.1021/tx00014a003 PubMed DOI
Dong H, Atlas E, Wade MG: Development of a non-radioactive screening assay to detect chemicals disrupting the human sodium iodide symporter activity. Toxicol In Vitro. 2019;57:39–47. 10.1016/j.tiv.2019.01.021 PubMed DOI
Dong H, Friedman KP, Filiatreault A, et al. : A high throughput screening assay for human Thyroperoxidase inhibitors. Toxicol In Vitro. 2024;101: 105946. 10.1016/j.tiv.2024.105946 PubMed DOI
Dong HY, Godlewska M, Wade MG: A rapid assay of human Thyroid Peroxidase activity. Toxicol In Vitro. 2020;62: 104662. 10.1016/j.tiv.2019.104662 PubMed DOI
Dong H, Wade MG: Application of a nonradioactive assay for High Throughput Screening for inhibition of Thyroid Hormone uptake via the transmembrane transporter MCT8. Toxicol In Vitro. 2017;40:234–242. 10.1016/j.tiv.2017.01.014 PubMed DOI
Du G, Hu J, Huang H, et al. : Perfluorooctane Sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo. Environ Toxicol Chem. 2013;32(2):353–360. 10.1002/etc.2034 PubMed DOI
ECHA: Key Areas of Regulatory Challenge (KARC).European Chemicals Agency, Helsinki,2024;1–54. 10.2823/858284 DOI
ECHA-EFSA: Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J. 2018;16(6): e05311. 10.2903/j.efsa.2018.5311 PubMed DOI PMC
Elfving B, Plougmann PH, Wegener G: Detection of Brain-Derived Neurotrophic Factor (BDNF) in rat blood and brain preparations using ELISA: pitfalls and solutions. J Neurosci Methods. 2010;187(1):73–77. 10.1016/j.jneumeth.2009.12.017 PubMed DOI
Fagundes T, Pannetier P, Gölz L, et al. : The generation gap in endocrine disruption: Can the Integrated Fish Endocrine Disruptor Test (iFEDT) bridge the gap by assessing intergenerational effects of thyroid hormone system disruption? Aquat Toxicol. 2024;272: 106969. 10.1016/j.aquatox.2024.106969 PubMed DOI
Faucette SR, Hawke RL, Lecluyse EL, et al. : Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab Dispos. 2000;28(10):1222–1230. PubMed
Fini JB, Riu A, Debrauwer L, et al. : Parallel biotransformation of tetrabromobisphenol a in Xenopus laevis and mammals: Xenopus as a model for endocrine perturbation studies. Toxicol Sci. 2012;125(2):359–367. 10.1093/toxsci/kfr312 PubMed DOI
Forner-Piquer I, Baig AH, Kortenkamp A: Disruption of the thyroid hormone system and patterns of altered thyroid hormones after gestational chemical exposures in rodents - a systematic review. Front Endocrinol (Lausanne). 2023;14: 1323284. 10.3389/fendo.2023.1323284 PubMed DOI PMC
Franzosa JA, Bonzo JA, Jack J, et al. : High-throughput toxicogenomic screening of chemicals in the environment using metabolically competent hepatic cell cultures. NPJ Syst Biol Appl. 2021;7(1): 7. 10.1038/s41540-020-00166-2 PubMed DOI PMC
Freitas J, Cano P, Craig-Veit C, et al. : Detection of thyroid hormone receptor disruptors by a novel stable in vitro reporter gene assay. Toxicol In Vitro. 2011;25(1):257–266. 10.1016/j.tiv.2010.08.013 PubMed DOI
Freitas J, Miller N, Mengeling BJ, et al. : Identification of thyroid hormone receptor active compounds using a quantitative high-throughput screening platform. Curr Chem Genom Transl Med. 2014;8:36–46. 10.2174/2213988501408010036 PubMed DOI PMC
Freyberger A, Ahr HJ: Studies on the goitrogenic mechanism of action of N,N,N',N'-tetramethylthiourea. Toxicology. 2006;217(2–3):169–175. 10.1016/j.tox.2005.09.005 PubMed DOI
Gadaleta D, D'Alessandro L, Marzo M, et al. : Quantitative structure-activity relationship modeling of the amplex ultrared assay to predict thyroperoxidase inhibitory activity. Front Pharmacol. 2021;12: 713037. 10.3389/fphar.2021.713037 PubMed DOI PMC
Ghisari M, Bonefeld-Jorgensen EC: Impact of environmental chemicals on the thyroid hormone function in pituitary rat GH3 cells. Mol Cell Endocrinol. 2005;244(1–2):31–41. 10.1016/j.mce.2005.01.013 PubMed DOI
Ghisari M, Bonefeld-Jorgensen EC: Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions. Toxicol Lett. 2009;189(1):67–77. 10.1016/j.toxlet.2009.05.004 PubMed DOI
Gilbert ME, Ramos RL, McCloskey DP, et al. : Subcortical band heterotopia in rat offspring following maternal hypothyroxinaemia: structural and functional characteristics. J Neuroendocrinol. 2014;26(8):528–541. 10.1111/jne.12169 PubMed DOI
Gölz L, Baumann L, Pannetier P, et al. : AOP report: thyroperoxidase inhibition leading to altered visual function in fish via altered retinal layer structure. Environ Toxicol Chem. 2022;41(11):2632–2648. 10.1002/etc.5452 PubMed DOI
Gölz L, Blanc-Legendre M, Rinderknecht M, et al. : Development of a zebrafish embryo-based test system for thyroid hormone system disruption: 3Rs in ecotoxicological research. Environ Toxicol Chem. 2024a. 10.1002/etc.5878 PubMed DOI
Gölz L, Pannetier P, Fagundes T, et al. : Development of the integrated fish endocrine disruptor test-Part B: implementation of thyroid-related endpoints. Integr Environ Assess Manag. 2024b;20(3):830–845. 10.1002/ieam.4828 PubMed DOI
Gutleb AC, Meerts IATM, Bergsma JH, et al. : T-Screen as a tool to identify thyroid hormone receptor active compounds. Environ Toxicol Pharmacol. 2005;19(2):231–238. 10.1016/j.etap.2004.06.003 PubMed DOI
Gutsfeld S, Wehmas L, Omoyeni I, et al. : Investigation of Peroxisome Proliferator-Activated Receptor Genes as Requirements for Visual Startle Response Hyperactivity in Larval Zebrafish Exposed to Structurally Similar Per- and Polyfluoroalkyl Substances (PFAS). Environ Health Perspect. 2024;132(7): 77007. 10.1289/EHP13667 PubMed DOI PMC
Haigis A, Ottermanns R, Schiwy A, et al. : Getting more out of the zebrafish light dark transition test. Chemosphere. 2022;295: 133863. 10.1016/j.chemosphere.2022.133863 PubMed DOI
Haigis AC, Vergauwen L, LaLone CA, et al. : Cross-species applicability of an adverse outcome pathway network for thyroid hormone system disruption. Toxicol Sci. 2023;195(1):1–27. 10.1093/toxsci/kfad063 PubMed DOI
Hallinger DR, Murr AS, Buckalew AR, et al. : Development of a screening approach to detect thyroid disrupting chemicals that inhibit the human sodium iodide symporter (NIS). Toxicol In Vitro. 2017;40:66–78. 10.1016/j.tiv.2016.12.006 PubMed DOI
Hamers T, Kortenkamp A, Scholze M, et al. : Transthyretin-binding activity of complex mixtures representing the composition of thyroid-hormone disrupting contaminants in house dust and human serum. Environ Health Perspect. 2020;128(1): 17015. 10.1289/EHP5911 PubMed DOI PMC
Hanioka N, Tatarazako N, Jinno H, et al. : Determination of cytochrome P450 1A activities in mammalian liver microsomes by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Sci Appl. 2000;744(2):399–406. 10.1016/s0378-4347(00)00278-4 PubMed DOI
Harris RM, Kirk CJ, Waring RH: Non-genomic effects of endocrine disrupters: Inhibition of estrogen sulfotransferase by phenols and chlorinated phenols. Mol Cell Endocrinol. 2005;244(1–2):72–74. 10.1016/j.mce.2005.05.013 PubMed DOI
Holbech H, Matthiessen P, Hansen M, et al. : ERGO: breaking down the wall between human health and environmental testing of Endocrine Disrupters. Int J Mol Sci. 2020;21(8): 2954. 10.3390/ijms21082954 PubMed DOI PMC
Hood A, Klaassen CD: Differential effects of microsomal enzyme inducers on in vitro thyroxine (T 4) and triiodothyronine (T 3) glucuronidation. Toxicol Sci. 2000;55(1):78–84. 10.1093/toxsci/55.1.78 PubMed DOI
Hornung MW, Degitz SJ, Korte LM, et al. : Inhibition of thyroid hormone release from cultured amphibian thyroid glands by methimazole, 6-propylthiouracil, and perchlorate. Toxicol Sci. 2010;118(1):42–51. 10.1093/toxsci/kfq166 PubMed DOI
Hornung MW, Korte JJ, Olker JH, et al. : Screening the ToxCast Phase 1 Chemical Library for Inhibition of Deiodinase Type 1 Activity. Toxicol Sci. 2018;162(2):570–581. 10.1093/toxsci/kfx279 PubMed DOI PMC
Hornung MW, Kosian PA, Haselman JT, et al. : In vitro, ex vivo, and in vivo determination of thyroid hormone modulating activity of benzothiazoles. Toxicol Sci. 2015;146(2):254–264. 10.1093/toxsci/kfv090 PubMed DOI
Houck KA, Simha A, Bone A, et al. : Evaluation of a multiplexed, multispecies nuclear receptor assay for chemical hazard assessment. Toxicol In Vitro. 2021;72: 105016. 10.1016/j.tiv.2020.105016 PubMed DOI PMC
Hu X, Shi W, Zhang F, et al. : In vitro assessment of thyroid hormone disrupting activities in drinking water sources along the Yangtze River. Environ Pollut. 2013;173:210–215. 10.1016/j.envpol.2012.10.022 PubMed DOI
Hughes S, Hessel EVS: Zebrafish and nematodes as whole organism models to measure developmental neurotoxicity. Crit Rev Toxicol. 2024;54(5):330–343. 10.1080/10408444.2024.2342448 PubMed DOI
Illés P, Brtko J, Dvorák Z: Development and characterization of a human reporter cell line for the assessment of thyroid receptor transcriptional activity: a case of organotin endocrine disruptors. J Agric Food Chem. 2015;63(31):7074–7083. 10.1021/acs.jafc.5b01519 PubMed DOI
Jacobs MN, Hoffmann S, Hollnagel HM, et al. : Avoiding a reproducibility crisis in regulatory toxicology-on the fundamental role of ring trials. Arch Toxicol. 2024;98(7):2047–2063. 10.1007/s00204-024-03736-z PubMed DOI PMC
Jacobs MN, Janssens W, Bernauer U, et al. : The use of metabolising systems for in vitro testing of endocrine disruptors. Curr Drug Metab. 2008;9(8):796–826. 10.2174/138920008786049294 PubMed DOI
Jacobs MN, Kubickova B, Boshoff E: Candidate proficiency test chemicals to address industrial chemical applicability domains for in vitro human cytochrome P450 enzyme induction. Front Toxicol. 2022;4: 880818. 10.3389/ftox.2022.880818 PubMed DOI PMC
Jacobs M, Laws S, Willett K, et al. : In vitro metabolism and bioavailability tests for endocrine active substances: what is needed next for regulatory purposes? ALTEX. 2013;30(3):331–351. 10.14573/altex.2013.3.331 PubMed DOI
Jaka O, Iturria I, Martí C, et al. : Screening for chemicals with thyroid hormone-disrupting effects using zebrafish embryo. Reprod Toxicol. 2023;121: 108463. 10.1016/j.reprotox.2023.108463 PubMed DOI
Jayarama-Naidu R, Johannes J, Meyer F, et al. : A nonradioactive uptake assay for rapid analysis of Thyroid Hormone transporter function. Endocrinology. 2015;156(7):2739–2745. 10.1210/en.2015-1016 PubMed DOI
Johannes J, Jayarama-Naidu R, Meyer F, et al. : Silychristin, a flavonolignan derived from the milk thistle, is a potent inhibitor of the Thyroid Hormone transporter MCT8. Endocrinology. 2016;157(4):1694–1701. 10.1210/en.2015-1933 PubMed DOI
Jomaa B, de Haan LHJ, Peijnenburg AACM, et al. : Simple and rapid in vitro assay for detecting human Thyroid Peroxidase disruption. ALTEX. 2015;32(3):191–200. 10.14573/altex.1412201 PubMed DOI
Klein AB, Williamson R, Santini MA, et al. : Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol. 2011;14(3):347–353. 10.1017/S1461145710000738 PubMed DOI
Knapen D, Stinckens E, Cavallin JE, et al. : Toward an AOP network-based tiered testing strategy for the assessment of thyroid hormone disruption. Environ Sci Technol. 2020;54(14):8491–8499. 10.1021/acs.est.9b07205 PubMed DOI PMC
Knudsen TB, Houck KA, Sipes NS, et al. : Activity profiles of 309 ToxCast™ chemicals evaluated across 292 biochemical targets. Toxicology. 2011;282(1–2):1–15. 10.1016/j.tox.2010.12.010 PubMed DOI
Kolšek K, Mavri J, Sollner Dolenc M, et al. : Endocrine disruptome--an open source prediction tool for assessing endocrine disruption potential through nuclear receptor binding. J Chem Inf Model. 2014;54(4):1254–1267. 10.1021/ci400649p PubMed DOI
Kortenkamp A, Axelstad M, Baig A, et al. : Removing critical gaps in chemical test methods by developing new assays for the identification of thyroid hormone system-disrupting chemicals-the ATHENA project. Int J Mol Sci. 2020;21(9):3123. 10.3390/ijms21093123 PubMed DOI PMC
Kowalska D, Sosnowska A, Bulawska N, et al. : How the structure of per- and polyfluoroalkyl substances (PFAS) influences their binding potency to the peroxisome proliferator-activated and thyroid hormone receptors-an in silico screening study. Molecules. 2023;28(2):479. 10.3390/molecules28020479 PubMed DOI PMC
Kowiański P, Lietzau G, Czuba E, et al. : BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity. Cell Mol Neurobiol. 2018;38(3):579–593. 10.1007/s10571-017-0510-4 PubMed DOI PMC
Kundakovic M, Gudsnuk K, Herbstman JB, et al. : DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci U S A. 2015;112(22):6807–6813. 10.1073/pnas.1408355111 PubMed DOI PMC
Kusk KO, Krüger T, Long M, et al. : Endocrine potency of wastewater: contents of endocrine disrupting chemicals and effects measured by in vivo and in vitro assays. Environ Toxicol Chem. 2011;30(2):413–426. 10.1002/etc.385 PubMed DOI
LaLone C, Villeneuve DL, Doering JA, et al. : Evidence for cross species extrapolation of mammalian-based high-throughput screening assay results. Environ Sci Technol. 2018;52(23):13960–13971. 10.1021/acs.est.8b04587 PubMed DOI PMC
Liu G, Gelboin HV, Myers MJ: Role of cytochrome P450 IA2 in acetanilide 4-hydroxylation as determined with cDNA expression and monoclonal antibodies. Arch Biochem Biophys. 1991;284(2):400–406. 10.1016/0003-9861(91)90315-a PubMed DOI
Liu R, Novak J, Hilscherova K: In vitro assessment of Thyroid Peroxidase inhibition by chemical exposure: comparison of cell models and detection methods. Arch Toxicol. 2024;98(8):2631–2645. 10.1007/s00204-024-03766-7 PubMed DOI PMC
Lévy-Bimbot M, Major G, Courilleau D, et al. : Tetrabromobisphenol-A disrupts thyroid hormone receptor alpha function in vitro: use of fluorescence polarization to assay corepressor and coactivator peptide binding. Chemosphere. 2012;87(7):782–788. 10.1016/j.chemosphere.2011.12.080 PubMed DOI
Martin MT, Dix DJ, Judson RS, et al. : Impact of environmental chemicals on key transcription regulators and correlation to toxicity end points within EPA’s ToxCast program. Chem Res Toxicol. 2010;23(3):578–590. 10.1021/tx900325g PubMed DOI
McKillop D, Wild MJ, Butters CJ, et al. : Effects of propofol on human hepatic microsomal cytochrome P450 activities. Xenobiotica. 1998;28(9):845–853. 10.1080/004982598239092 PubMed DOI
Medvedev AV, Medvedeva LA, Martsen E, et al. : Harmonized cross-species assessment of endocrine and metabolic disruptors by Ecotox FACTORIAL assay. Environ Sci Technol. 2020;54(19):12142–12153. 10.1021/acs.est.0c03375 PubMed DOI PMC
Medvedev A, Moeser M, Medvedeva L, et al. : Evaluating biological activity of compounds by transcription factor activity profiling. Sci Adv. 2018;4(9): eaar4666. 10.1126/sciadv.aar4666 PubMed DOI PMC
Meerts IA, van Zanden JJ, Luijks EA, et al. : Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol Sci. 2000;56(1):95–104. 10.1093/toxsci/56.1.95 PubMed DOI
Melching-Kollmuss S, Bothe K, Charlton A, et al. : Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny - Part IV: the ECETOC and CLE Proposal for a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). Crit Rev Toxicol. 2023;53(6):339–371. 10.1080/10408444.2023.2231033 PubMed DOI
Minami K, Sato A, Tomiyama N, et al. : Prenatal test cohort of a modified rat comparative thyroid assay adding brain thyroid hormone measurements and histology but lowering group size appears able to detect disruption by sodium phenobarbital. Curr Res Toxicol. 2024;6: 100168. 10.1016/j.crtox.2024.100168 PubMed DOI PMC
Minami K, Suto H, Sato A, et al. : Feasibility study for a downsized Comparative Thyroid Assay with measurement of brain thyroid hormones and histopathology in rats: case study with 6–propylthiouracil and sodium phenobarbital at high dose. Regul Toxicol Pharmacol. 2023;137: 105283. 10.1016/j.yrtph.2022.105283 PubMed DOI
Montano M, Cocco E, Guignard C, et al. : New approaches to assess the Transthyretin binding capacity of bioactivated thyroid hormone disruptors. Toxicol Sci. 2012;130(1):94–105. 10.1093/toxsci/kfs228 PubMed DOI
Moriyama K, Tagami T, Akamizu T, et al. : Thyroid hormone action is disrupted by Bisphenol A as an antagonist. J Clin Endocrinol Metab. 2002;87(11):5185–5190. 10.1210/jc.2002-020209 PubMed DOI
Moroni L, Barbaro F, Caiment F, et al. : SCREENED: a multistage model of thyroid gland function for screening Endocrine-Disrupting chemicals in a biologically sex-specific manner. Int J Mol Sci. 2020;21(10):3648. 10.3390/ijms21103648 PubMed DOI PMC
Murk AJ, Rijntjes E, Blaauboer BJ, et al. : Mechanism-based testing strategy using in vitro approaches for identification of thyroid hormone disrupting chemicals. Toxicology in Vitro. 2013;27(4):1320–1346. 10.1016/j.tiv.2013.02.012 PubMed DOI
Nakamura N, Matsubara K, Sanoh S, et al. : Cell type-dependent agonist/antagonist activities of Polybrominated Diphenyl Ethers. Toxicol Lett. 2013;223(2):192–197. 10.1016/j.toxlet.2013.09.007 PubMed DOI
Noyes PD, Friedman KP, Browne P, et al. : Evaluating chemicals for thyroid disruption: opportunities and challenges with in vitro testing and Adverse Outcome Pathway approaches. Environ Health Perspect. 2019;127(9): 95001. 10.1289/EHP5297 PubMed DOI PMC
O'Shaughnessy KL, Kosian PA, Ford JL, et al. : Developmental Thyroid Hormone insufficiency induces a cortical brain malformation and learning impairments: a cross-fostering study. Toxicol Sci. 2018;163(1):101–115. 10.1093/toxsci/kfy016 PubMed DOI PMC
OECD: Test no. 409: repeated dose 90–day oral toxicity study in non-rodents.OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris,1998. 10.1787/9789264070721-en DOI
OECD: Test no. 416: two-generation reproduction toxicity study.OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris,2001. 10.1787/9789264070868-en DOI
OECD: Guidance document on the validation and international acceptance of new or updated test methods for hazard assessment.OECD series on testing and assessment, No. 34. OECD Publishing, Paris,2005. Reference Source
OECD: Test no. 407: repeated dose 28–day oral toxicity study in rodents.OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris,2008. 10.1787/9789264070684-en DOI
OECD: Test no. 231: amphibian metamorphosis assay.OECD guidelines for the testing of chemicals, section 2. OECD Publishing, Paris,2009. 10.1787/9789264076242-en DOI
OECD: Guidance document on standardised test guidelines for evaluating chemicals for endocrine disruption.OECD series on testing and assessment, no. 150. OECD Publishing, Paris,2012. Reference Source
OECD: Test no. 210: fish, early-life stage toxicity test.OECD guidelines for the testing of chemicals, section 2. OECD Publishing, Paris,2013a. 10.1787/9789264203785-en DOI
OECD: Test no. 236: Fish Embryo Acute Toxicity (FET) test.OECD guidelines for the testing of chemicals, section 2. OECD Publishing, Paris,2013b. 10.1787/9789264203709-en DOI
OECD: Detailed review paper on the use of metabolising systems for in vitro testing of endocrine disruptors.OECD series on testing and assessment, no. 97. OECD Publishing, Paris,2014a. Reference Source
OECD: New scoping document on in vitro and ex vivo assays for the identification of modulators of thyroid hormone signalling.Series on testing and assessment no. 207. OECD Publishing, Paris,2014b. Reference Source
OECD: Guidance document on the validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] models.Series on testing and assessment, no. 69. OECD Publishing, Paris,2014c; first published in 2007. Reference Source
OECD: Test no. 241: the Larval Amphibian Growth and Development Assay (LAGDA).OECD guidelines for the testing of chemicals, section 2. OECD Publishing, Paris,2015. 10.1787/9789264242340-en DOI
OECD: Test no. 421: reproduction/developmental toxicity screening test.OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris,2016a. 10.1787/9789264264380-en DOI
OECD: Test no. 422: combined repeated dose toxicity study with the reproduction/developmental toxicity screening test.OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris,2016b. 10.1787/9789264264403-en DOI
OECD: Detailed review paper for avian two-generation toxicity testing.OECD series on tsting and assessment, no. 74. OECD Publishing, Paris,2017. 10.1787/0a6094e4-en DOI
OECD: Revised guidance document 150 on standardised test guidelines for evaluating chemicals for endocrine disruption.OECD series on testing and assessment. OECD Publishing, Paris,2018a. 10.1787/9789264304741-en DOI
OECD: Test no. 408: repeated dose 90–day oral toxicity study in rodents.OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris,2018b. 10.1787/9789264070707-en DOI
OECD: Test no. 414: prenatal developmental toxicity study.OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris,2018c. 10.1787/9789264070820-en DOI
OECD: Test no. 443: extended one-generation reproductive toxicity study.OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris,2018d. 10.1787/9789264185371-en DOI
OECD: Test no. 451: carcinogenicity studies.OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris,2018e. 10.1787/9789264071186-en DOI
OECD: Test no. 452: chronic toxicity studies.OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris,2018f. 10.1787/9789264071209-en DOI
OECD: Test no. 453: combined chronic toxicity/carcinogenicity studies.OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris,2018g. 10.1787/9789264071223-en DOI
OECD: Test no. 248: Xenopus Eleutheroembryonic Thyroid Assay (XETA).OECD guidelines for the testing of chemicals, section 2. OECD Publishing, Paris,2019. 10.1787/a13f80ee-en DOI
OECD: (Q)SAR assessment framework: guidance for the regulatory assessment of (Quantitative) Structure − Activity Relationship models, predictions, and results based on multiple predictions.Series on testing and assessment, no. 386. OECD Publishing, Paris,2023. 10.1787/d96118f6-en DOI
Olker JH, Korte JJ, Denny JS, et al. : In vitro screening for chemical inhibition of the iodide recycling enzyme, Iodotyrosine Deiodinase. Toxicol In Vitro. 2021;71: 105073. 10.1016/j.tiv.2020.105073 PubMed DOI PMC
Olker JH, Korte JJ, Denny JS, et al. : Screening the ToxCast phase 1, phase 2, and e1k chemical libraries for inhibitors of Iodothyronine Deiodinases. Toxicol Sci. 2019;168(2)430–442. 10.1093/toxsci/kfy302 PubMed DOI PMC
Olker JH, Korte JJ, Haselman JT, et al. : Cross-species comparison of chemical inhibition of human and Xenopus Iodotyrosine Deiodinase. Aquat Toxicol. 2022;249: 106227. 10.1016/j.aquatox.2022.106227 PubMed DOI PMC
Pannetier P, Gölz L, Pissarreira Mendes Fagundes MT, et al. : Development of the integrated Fish Endocrine Disruptor Test (iFEDT)-Part A: merging of existing fish test guidelines. Integr Environ Assess Manag. 2024;20(3):817–829. 10.1002/ieam.4819 PubMed DOI
Parmentier C, Baze A, Untrau M, et al. : Evaluation of human relevance of Nicofluprole-induced rat thyroid disruption. Toxicol Appl Pharmacol. 2022;435: 115831. 10.1016/j.taap.2021.115831 PubMed DOI
Paul-Friedman K, Martin M, Crofton KM, et al. : Limited Chemical Structural Diversity Found to modulate thyroid hormone receptor in the Tox21 Chemical Library. Environ Health Perspect. 2019;127(9): 97009. 10.1289/EHP5314 PubMed DOI PMC
Paul Friedman K, Watt ED, Hornung MW, et al. : Tiered High-Throughput screening approach to identify thyroperoxidase inhibitors within the toxcast Phase I and II chemical libraries. Toxicol Sci. 2016;151(1):160–80. 10.1093/toxsci/kfw034 PubMed DOI PMC
Paul KB, Hedge JM, Rotroff DM, et al. : Development of a thyroperoxidase inhibition assay for high-throughput screening. Chem Res Toxicol. 2014;27(3):387–99. 10.1021/tx400310w PubMed DOI
Pearce RE, McIntyre CJ, Madan A, et al. : Effects of freezing, thawing, and storing human liver microsomes on cytochrome P450 activity. Arch Biochem Biophys. 1996;331(2):145–69. 10.1006/abbi.1996.0294 PubMed DOI
Pohl RJ, Fouts JR: A rapid method for assaying the metabolism of 7-ethoxyresorufin by microsomal subcellular fractions. Anal Biochem. 1980;107(1):150–5. 10.1016/0003-2697(80)90505-9 PubMed DOI
Poulsen R, Zekri Y, Guyot R, et al. : Effect of in utero and lactational exposure to a thyroid hormone system disrupting chemical on mouse metabolome and brain transcriptome. Environ Pollut. 2024;340(Pt 2): 122783. 10.1016/j.envpol.2023.122783 PubMed DOI
Qian Y, Deng C, Song WC: Expression of estrogen sulfotransferase in MCF-7 cells by cDNA transfection suppresses the estrogen response: potential role of the enzyme in regulating estrogen-dependent growth of breast epithelial cells. J Pharmacol Exp Ther. 1998;286(1):555–60. PubMed
Raldúa D, Babin PJ: Simple, rapid zebrafish larva bioassay for assessing the potential of chemical pollutants and drugs to disrupt thyroid gland function. Environ Sci Technol. 2009;43(17):6844–50. 10.1021/es9012454 PubMed DOI
Raldúa D, Thienpont B, Babin PJ: Zebrafish eleutheroembryos as an alternative system for screening chemicals disrupting the mammalian thyroid gland morphogenesis and function. Reprod Toxicol. 2012;33(2):188–97. 10.1016/j.reprotox.2011.09.001 PubMed DOI
Ramhoj L, Axelstad M, Baert Y, et al. : New approach methods to improve human health risk assessment of thyroid hormone system disruption-a PARC project. Front Toxicol. 2023a;5: 1189303. 10.3389/ftox.2023.1189303 PubMed DOI PMC
Ramhoj L, Frädrich C, Svingen T, et al. : Testing for heterotopia formation in rats after developmental exposure to selected in vitro inhibitors of thyroperoxidase. Environ Pollut. 2021;283: 117135. 10.1016/j.envpol.2021.117135 PubMed DOI
Ramhoj L, Guyot R, Svingen T, et al. : Is periventricular heterotopia a useful endpoint for developmental thyroid hormone system disruption in mouse toxicity studies? Regul Toxicol Pharmacol. 2023b;142: 105445. 10.1016/j.yrtph.2023.105445 PubMed DOI
Ramhoj L, Svingen T, Fradrich C, et al. : Perinatal exposure to the thyroperoxidase inhibitors methimazole and amitrole perturbs thyroid hormone system signaling and alters motor activity in rat offspring. Toxicol Lett. 2022;354:44–55. 10.1016/j.toxlet.2021.10.010 PubMed DOI
Reinen J, Rijk J, de Laat E, et al. : Development and standardization of an assay to evaluate the In Vitro inhibition of thyroid peroxidase -catalyzed iodination using FTC-238-hrTPO cell homogenates. Appl In Vitro Toxicol. 2024;10(3). 10.1089/aivt.2024.0029 DOI
Ren XM, Li CH, Zhang JQ, et al. : Binding and activity of sulfated metabolites of lower-chlorinated polychlorinated biphenyls towards thyroid hormone receptor alpha. Ecotoxicol Environ Saf. 2019;180:686–692. 10.1016/j.ecoenv.2019.05.056 PubMed DOI
Renko K, Hoefig C, Dupuy C, et al. : A nonradioactive DEHAL assay for testing substrates, inhibitors, and monitoring endogenous activity. Endocrinology. 2016;157(12):4516–4525. 10.1210/en.2016-1549 PubMed DOI
Renko K, Hoefig CS, Hiller F, et al. : Identification of iopanoic acid as substrate of type 1 deiodinase by a novel nonradioactive iodide-release assay. Endocrinology. 2012;153(5):2506–13. 10.1210/en.2011-1863 PubMed DOI
Renko K, Kerp H, Pape J, et al. : Tentative application of a streamlined protocol to determine organ-specific regulations of deiodinase 1 and dehalogenase activities as readouts of the Hypothalamus-Pituitary-Thyroid-Periphery-Axis. Front Toxicol. 2022;4: 822993. 10.3389/ftox.2022.822993 PubMed DOI PMC
Renko K, Schäche S, Hoefig CS, et al. : An improved nonradioactive screening method identifies genistein and xanthohumol as potent inhibitors of iodothyronine deiodinases. Thyroid. 2015;25(8):962–8. 10.1089/thy.2015.0058 PubMed DOI
Richard K, Hume R, Kaptein E, et al. : Ontogeny of iodothyronine deiodinases in human liver. J Clin Endocrinol Metab. 1998;83(8):2868–74. 10.1210/jcem.83.8.5032 PubMed DOI
Richert L, Tuschl G, Abadie C, et al. : Use of mRNA expression to detect the induction of drug metabolising enzymes in rat and human hepatocytes. Toxicol Appl Pharmacol. 2009;235(1):86–96. 10.1016/j.taap.2008.11.019 PubMed DOI
Robitaille J, Denslow ND, Escher BI, et al. : Towards regulation of Endocrine Disrupting chemicals (EDCs) in water resources using bioassays - a guide to developing a testing strategy. Environ Res. 2022;205: 112483. 10.1016/j.envres.2021.112483 PubMed DOI
Rolaki A, Pistollato F, Munn S, et al. : Adverse outcome pathway on inhibition of Na+/I-symporter (NIS) leads to learning and memory impairment. OECD Series on Adverse Outcome Pathways No. 14. OECD Publishing, Paris,2019. 10.1787/7ca86a34-en DOI
Romanov S, Medvedev A, Gambarian M, et al. : Homogeneous reporter system enables quantitative functional assessment of multiple transcription factors. Nat Methods. 2008;5(3):253–60. 10.1038/nmeth.1186 PubMed DOI
Rotroff DM, Beam AL, Dix DJ, et al. : Xenobiotic-metabolizing enzyme and transporter gene expression in primary cultures of human hepatocytes modulated by ToxCast chemicals. J Toxicol Environ Health B Crit Rev. 2010;13(2–4):329–46. 10.1080/10937404.2010.483949 PubMed DOI
Santini F, Vitti P, Ceccarini G, et al. : In vitro assay of thyroid disruptors affecting TSH-stimulated adenylate cyclase activity. J Endocrinol Invest. 2003;26(10):950–5. 10.1007/BF03348190 PubMed DOI
Sharan S, Nikhil K, Roy P: Disruption of thyroid hormone functions by low dose exposure of tributyltin: an in vitro and in vivo approach. Gen Comp Endocrinol. 2014;206:155–65. 10.1016/j.ygcen.2014.07.027 PubMed DOI
Shi W, Deng D, Wang Y, et al. : Causes of endocrine disrupting potencies in surface water in East China. Chemosphere. 2016;144:1435–42. 10.1016/j.chemosphere.2015.09.018 PubMed DOI
Shi W, Hu X, Zhang F, et al. : Occurrence of thyroid hormone activities in drinking water from eastern China: contributions of phthalate esters. Environ Sci Technol. 2012a;46(3):1811–8. 10.1021/es202625r PubMed DOI
Shi W, Wang X, Hu G, et al. : Bioanalytical and instrumental analysis of thyroid hormone disrupting compounds in water sources along the Yangtze River. Environ Pollut. 2011;159(2):441–8. 10.1016/j.envpol.2010.10.023 PubMed DOI
Shi W, Zhang FX, Hu GJ, et al. : Thyroid hormone disrupting activities associated with phthalate esters in water sources from Yangtze River Delta. Environ Int. 2012b;42:117–123. 10.1016/j.envint.2011.05.013 PubMed DOI
Shimizu R, Yamaguchi M, Uramaru N, et al. : Structure-activity relationships of 44 halogenated compounds for Iodotyrosine Deiodinase-inhibitory activity. Toxicology. 2013;314(1):22–29. 10.1016/j.tox.2013.08.017 PubMed DOI
Simon C, Onghena M, Covaci A, et al. : Screening of endocrine activity of compounds migrating from plastic baby bottles using a multi-receptor panel of in vitro bioassays. Toxicol In Vitro. 2016;37:121–133. 10.1016/j.tiv.2016.09.008 PubMed DOI
Sipes NS, Martin MT, Kothiya P, et al. : Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013;26(6):878–895. 10.1021/tx400021f PubMed DOI PMC
Sonderfan AJ, Arlotto MP, Dutton DR, et al. : Regulation of testosterone hydroxylation by rat liver microsomal cytochrome P-450. Arch Biochem Biophys. 1987;255(1):27–41. 10.1016/0003-9861(87)90291-8 PubMed DOI
Stanley EL, Hume R, Visser TJ, et al. : Differential expression of sulfotransferase enzymes involved in thyroid hormone metabolism during human placental development. J Clin Endocrinol Metab. 2001;86(12):5944–5955. 10.1210/jcem.86.12.8081 PubMed DOI
Stinckens E, Vergauwen L, Ankley GT, et al. : An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish. Aquat Toxicol. 2018;200:1–12. 10.1016/j.aquatox.2018.04.009 PubMed DOI PMC
Stinckens E, Vergauwen L, Blackwell BR, et al. : Effect of thyroperoxidase and deiodinase inhibition on anterior swim bladder inflation in the zebrafish. Environ Sci Technol. 2020;54(10):6213–6223. 10.1021/acs.est.9b07204 PubMed DOI PMC
Tater A, Gupta A, Upadhyay G, et al. : In vitro assays for characterization of distinct multiple catalytic activities of thyroid peroxidase using LC-MS/MS. Curr Res Toxicol. 2021;2:19–29. 10.1016/j.crtox.2021.01.001 PubMed DOI PMC
Thienpont B, Barata C, Raldúa D: Modeling mixtures of Thyroid Gland Function Disruptors in a vertebrate alternative model, the zebrafish eleutheroembryo. Toxicol Appl Pharmacol. 2013;269(2):169–175. 10.1016/j.taap.2013.02.015 PubMed DOI
Thienpont B, Tingaud-Sequeira A, Prats E, et al. : Zebrafish eleutheroembryos provide a suitable vertebrate model for screening chemicals that impair thyroid hormone synthesis. Environ Sci Technol. 2011;45(17):7525–7532. 10.1021/es202248h PubMed DOI
Tietge JE, Degitz SJ, Haselman JT, et al. : Inhibition of the thyroid hormone pathway in Xenopus laevis by 2–Mercaptobenzothiazole. Aquat Toxicol. 2013;126:128–136. 10.1016/j.aquatox.2012.10.013 PubMed DOI
Toimela T, Huttala O, Sabell E, et al. : Intra-laboratory validated human cell-based in vitro vasculogenesis/angiogenesis test with serum-free medium. Reprod Toxicol. 2017;70:116–125. 10.1016/j.reprotox.2016.11.015 PubMed DOI
Tong Z, Li H, Goljer I, et al. : In vitro glucuronidation of thyroxine and triiodothyronine by liver microsomes and recombinant human UDP-glucuronosyltransferases. Drug Metab Dispos. 2007;35(12):2203–2210. 10.1124/dmd.107.016972 PubMed DOI
Trajkovska V, Marcussen AB, Vinberg M, et al. : Measurements of Brain-Derived Neurotrophic Factor: methodological aspects and demographical data. Brain Res Bull. 2007;73(1–3):143–149. 10.1016/j.brainresbull.2007.03.009 PubMed DOI
Turan N, Waring RH, Ramsden DB: The effect of plasticisers on "sulphate supply" enzymes. Mol Cell Endocrinol. 2005;244(1–2):15–19. 10.1016/j.mce.2005.01.016 PubMed DOI
Ucan-Marin F, Arukwe A, Mortensen AS, et al. : Recombinant albumin and transthyretin transport proteins from two gull species and human: chlorinated and brominated contaminant binding and Thyroid Hormones. Environ Sci Technol. 2010;44(1):497–504. 10.1021/es902691u PubMed DOI
USEPA: Guidance for thyroid assays in pregnant animals, fetuses and postnatal animals, and adult animals.Office of Pesticide Programs, Health Effects Division, Washington DC,2005. Reference Source
USEPA: Endocrine Disruptor Screening Program test guidelines - OPPTS 890.1450: pubertal development and thyroid function in intact juvenile/peripubertal female rats [EPA 740-C-09-009].United States Environmental Protection Agency’s Office of Prevention, Pesticides and Toxic Substances,2009a. Reference Source
USEPA: Endocrine Disruptor Screening Program test guidelines - OPPTS 890.1500: pubertal development and thyroid function in intact juvenile/peripubertal male rats [EPA 740-C-09-012].United States Environmental Protection Agency’s Office of Prevention, Pesticides and Toxic Substances,2009b. Reference Source
USEPA: Endocrine Disruptor Screening Program test guidelines OCSPP 890.2100: Avian two-generation toxicity test in the Japanese Quail.United States Environmental Protection Agency’s Office of Chemical Safety and Pollution Prevention,2015. Reference Source
Valdehita A, Quesada-García A, Delgado MM, et al. : In vitro assessment of thyroidal and estrogenic activities in poultry and broiler manure. Sci Total Environ. 2014;472:630–641. 10.1016/j.scitotenv.2013.11.098 PubMed DOI
Vanden Heuvel J: Gene expression: nuclear receptors. nrresource.org.2021. Reference Source
Visser TJ, Kaptein E, Glatt H, et al. : Characterization of thyroid hormone sulfotransferases. Chem Biol Interact. 1998;109(1–3):279–291. 10.1016/s0009-2797(97)00139-7 PubMed DOI
Visser TJ, Kaptein E, Terpstra OT, et al. : Deiodination of thyroid hormone by human liver. J Clin Endocrinol Metab. 1988;67(1):17–24. 10.1210/jcem-67-1-17 PubMed DOI
Visser TJ, Kaptein E, van Toor H, et al. : Glucuronidation of thyroid hormone in rat liver: effects of in vivo treatment with microsomal enzyme inducers and in vitro assay conditions. Endocrinology. 1993;133(5):2177–2186. 10.1210/endo.133.5.8404669 PubMed DOI
Wagenaars F, Cenijn P, Chen Z, et al. : Two novel in vitro assays to screen chemicals for their capacity to inhibit Thyroid Hormone Transmembrane Transporter proteins OATP1C1 and OAT4. Arch Toxicol. 2024a;98(9):3019–3034. 10.1007/s00204-024-03787-2 PubMed DOI PMC
Wagenaars F, Cenijn P, Scholze M, et al. : Screening for endocrine disrupting chemicals inhibiting Monocarboxylate 8 (MCT8) transporter facilitated Thyroid Hormone transport using a modified nonradioactive assay. Toxicol In Vitro. 2024b;96: 105770. 10.1016/j.tiv.2023.105770 PubMed DOI
Waltz F, Pillette L, Ambroise Y: A nonradioactive iodide uptake assay for Sodium Iodide Symporter function. Anal Biochem. 2010;396(1):91–95. 10.1016/j.ab.2009.08.038 PubMed DOI
Wang D, Stapleton HM: Analysis of thyroid hormones in serum by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2010;397(5):1831–1839. 10.1007/s00216-010-3705-9 PubMed DOI PMC
Wang J, Hallinger DR, Murr AS, et al. : High-throughput screening and quantitative chemical ranking for sodium-iodide symporter inhibitors in ToxCast Phase I chemical library. Environ Sci Technol. 2018;52(9):5417–5426. 10.1021/acs.est.7b06145 PubMed DOI PMC
Wang J, Hallinger DR, Murr AS, et al. : High-throughput screening and chemotype-enrichment analysis of ToxCast phase II chemicals evaluated for human sodium-iodide symporter (NIS) inhibition. Environ Int. 2019;126:377–386. 10.1016/j.envint.2019.02.024 PubMed DOI PMC
Wang J, Richard AM, Murr AS, et al. : Expanded high-throughput screening and chemotype-enrichment analysis of the phase II: e1k ToxCast library for human sodium-iodide symporter (NIS) inhibition. Arch Toxicol. 2021;95(5):1723–1737. 10.1007/s00204-021-03006-2 PubMed DOI PMC
Waring RH, Ramsden DB, Jarratt PDB, et al. : Biomarkers of endocrine disruption: cluster analysis of effects of plasticisers on Phase 1 and Phase 2 metabolism of steroids. Int J Androl. 2012;35(3):415–423. 10.1111/j.1365-2605.2012.01248.x PubMed DOI
Weber AG, Birk B, Herrmann C, et al. : A new approach method to study Thyroid Hormone disruption: optimization and standardization of an assay to assess the inhibition of DIO1 enzyme in human liver microsomes. Appl In Vitro Toxicol. 2022;8(3):67–82. 10.1089/aivt.2022.0010 DOI
Xiang D, Han J, Yao T, et al. : Editor's highlight: structure-based investigation on the binding and activation of typical pesticides with Thyroid Receptor. Toxicol Sci. 2017;160(2):205–216. 10.1093/toxsci/kfx177 PubMed DOI
Yang H, Ebeling C, Zobl W, et al. : P04–05 Machine-learning aided multi-scale modelling framework for toxicological endpoint predictions in the dog.XVIth International Congress of Toxicology. Toxicology Letters, Maastricht,2022;368:S100. 10.1016/j.toxlet.2022.07.289 DOI
Zhang Z, Du G, Gao B, et al. : Stereoselective Endocrine-Disrupting Effects of the chiral triazole fungicide prothioconazole and its chiral metabolite. Environ Pollut. 2019;251:30–36. 10.1016/j.envpol.2019.04.124 PubMed DOI
Zhang F, Hu W, Yu H, et al. : Endocrine disruption effects of 2,2',4,4',6–pentabromodiphenylether (BDE100) in reporter gene assays. J Environ Monit. 2011;13(4):850–854. 10.1039/c0em00654h PubMed DOI
Zhang Q, Wang J, Zhu J, et al. : Assessment of the endocrine-disrupting effects of short-chain chlorinated paraffins in in vitro models. Environ Int. 2016;94:43–50. 10.1016/j.envint.2016.05.007 PubMed DOI
: Generation of functional thyroid from embryonic stem cells. Nature .2012;491(7422) : 10.1038/nature11525 66-71 10.1038/nature11525 PubMed DOI PMC
: T-screen to quantify functional potentiating, antagonistic and thyroid hormone-like activities of poly halogenated aromatic hydrocarbons (PHAHs). Toxicol In Vitro .2006;20(4) : 10.1016/j.tiv.2005.09.001 490-8 10.1016/j.tiv.2005.09.001 PubMed DOI
: Scientific Validation of Human Neurosphere Assays for Developmental Neurotoxicity Evaluation. Front Toxicol .2022;4: 10.3389/ftox.2022.816370 816370 10.3389/ftox.2022.816370 PubMed DOI PMC
: Testing the sensitivity of the medaka Transgenic Eleuthero-embryonic THYroid-Specific assay (TETHYS) to different mechanisms of action. Aquat Toxicol .2024;276: 10.1016/j.aquatox.2024.107081 107081 10.1016/j.aquatox.2024.107081 PubMed DOI
: Thyroid in vitro methods: assessment reports by the thyroid disruption methods expert group. 10.1787/3786c75f-en 10.1787/3786c75f-en DOI