Pelomyxa palustris is a giant anaerobic/microaerobic amoeba, characterized by a number of exceptional cytological and physiological features, among them the presumed absence of energy producing organelles and the presence of endosymbiotic bacteria. These endosymbionts have been previously distinguished as: a large rectangular-shaped Gram-variable rod with a central cleft; a slender Gram-negative rod; and a slender Gram-positive rod. Using DNA extracted from P. palustris cysts, we have obtained three SSU rRNA gene sequences. We have determined that these sequences are affiliated to three different prokaryotic genera: Methanosaeta (a methanogenic archaea), Syntrophorhabdus (a syntrophic Gram-negative bacteria) and Rhodococcus (an aerobic chemoorganotrophic Gram-positive bacteria). To our knowledge, it is the first time that Syntrophorhabdus has been described as an endosymbiont in association with a methanogen. Strikingly, no traces of Methanobacterium formicicum could be detected, despite this methanogen had allegedly been isolated from trophozoites of P. palustris. It seems that the host and the endosymbionts have established a multipartite syntrophic consortium resembling to some extent those found in sewage treatment plants.
- MeSH
- Archamoebae microbiology physiology MeSH
- RNA, Archaeal genetics MeSH
- RNA, Bacterial genetics MeSH
- Deltaproteobacteria classification genetics isolation & purification physiology MeSH
- Phylogeny MeSH
- Methanosarcinales classification genetics isolation & purification physiology MeSH
- Rhodococcus classification genetics isolation & purification physiology MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, RNA MeSH
- Symbiosis * MeSH
- Publication type
- Journal Article MeSH
Bacterial endosymbionts of ticks are of interest due to their close evolutionary relationships with tick-vectored pathogens. For instance, whereas many ticks contain Francisella-like endosymbionts (FLEs), others transmit the mammalian pathogen Francisella tularensis. We recently sequenced the genome of an FLE present in the hard tick Amblyomma maculatum (FLE-Am) and showed that it likely evolved from a pathogenic ancestor. In order to expand our understanding of FLEs, in the current study we sequenced the genome of an FLE in the soft tick Ornithodoros moubata and compared it to the genomes of FLE-Am, Francisella persica-an FLE in the soft tick Argus (Persicargas) arboreus, Francisella sp. MA067296-a clinical isolate responsible for an opportunistic human infection, and F. tularensis, the established human pathogen. We determined that FLEs and MA067296 belonged to a sister taxon of mammalian pathogens, and contained inactivated versions of virulence genes present in F. tularensis, indicating that the most recent common ancestor shared by FLEs and F. tularensis was a potential mammalian pathogen. Our analyses also revealed that the two soft ticks (O. moubata and A. arboreus) probably acquired their FLEs separately, suggesting that the virulence attenuation observed in FLEs are not the consequence of a single acquisition event followed by speciation, but probably due to independent transitions of pathogenic francisellae into nonpathogenic FLEs within separate tick lineages. Additionally, we show that FLEs encode intact pathways for the production of several B vitamins and cofactors, denoting that they could function as nutrient-provisioning endosymbionts in ticks.
- MeSH
- Argasidae microbiology physiology MeSH
- Genes, Bacterial MeSH
- Biological Evolution MeSH
- Virulence Factors genetics MeSH
- Francisella genetics isolation & purification physiology MeSH
- Phylogeny MeSH
- Gram-Negative Bacterial Infections microbiology MeSH
- Humans MeSH
- Symbiosis * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, N.I.H., Extramural MeSH
Eustigmatophytes, a class of stramenopile algae (ochrophytes), include not only the extensively studied biotechnologically important genus Nannochloropsis but also a rapidly expanding diversity of lineages with much less well characterized biology. Recent discoveries have led to exciting additions to our knowledge about eustigmatophytes. Some proved to harbor bacterial endosymbionts representing a novel genus, Candidatus Phycorickettsia, and an operon of unclear function (ebo) obtained by horizontal gene transfer from the endosymbiont lineage was found in the plastid genomes of still other eustigmatophytes. To shed more light on the latter event, as well as to generally improve our understanding of the eustigmatophyte evolutionary history, we sequenced plastid genomes of seven phylogenetically diverse representatives (including new isolates representing undescribed taxa). A phylogenomic analysis of plastid genome-encoded proteins resolved the phylogenetic relationships among the main eustigmatophyte lineages and provided a framework for the interpretation of plastid gene gains and losses in the group. The ebo operon gain was inferred to have probably occurred within the order Eustigmatales, after the divergence of the two basalmost lineages (a newly discovered hitherto undescribed strain and the Pseudellipsoidion group). When looking for nuclear genes potentially compensating for plastid gene losses, we noticed a gene for a plastid-targeted acyl carrier protein that was apparently acquired by horizontal gene transfer from Phycorickettsia. The presence of this gene in all eustigmatophytes studied, including representatives of both principal clades (Eustigmatales and Goniochloridales), is a genetic footprint indicating that the eustigmatophyte-Phycorickettsia partnership started no later than in the last eustigmatophyte common ancestor.
- MeSH
- Biological Evolution * MeSH
- Genome, Plastid * MeSH
- Stramenopiles genetics microbiology MeSH
- Operon * MeSH
- Rickettsiaceae genetics MeSH
- Amino Acid Sequence MeSH
- Symbiosis MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Almost all examined cockroaches harbor an obligate intracellular endosymbiont, Blattabacterium cuenoti. On the basis of genome content, Blattabacterium has been inferred to recycle nitrogen wastes and provide amino acids and cofactors for its hosts. Most Blattabacterium strains sequenced to date harbor a genome of ∼630 kbp, with the exception of the termite Mastotermes darwiniensis (∼590 kbp) and Cryptocercus punctulatus (∼614 kbp), a representative of the sister group of termites. Such genome reduction may have led to the ultimate loss of Blattabacterium in all termites other than Mastotermes. In this study, we sequenced 11 new Blattabacterium genomes from three species of Cryptocercus in order to shed light on the genomic evolution of Blattabacterium in termites and Cryptocercus. All genomes of Cryptocercus-derived Blattabacterium genomes were reduced (∼614 kbp), except for that associated with Cryptocercus kyebangensis, which comprised 637 kbp. Phylogenetic analysis of these genomes and their content indicates that Blattabacterium experienced parallel genome reduction in Mastotermes and Cryptocercus, possibly due to similar selective forces. We found evidence of ongoing genome reduction in Blattabacterium from three lineages of the C. punctulatus species complex, which independently lost one cysteine biosynthetic gene. We also sequenced the genome of the Blattabacterium associated with Salganea taiwanensis, a subsocial xylophagous cockroach that does not vertically transmit gut symbionts via proctodeal trophallaxis. This genome was 632 kbp, typical of that of nonsubsocial cockroaches. Overall, our results show that genome reduction occurred on multiple occasions in Blattabacterium, and is still ongoing, possibly because of new associations with gut symbionts in some lineages.
- MeSH
- Wood microbiology MeSH
- Flavobacteriaceae genetics MeSH
- Phylogeny MeSH
- Genome, Bacterial genetics MeSH
- Isoptera microbiology MeSH
- Cockroaches genetics MeSH
- Symbiosis genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The symbiotic microorganisms of arthropod vectors are highly significant from several points of view, partly due to their possible roles in the transmission of pathogenic causative agents by blood-sucking vectors. Although ticks are well studied because of their significance to human health, novel microbial associations remain to be described. This review summarises several endosymbiotic bacterial species in hard ticks from various parts of the world, including Coxiella-, Francisella-, Rickettsia- and Arsenophonus-like symbionts as well as Candidatus Midichloria mitochondrii and Wolbachia. New methodologies for the isolation and characterization of tick-associated bacteria will, in turn, encourage new strategies of tick control by studying their endosymbionts.
Animal-associated microbial communities have important effects on host phenotypes. Individuals within and among species differ in the strains and species of microbes that they harbour, but how natural selection shapes the distribution and abundance of symbionts in natural populations is not well understood. Symbionts can be beneficial in certain environments but also impose costs on their hosts. Consequently, individuals that can or cannot associate with symbionts will be favoured under different ecological circumstances. As a result, we predict that individuals within a species vary in terms of how well they accept and maintain symbionts. In pea aphids, the frequency of endosymbionts varies among host-plant-associated populations ('biotypes'). We show that aphid genotypes from different biotypes vary in how well they accept and maintain symbionts after horizontal transfer. We find that aphids from biotypes that frequently harbour symbionts are better able to associate with novel symbionts than those from biotypes that less frequently harbour symbionts. Intraspecific variation in the ability of hosts to interact with symbionts is an understudied factor explaining patterns of host-symbiont association.
- MeSH
- Genotype MeSH
- Aphids MeSH
- Gene Transfer, Horizontal MeSH
- Symbiosis * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
'Candidatus Cardinium' is an intracellular endosymbiont or parasite frequently occurring in invertebrates including mites and ticks. In this work we report Cardinium bacteria in Astigmata mites and explore their incidence in synanthropic species. Amplification of a 776 bp bacterial 16S rRNA gene fragment, using specific primers, enabled identification of closely related Cardinium sequences in 13 laboratory-reared populations of mites. In addition, Cardinium sequences were identified in three wild mite populations. Large scale screening of these populations showed 100% prevalence of Cardinium, representing the highest incidence compared to other major Chelicerate groups.
- MeSH
- Ascaris parasitology MeSH
- Bacteroidetes genetics MeSH
- DNA, Bacterial genetics MeSH
- Phylogeny MeSH
- Molecular Sequence Data MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Mites parasitology MeSH
- Base Sequence MeSH
- Sequence Analysis, DNA MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Some of the species from the genus Neoparamoeba, for example N. perurans have been shown to be pathogenic to aquatic animals and thus have economic significance. They all contain endosymbiont, Perkinsela amoebae like organisms (PLOs). In this study we investigated phylogenetic ambiguities within the Neoparamoeba taxonomy and phylogenetic congruence between PLOs and their host Neoparamoeba to confirm the existence of a single ancient infection/colonisation that led to cospeciation between all PLOs and their host Neoparamoeba. DNA was extracted and rRNA genes from host amoeba and endosymbiont were amplified using PCR. Uncertainties in the Neoparamoeba phylogeny were initially resolved by a secondary phylogenetic marker, the internal transcribed spacer 2 (ITS2). The secondary structure of ITS2 was reconstructed for Neoparamoeba. The ITS2 was phylogenetically informative, separating N. pemaquidensis and N. aestuarina into distinct monophyletic clades and designating N. perurans as the most phylogenetically divergent Neoparamoeba species. The new phylogenetic data were used to verify the tree topologies used in cophylogenetic analyses that revealed strict phylogenetic congruence between endosymbiotic PLOs with their host Neoparamoeba. Strict congruence in the phylogeny of all PLOs and their host Neoparamoeba was demonstrated implying that PLOs are transmitted vertically from parent to daughter cell.
- MeSH
- Amoebozoa genetics parasitology MeSH
- Phylogeny * MeSH
- Kinetoplastida classification genetics physiology MeSH
- DNA, Ribosomal Spacer genetics MeSH
- Molecular Sequence Data MeSH
- RNA, Ribosomal, 18S genetics MeSH
- Symbiosis * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Peridinialean dinophytes include a unique evolutionary group of algae harboring a diatom as an endosymbiont (Kryptoperidiniaceae), whose phylogenetic origin and internal relationships are not fully resolved at present. Several interpretations of the thecal plate pattern present in Durinskia oculata currently compete and lead to considerable taxonomic confusion. Moreover, it is unclear at present whether the species is restricted to freshwater habitats, or occurs in the marine environment as well. We collected material at the type locality of D. oculata in the Czech Republic and established monoclonal strains. Dinophyte cells were studied using light and electron microscopy, and we also determined DNA sequences of several rRNA regions (including the Internal Transcribed Spacers) for molecular characterization and phylogenetics. The morphology of strain GeoM∗662 indicated a plate formula of Po, X, 4', 2a, 6″, 5c, 5s, 5‴, 2⁗, which was sustained also in form of a microscopic slide serving as an epitype. In the molecular DNA tree based on a matrix composed of concatenated rRNA sequences, strain GeoM∗662 showed a close relationship to other species of Durinskia, and the freshwater species clearly differs from the marine members. Two independent colonization events from the marine into the freshwater environment can be inferred within the Kryptoperidiniaceae. We provide a summarizing cladogram of dinophytes harboring a diatom as endosymbiont with evolutionary novelties indicated as well as a morphological key to the 6 species of Durinskia that are currently accepted.
- MeSH
- Phylogeny MeSH
- Likelihood Functions MeSH
- RNA, Ribosomal chemistry genetics MeSH
- Diatoms cytology genetics MeSH
- Sequence Analysis, DNA MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
Sucking lice (Anoplura) are known to have established symbiotic associations multiple times with different groups of bacteria as diverse as Enterobacteriales, Legionellales, and Neisseriales. This diversity, together with absence of a common coevolving symbiont (such as Buchnera, in aphids), indicates that sucking lice underwent a series of symbiont acquisitions, losses, and replacements. To better understand evolution and significance of louse symbionts, genomic and phylogenetic data are needed from a broader taxonomic diversity of lice and their symbiotic bacteria. In this study, we extend the known spectrum of the louse symbionts with a new lineage associated with Neohaematopinus pacificus, a louse species that commonly parasitizes North American chipmunks. The recent coevolutionary analysis showed that rather than a single species, these lice form a cluster of unique phylogenetic lineages specific to separate chipmunk species (or group of closely related species). Using metagenomic assemblies, we show that the lice harbor a bacterium which mirrors their phylogeny and displays traits typical for obligate mutualists. Phylogenetic analyses place this bacterium within Enterobacteriaceae on a long branch related to another louse symbiont, "Candidatus Puchtella pedicinophila." We propose for this symbiotic lineage the name "Candidatus Lightella neohaematopini." Based on the reconstruction of metabolic pathways, we suggest that like other louse symbionts, L. neohaematopini provides its host with at least some B vitamins. In addition, several samples harbored another symbiotic bacterium phylogenetically affiliated with the Neisseriales-related symbionts described previously from the lice Polyplax serrata and Hoplopleura acanthopus. Characterizing these bacteria further extend the known diversity of the symbiotic associations in lice and show unique complexity and dynamics of the system.
- Publication type
- Journal Article MeSH