Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes

. 2016 Mar 30 ; 283 (1827) : 20160179.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27030416

Reticulitermes, Heterotermes and Coptotermes form a small termite clade with partly overlapping distributions. Although native species occur across all continents, the factors influencing their distribution are poorly known. Here, we reconstructed the historical biogeography of these termites using mitochondrial genomes of species collected on six continents. Our analyses showed that Reticulitermes split from Heterotermes + Coptotermesat 59.5 Ma (49.9-69.5 Ma 95% CI), yet the oldest split within Reticulitermes(Eurasia and North America) is 16.1 Ma (13.4-19.5 Ma) and the oldest split within Heterotermes + Coptotermesis 36.0 Ma (33.9-40.5 Ma). We detected 14 disjunctions between biogeographical realms, all of which occurred within the last 34 Ma, not only after the break-up of Pangaea, but also with the continents in similar to current positions. Land dispersal over land bridges explained four disjunctions, oceanic dispersal by wood rafting explained eight disjunctions, and human introduction was the source of two recent disjunctions. These wood-eating termites, therefore, appear to have acquired their modern worldwide distribution through multiple dispersal processes, with oceanic dispersal and human introduction favoured by the ecological traits of nesting in wood and producing replacement reproductives.

Zobrazit více v PubMed

Krishna K, Grimaldi DA, Engel MS. 2013. Treatise on the Isoptera of the world, vol. 1. Bull. Am. Mus. Nat. Hist. 377, 1–196. (10.1206/377.1) DOI

Béguin P, Aubert JP. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25–58. (10.1111/j.1574-6976.1994.tb00033.x) PubMed DOI

Dixon RK, Solomon AM, Brown S, Houghton RAM, Trexier C, Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science 263, 185–190. (10.1126/science.263.5144.185) PubMed DOI

Bignell DE. 2006. Termites as soil engineers and soil processors. In Intestinal microorganisms of soil invertebrates (eds König H, Varma A), pp. 183–220. Berlin, Germany: Springer.

Evans TA, Dawes TZ, Ward PR, Lo N. 2011. Ants and termites increase crop yield in a dry climate. Nat. Commun. 2, 1257 (10.1038/ncomms1257) PubMed DOI PMC

Jouquet P, Traoré S, Choosai C, Hartmann C, Bignell DE. 2011. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur. J. Soil Biol. 47, 215–222. (10.1016/j.ejsobi.2011.05.005) DOI

Hickin NE. 1971. Termites, a world problem. London, UK: The Rentokil Library, Hutchinson.

Su NY, Scheffrahn RH. 2000. Termites as pests of buildings. In Termites: evolution, sociality, symbioses, ecology (eds Abe T, Bignell DE, Higashi M), pp. 437–453. Dordrecht, The Netherlands: Kluwer.

Rouland-Lefèvre C. 2011. Termites as pests of agriculture. In Biology of termites: a modern synthesis (eds Bignell DE, Roisin Y, Lo N), pp. 499–517. Dordrecht, The Netherlands: Springer.

Bourguignon T, et al. 2015. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32, 406–421. (10.1093/molbev/msu308) PubMed DOI

Evans TA. 2011. Invasive termites. In Biology of termites: a modern synthesis (eds Bignell DE, Roisin Y, Lo N), pp. 519–562. Dordrecht, The Netherlands: Springer. PubMed

Evans TA, Forschler BT, Grace JK. 2013. Biology of invasive termites: a worldwide review. Annu. Rev. Entomol. 58, 455–474. (10.1146/annurev-ento-120811-153554) PubMed DOI

Emerson AE. 1971. Tertiary fossil species of the Rhinotermitidae (Isoptera), phylogeny of genera, and reciprocal phylogeny of associated Flagellata (Protozoa) and the Staphylinidae (Coleoptera). Bull. Am. Mus. Nat. Hist. 146, 243–304.

Eggleton P. 2000. Global patterns of termite diversity. In Termites: evolution, sociality, symbioses, ecology (eds Abe T, Bignell DE, Higashi M), pp. 25–51. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Dedeine F, Dupont S, Guyot S, Matsuura K, Wang C, Habibpour B, Bagnères AG, Mantovani B, Luchetti A. 2016. Historical biogeography of Reticulitermes termites (Isoptera: Rhinotermitidae) inferred from analyses of mitochondrial and nuclear loci. Mol. Phylogenet. Evol. 94, 778–790. (10.1016/j.ympev.2015.10.020) PubMed DOI

Scheffrahn RH, Carrijo TF, Křeček J, Su NY, Szalanski AL, Austin JW, Chase JA, Mangold JR. 2015. A single endemic and three exotic species of the termite genus Coptotermes (Isoptera, Rhinotermitidae) in the New World. Arthropod. Syst. Phylogenet. 73, 333–348.

Holt BG, et al. 2013. An update of Wallace's zoogeographic regions of the world. Science 339, 74–79. (10.1126/science.1228282) PubMed DOI

Chouvenc T, et al. 2016. Revisiting Coptotermes (Isoptera: Rhinotermitidae): a global taxonomic roadmap for species validity and distribution of an economically important subterranean termite genus. Syst. Entomol. 41, 299–306. (10.1111/syen.12157) DOI

Krishna K, Grimaldi D. 2009. Diverse Rhinotermitidae and Termitidae (Isoptera) in Dominican Amber. Am. Mus. Novit. 3640, 1–48. (10.1206/633.1) DOI

Messenger MT, Mullins AJ. 2005. New flight distance recorded for Coptotermes formosanus (Isoptera: Rhinotermitidae). Fla Entomol. 88, 99–100. (10.1653/0015-4040(2005)088%5B0099:NFDRFC%5D2.0.CO;2) DOI

Hu J, Zhong JH, Guo MF. 2007. Alate dispersal distances of the black-winged subterranean termite Odontotermes formosanus (Isoptera: Termitidae) in southern China. Sociobiology 50, 1–8.

Keller L. 1998. Queen lifespan and colony characteristics in ants and termites. Insect. Soc. 45, 235–246. (10.1007/s000400050084) DOI

Thiel M, Haye PA. 2006. The ecology of rafting in the marine environment. III. Biogeographical and evolutionary consequences. Oceanogr. Mar. Biol. An Annu. Rev. 43, 323–429. (10.1201/9781420006391.ch7) DOI

Bourguignon T, Chisholm RA, Evans TA. 2016. The termite worker phenotype evolved as dispersal strategy for fertile wingless individuals before eusociality. Am. Nat. 187, 372–387. (10.1086/684838) PubMed DOI

Lee TRC, Cameron SL, Evans TA, Ho SYW, Lo N. 2015. The origins and radiation of Australian Coptotermes termites: from rainforest to desert dwellers. Mol. Phylogenet. Evol. 82, 234–244. (10.1016/j.ympev.2014.09.026) PubMed DOI

Hines HM. 2008. Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). Syst. Biol. 57, 58–75. (10.1080/10635150801898912) PubMed DOI

Vila R, et al. 2011. Phylogeny and palaeoecology of Polyommatus blue butterflies show Beringia was a climate-regulated gateway to the New World. Proc. R. Soc. B 278, 2737–2744. (10.1098/rspb.2010.2213) PubMed DOI PMC

Meseguer AS, Coeur d'acier A, Genson G, Jousselin E. 2015. Unravelling the historical biogeography and diversification dynamics of a highly diverse conifer-feeding aphid genus. J. Biogeogr. 88, 1482–1492. (10.1111/jbi.12531) DOI

Sanmartín I. 2001. Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol. J. Linn. Soc. 73, 345–390. (10.1111/j.1095-8312.2001.tb01368.x) DOI

Austin JW, Szalanski AL, Uva P, Bagnères AG, Kence A. 2002. A comparative genetic analysis of the subterranean termite genus Reticulitermes (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 95, 753–760. (10.1603/0013-8746(2002)095%5B0753:ACGAOT%5D2.0.CO;2) DOI

Austin JW, Szalanski AL, Cabrera BJ. 2004. Phylogenetic analysis of the subterranean termite family Rhinotermitidae (Isoptera) by using the mitochondrial cytochrome oxidase II gene. Ann. Entomol. Soc. Am. 97, 548–555. (10.1603/0013-8746(2004)097%5B0548:PAOTST%5D2.0.CO;2) DOI

Luchetti A, Trenta M, Mantovani B, Marini M. 2004. Taxonomy and phylogeny of north mediterranean Reticulitermes termites (Isoptera, Rhinotermitidae): a new insight. Insect. Soc. 51, 117–122. (10.1007/s00040-003-0715-z) DOI

Lo N, Eldridge RH, Lenz M. 2006. Phylogeny of Australian Coptotermes (Isoptera: Rhinotermitidae) species inferred from mitochondrial COII sequences. Bull. Entomol. Res. 96, 433–437. PubMed

Yeap BK, Othman AS, Lee CY. 2009. Molecular systematics of Coptotermes (Isoptera: Rhinotermitidae) from East Asia and Australia. Ann. Entomol. Soc. Am. 102, 1077–1090. (10.1603/008.102.0616) DOI

Velonà A, Ghesini S, Luchetti A, Marini M, Mantovani B. 2010. Starting from Crete, a phylogenetic re-analysis of the genus Reticulitermes in the Mediterranean area. Mol. Phylogenet. Evol. 56, 1051–1058. (10.1016/j.ympev.2010.04.037) PubMed DOI

Cameron SL, Whiting MF. 2007. Mitochondrial genomic comparisons of the subterranean termites from the genus Reticulitermes (Insecta: Isoptera: Rhinotermitidae). Genome 202, 188–202. PubMed

Cameron SL, Lo N, Bourguignon T, Svenson GJ, Evans TA. 2012. A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades. Mol. Phylogenet. Evol. 65, 163–173. (10.1016/j.ympev.2012.05.034) PubMed DOI

Cameron SL. 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu. Rev. Entomol. 59, 95–117. (10.1146/annurev-ento-011613-162007) PubMed DOI

Tokuda G, Isagawa H, Sugio K. 2011. The complete mitogenome of the Formosan termite, Coptotermes formosanus Shiraki. Insect. Soc. 59, 17–24. (10.1007/s00040-011-0182-x) DOI

Chen Q, Wang K, Tan Y, Xing L. 2016. The complete mitochondrial genome of the subterranean termite, Reticulitermes chinensis Snyder (Isoptera: Rhinotermitidae). Mitochondrial DNA 27, 1428–1429. (10.3109/19401736.2014.953077) PubMed DOI

Kai W, Xiao-Hui G, Chun-Hua D, Lian-Xi X, Jiang-Li T, Xiao-Hong S. In press Complete mitochondrial genome of a parthenogenetic subterranean termite, Reticulitermes aculabialis Tsai et Hwang (Isoptera: Rhinotermitidae). Mitochondrial DNA. PubMed

Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (10.1186/1471-2105-5-113) PubMed DOI PMC

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739. (10.1093/molbev/msr121) PubMed DOI PMC

Vaidya G, Lohman DJ, Meier R. 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180. (10.1111/j.1096-0031.2010.00329.x) PubMed DOI

Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701. (10.1093/molbev/mss020) PubMed DOI

Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (10.1186/1471-2148-7-214) PubMed DOI PMC

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (10.1371/journal.pbio.0040088) PubMed DOI PMC

Gernhard T. 2008. The conditioned reconstructed process. J. Theor. Biol. 253, 769–778. (10.1016/j.jtbi.2008.04.005) PubMed DOI

Rambaut A, Drummond AJ. 2007. Tracer. http://tree.bio.ed.ac.uk/software/tracer/. PubMed

Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 57, 758–771. (10.1080/10635150802429642) PubMed DOI

Degnan JH, Rosenberg NA. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332–340. (10.1016/j.tree.2009.01.009) PubMed DOI

Whitfield JB, Lockhart PJ. 2007. Deciphering ancient rapid radiations. Trends Ecol. Evol. 22, 258–265. (10.1016/j.tree.2007.01.012) PubMed DOI

Yu Y, Harris AJ, Blair C, He X. 2015. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46–49. (10.1016/j.ympev.2015.03.008) PubMed DOI

Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. (10.1093/bioinformatics/btg180) PubMed DOI

Austin J, Szalanski AL, Scheffrahn RH, Messenger MT, Dronnet P, Bagnères AG. 2005. Genetic evidence for the synonymy of two Reticulitermes species: Reticulitermes flavipes and Reticulitermes santonensis. Ann. Entomol. Soc. Am. 98, 395–401. (10.1603/0013-8746(2005)098%5B0395:GEFTSO%5D2.0.CO;2) DOI

Husseneder C, Simms DM, Delatte JR, Wang C, Grace JK, Vargo EL. 2011. Genetic diversity and colony breeding structure in native and introduced ranges of the Formosan subterranean termite, Coptotermes formosanus. Biol. Invasions 14, 419–437. (10.1007/s10530-011-0087-7) DOI

Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–694. (10.1126/science.1059412) PubMed DOI

Zhilin SG. 2001. Structure of the Turgayan flora in the Oligocene and Miocene and its palaeoclimatic features. Acta Palaeobot. 41, 141–146.

Tang ZH, Ding ZL. 2013. A palynological insight into the Miocene aridification in the Eurasian interior. Palaeoworld 22, 77–85. (10.1016/j.palwor.2013.05.001) DOI

Miao Y, Herrmann M, Wu F, Yan X, Yang S. 2012. What controlled Mid–Late Miocene long-term aridification in Central Asia?—global cooling or Tibetan Plateau uplift: a review. Earth Sci. Rev. 112, 155–172. (10.1016/j.earscirev.2012.02.003) DOI

Denk T, Grímsson F, Zetter R. 2010. Episodic migration of oaks to Iceland: evidence for a North Atlantic ‘land bridge’ in the latest Miocene. Am. J. Bot. 97, 276–287. (10.3732/ajb.0900195) PubMed DOI

Perdereau E, Bagnères AG, Bankhead-Dronnet S, Dupont S, Zimmermann M, Vargo EL, Dedeine F. 2013. Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol. Ecol. 22, 1105–1119. (10.1111/mec.12140) PubMed DOI

van Hinsbergen DJJ, Lippert PC, Dupont-Nivet G, McQuarrie N, Doubrovine PV, Spakman W, Torsvik TH. 2012. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci. USA 109, 7659–7664. (10.1073/pnas.1117262109) PubMed DOI PMC

Moss SJ, Wilson MEJ. 1998. Biogeographic implications of the Tertiary palaeogeographic evolution of Sulawesi and Borneo. In Biogeography and geological evolution of SE Asia (eds Hall R, Holloway JD), pp. 133–163. Leiden, The Netherlands: Backhuys Publishers.

Hall R. 1998. The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In Biogeography and geological evolution of SE Asia (eds Hall R, Holloway JD), pp. 99–131. Leiden, The Netherlands: Backhuys Publishers.

Rögl F. 1999. Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short review). Geol. Carpathica 50, 339–349.

Bourguignon T, Roisin Y. 2011. Revision of the termite family Rhinotermitidae (Isoptera) in New Guinea. ZooKeys 148, 55–103. (10.3897/zookeys.148.1826) PubMed DOI PMC

Noirot C. 1970. The nests of termites. In Biology of termites, vol. II (eds Krishna K, Weesner FM), pp. 311–350. New York, NY: Academic Press.

Noirot C, Darlington JPEC. 2000. Termite nests: architecture, regulation and defence. In Termites: evolution, sociality, symbioses, ecology (eds Abe T, Bignell DE, Higashi M), pp. 121–139. Dordrecht, The Netherlands: Kluwer Academic Publishing.

Myles TG. 1999. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33, 1–88.

de Queiroz A. 2005. The resurrection of oceanic dispersal in historical biogeography. Trends Ecol. Evol. 20, 68–73. (10.1016/j.tree.2004.11.006) PubMed DOI

Ward PS, Brady SG, Fisher BL, Schultz TR. 2015. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst. Entomol. 40, 61–81. (10.1111/syen.12090) DOI

Friedman M, Keck BP, Dornburg A, Eytan RI, Martin CH, Hulsey CD, Wainwright PC, Near TJ. 2013. Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proc. R. Soc. B 280, 20131733 (10.1098/rspb.2013.1733) PubMed DOI PMC

Antoine PO, et al. 2012. Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proc. R. Soc. B 279, 1319–1326. (10.1098/rspb.2011.1732) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Evidence of cospeciation between termites and their gut bacteria on a geological time scale

. 2023 Jun 28 ; 290 (2001) : 20230619. [epub] 20230621

The functional evolution of termite gut microbiota

. 2022 May 27 ; 10 (1) : 78. [epub] 20220527

Termite dispersal is influenced by their diet

. 2022 May 25 ; 289 (1975) : 20220246. [epub] 20220525

Molecular Phylogeny Reveals the Past Transoceanic Voyages of Drywood Termites (Isoptera, Kalotermitidae)

. 2022 May 03 ; 39 (5) : .

Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae

. 2021 Mar ; 78 (6) : 2749-2769. [epub] 20210103

Complete mitochondrial genome of the drywood termite Cryptotermes havilandi (Isoptera: Kalotermitidae)

. 2021 Feb 11 ; 6 (2) : 533-535. [epub] 20210211

Complete mitochondrial genomes from transcriptomes: assessing pros and cons of data mining for assembling new mitogenomes

. 2019 Oct 15 ; 9 (1) : 14806. [epub] 20191015

Roisinitermesebogoensis gen. & sp. n., an outstanding drywood termite with snapping soldiers from Cameroon (Isoptera, Kalotermitidae)

. 2018 ; (787) : 91-105. [epub] 20180802

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...