Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27030416
PubMed Central
PMC4822470
DOI
10.1098/rspb.2016.0179
PII: rspb.2016.0179
Knihovny.cz E-zdroje
- Klíčová slova
- Isoptera, Rhinotermitidae, long distance dispersal, molecular clock,
- MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- genom hmyzu * MeSH
- genom mitochondriální * MeSH
- Isoptera genetika fyziologie MeSH
- rozšíření zvířat * MeSH
- sekvenční analýza DNA MeSH
- sekvenční seřazení MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Reticulitermes, Heterotermes and Coptotermes form a small termite clade with partly overlapping distributions. Although native species occur across all continents, the factors influencing their distribution are poorly known. Here, we reconstructed the historical biogeography of these termites using mitochondrial genomes of species collected on six continents. Our analyses showed that Reticulitermes split from Heterotermes + Coptotermesat 59.5 Ma (49.9-69.5 Ma 95% CI), yet the oldest split within Reticulitermes(Eurasia and North America) is 16.1 Ma (13.4-19.5 Ma) and the oldest split within Heterotermes + Coptotermesis 36.0 Ma (33.9-40.5 Ma). We detected 14 disjunctions between biogeographical realms, all of which occurred within the last 34 Ma, not only after the break-up of Pangaea, but also with the continents in similar to current positions. Land dispersal over land bridges explained four disjunctions, oceanic dispersal by wood rafting explained eight disjunctions, and human introduction was the source of two recent disjunctions. These wood-eating termites, therefore, appear to have acquired their modern worldwide distribution through multiple dispersal processes, with oceanic dispersal and human introduction favoured by the ecological traits of nesting in wood and producing replacement reproductives.
Evolutionary Biology and Ecology Université Libre de Bruxelles Brussels Belgium
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
School of Biological Sciences University of Sydney Sydney New South Wales 2006 Australia
Zobrazit více v PubMed
Krishna K, Grimaldi DA, Engel MS. 2013. Treatise on the Isoptera of the world, vol. 1. Bull. Am. Mus. Nat. Hist. 377, 1–196. (10.1206/377.1) DOI
Béguin P, Aubert JP. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25–58. (10.1111/j.1574-6976.1994.tb00033.x) PubMed DOI
Dixon RK, Solomon AM, Brown S, Houghton RAM, Trexier C, Wisniewski J. 1994. Carbon pools and flux of global forest ecosystems. Science 263, 185–190. (10.1126/science.263.5144.185) PubMed DOI
Bignell DE. 2006. Termites as soil engineers and soil processors. In Intestinal microorganisms of soil invertebrates (eds König H, Varma A), pp. 183–220. Berlin, Germany: Springer.
Evans TA, Dawes TZ, Ward PR, Lo N. 2011. Ants and termites increase crop yield in a dry climate. Nat. Commun. 2, 1257 (10.1038/ncomms1257) PubMed DOI PMC
Jouquet P, Traoré S, Choosai C, Hartmann C, Bignell DE. 2011. Influence of termites on ecosystem functioning. Ecosystem services provided by termites. Eur. J. Soil Biol. 47, 215–222. (10.1016/j.ejsobi.2011.05.005) DOI
Hickin NE. 1971. Termites, a world problem. London, UK: The Rentokil Library, Hutchinson.
Su NY, Scheffrahn RH. 2000. Termites as pests of buildings. In Termites: evolution, sociality, symbioses, ecology (eds Abe T, Bignell DE, Higashi M), pp. 437–453. Dordrecht, The Netherlands: Kluwer.
Rouland-Lefèvre C. 2011. Termites as pests of agriculture. In Biology of termites: a modern synthesis (eds Bignell DE, Roisin Y, Lo N), pp. 499–517. Dordrecht, The Netherlands: Springer.
Bourguignon T, et al. 2015. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32, 406–421. (10.1093/molbev/msu308) PubMed DOI
Evans TA. 2011. Invasive termites. In Biology of termites: a modern synthesis (eds Bignell DE, Roisin Y, Lo N), pp. 519–562. Dordrecht, The Netherlands: Springer. PubMed
Evans TA, Forschler BT, Grace JK. 2013. Biology of invasive termites: a worldwide review. Annu. Rev. Entomol. 58, 455–474. (10.1146/annurev-ento-120811-153554) PubMed DOI
Emerson AE. 1971. Tertiary fossil species of the Rhinotermitidae (Isoptera), phylogeny of genera, and reciprocal phylogeny of associated Flagellata (Protozoa) and the Staphylinidae (Coleoptera). Bull. Am. Mus. Nat. Hist. 146, 243–304.
Eggleton P. 2000. Global patterns of termite diversity. In Termites: evolution, sociality, symbioses, ecology (eds Abe T, Bignell DE, Higashi M), pp. 25–51. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Dedeine F, Dupont S, Guyot S, Matsuura K, Wang C, Habibpour B, Bagnères AG, Mantovani B, Luchetti A. 2016. Historical biogeography of Reticulitermes termites (Isoptera: Rhinotermitidae) inferred from analyses of mitochondrial and nuclear loci. Mol. Phylogenet. Evol. 94, 778–790. (10.1016/j.ympev.2015.10.020) PubMed DOI
Scheffrahn RH, Carrijo TF, Křeček J, Su NY, Szalanski AL, Austin JW, Chase JA, Mangold JR. 2015. A single endemic and three exotic species of the termite genus Coptotermes (Isoptera, Rhinotermitidae) in the New World. Arthropod. Syst. Phylogenet. 73, 333–348.
Holt BG, et al. 2013. An update of Wallace's zoogeographic regions of the world. Science 339, 74–79. (10.1126/science.1228282) PubMed DOI
Chouvenc T, et al. 2016. Revisiting Coptotermes (Isoptera: Rhinotermitidae): a global taxonomic roadmap for species validity and distribution of an economically important subterranean termite genus. Syst. Entomol. 41, 299–306. (10.1111/syen.12157) DOI
Krishna K, Grimaldi D. 2009. Diverse Rhinotermitidae and Termitidae (Isoptera) in Dominican Amber. Am. Mus. Novit. 3640, 1–48. (10.1206/633.1) DOI
Messenger MT, Mullins AJ. 2005. New flight distance recorded for Coptotermes formosanus (Isoptera: Rhinotermitidae). Fla Entomol. 88, 99–100. (10.1653/0015-4040(2005)088%5B0099:NFDRFC%5D2.0.CO;2) DOI
Hu J, Zhong JH, Guo MF. 2007. Alate dispersal distances of the black-winged subterranean termite Odontotermes formosanus (Isoptera: Termitidae) in southern China. Sociobiology 50, 1–8.
Keller L. 1998. Queen lifespan and colony characteristics in ants and termites. Insect. Soc. 45, 235–246. (10.1007/s000400050084) DOI
Thiel M, Haye PA. 2006. The ecology of rafting in the marine environment. III. Biogeographical and evolutionary consequences. Oceanogr. Mar. Biol. An Annu. Rev. 43, 323–429. (10.1201/9781420006391.ch7) DOI
Bourguignon T, Chisholm RA, Evans TA. 2016. The termite worker phenotype evolved as dispersal strategy for fertile wingless individuals before eusociality. Am. Nat. 187, 372–387. (10.1086/684838) PubMed DOI
Lee TRC, Cameron SL, Evans TA, Ho SYW, Lo N. 2015. The origins and radiation of Australian Coptotermes termites: from rainforest to desert dwellers. Mol. Phylogenet. Evol. 82, 234–244. (10.1016/j.ympev.2014.09.026) PubMed DOI
Hines HM. 2008. Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). Syst. Biol. 57, 58–75. (10.1080/10635150801898912) PubMed DOI
Vila R, et al. 2011. Phylogeny and palaeoecology of Polyommatus blue butterflies show Beringia was a climate-regulated gateway to the New World. Proc. R. Soc. B 278, 2737–2744. (10.1098/rspb.2010.2213) PubMed DOI PMC
Meseguer AS, Coeur d'acier A, Genson G, Jousselin E. 2015. Unravelling the historical biogeography and diversification dynamics of a highly diverse conifer-feeding aphid genus. J. Biogeogr. 88, 1482–1492. (10.1111/jbi.12531) DOI
Sanmartín I. 2001. Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol. J. Linn. Soc. 73, 345–390. (10.1111/j.1095-8312.2001.tb01368.x) DOI
Austin JW, Szalanski AL, Uva P, Bagnères AG, Kence A. 2002. A comparative genetic analysis of the subterranean termite genus Reticulitermes (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 95, 753–760. (10.1603/0013-8746(2002)095%5B0753:ACGAOT%5D2.0.CO;2) DOI
Austin JW, Szalanski AL, Cabrera BJ. 2004. Phylogenetic analysis of the subterranean termite family Rhinotermitidae (Isoptera) by using the mitochondrial cytochrome oxidase II gene. Ann. Entomol. Soc. Am. 97, 548–555. (10.1603/0013-8746(2004)097%5B0548:PAOTST%5D2.0.CO;2) DOI
Luchetti A, Trenta M, Mantovani B, Marini M. 2004. Taxonomy and phylogeny of north mediterranean Reticulitermes termites (Isoptera, Rhinotermitidae): a new insight. Insect. Soc. 51, 117–122. (10.1007/s00040-003-0715-z) DOI
Lo N, Eldridge RH, Lenz M. 2006. Phylogeny of Australian Coptotermes (Isoptera: Rhinotermitidae) species inferred from mitochondrial COII sequences. Bull. Entomol. Res. 96, 433–437. PubMed
Yeap BK, Othman AS, Lee CY. 2009. Molecular systematics of Coptotermes (Isoptera: Rhinotermitidae) from East Asia and Australia. Ann. Entomol. Soc. Am. 102, 1077–1090. (10.1603/008.102.0616) DOI
Velonà A, Ghesini S, Luchetti A, Marini M, Mantovani B. 2010. Starting from Crete, a phylogenetic re-analysis of the genus Reticulitermes in the Mediterranean area. Mol. Phylogenet. Evol. 56, 1051–1058. (10.1016/j.ympev.2010.04.037) PubMed DOI
Cameron SL, Whiting MF. 2007. Mitochondrial genomic comparisons of the subterranean termites from the genus Reticulitermes (Insecta: Isoptera: Rhinotermitidae). Genome 202, 188–202. PubMed
Cameron SL, Lo N, Bourguignon T, Svenson GJ, Evans TA. 2012. A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades. Mol. Phylogenet. Evol. 65, 163–173. (10.1016/j.ympev.2012.05.034) PubMed DOI
Cameron SL. 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu. Rev. Entomol. 59, 95–117. (10.1146/annurev-ento-011613-162007) PubMed DOI
Tokuda G, Isagawa H, Sugio K. 2011. The complete mitogenome of the Formosan termite, Coptotermes formosanus Shiraki. Insect. Soc. 59, 17–24. (10.1007/s00040-011-0182-x) DOI
Chen Q, Wang K, Tan Y, Xing L. 2016. The complete mitochondrial genome of the subterranean termite, Reticulitermes chinensis Snyder (Isoptera: Rhinotermitidae). Mitochondrial DNA 27, 1428–1429. (10.3109/19401736.2014.953077) PubMed DOI
Kai W, Xiao-Hui G, Chun-Hua D, Lian-Xi X, Jiang-Li T, Xiao-Hong S. In press Complete mitochondrial genome of a parthenogenetic subterranean termite, Reticulitermes aculabialis Tsai et Hwang (Isoptera: Rhinotermitidae). Mitochondrial DNA. PubMed
Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 5, 113 (10.1186/1471-2105-5-113) PubMed DOI PMC
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739. (10.1093/molbev/msr121) PubMed DOI PMC
Vaidya G, Lohman DJ, Meier R. 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180. (10.1111/j.1096-0031.2010.00329.x) PubMed DOI
Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701. (10.1093/molbev/mss020) PubMed DOI
Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (10.1186/1471-2148-7-214) PubMed DOI PMC
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (10.1371/journal.pbio.0040088) PubMed DOI PMC
Gernhard T. 2008. The conditioned reconstructed process. J. Theor. Biol. 253, 769–778. (10.1016/j.jtbi.2008.04.005) PubMed DOI
Rambaut A, Drummond AJ. 2007. Tracer. http://tree.bio.ed.ac.uk/software/tracer/. PubMed
Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 57, 758–771. (10.1080/10635150802429642) PubMed DOI
Degnan JH, Rosenberg NA. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332–340. (10.1016/j.tree.2009.01.009) PubMed DOI
Whitfield JB, Lockhart PJ. 2007. Deciphering ancient rapid radiations. Trends Ecol. Evol. 22, 258–265. (10.1016/j.tree.2007.01.012) PubMed DOI
Yu Y, Harris AJ, Blair C, He X. 2015. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol. Phylogenet. Evol. 87, 46–49. (10.1016/j.ympev.2015.03.008) PubMed DOI
Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. (10.1093/bioinformatics/btg180) PubMed DOI
Austin J, Szalanski AL, Scheffrahn RH, Messenger MT, Dronnet P, Bagnères AG. 2005. Genetic evidence for the synonymy of two Reticulitermes species: Reticulitermes flavipes and Reticulitermes santonensis. Ann. Entomol. Soc. Am. 98, 395–401. (10.1603/0013-8746(2005)098%5B0395:GEFTSO%5D2.0.CO;2) DOI
Husseneder C, Simms DM, Delatte JR, Wang C, Grace JK, Vargo EL. 2011. Genetic diversity and colony breeding structure in native and introduced ranges of the Formosan subterranean termite, Coptotermes formosanus. Biol. Invasions 14, 419–437. (10.1007/s10530-011-0087-7) DOI
Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–694. (10.1126/science.1059412) PubMed DOI
Zhilin SG. 2001. Structure of the Turgayan flora in the Oligocene and Miocene and its palaeoclimatic features. Acta Palaeobot. 41, 141–146.
Tang ZH, Ding ZL. 2013. A palynological insight into the Miocene aridification in the Eurasian interior. Palaeoworld 22, 77–85. (10.1016/j.palwor.2013.05.001) DOI
Miao Y, Herrmann M, Wu F, Yan X, Yang S. 2012. What controlled Mid–Late Miocene long-term aridification in Central Asia?—global cooling or Tibetan Plateau uplift: a review. Earth Sci. Rev. 112, 155–172. (10.1016/j.earscirev.2012.02.003) DOI
Denk T, Grímsson F, Zetter R. 2010. Episodic migration of oaks to Iceland: evidence for a North Atlantic ‘land bridge’ in the latest Miocene. Am. J. Bot. 97, 276–287. (10.3732/ajb.0900195) PubMed DOI
Perdereau E, Bagnères AG, Bankhead-Dronnet S, Dupont S, Zimmermann M, Vargo EL, Dedeine F. 2013. Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol. Ecol. 22, 1105–1119. (10.1111/mec.12140) PubMed DOI
van Hinsbergen DJJ, Lippert PC, Dupont-Nivet G, McQuarrie N, Doubrovine PV, Spakman W, Torsvik TH. 2012. Greater India Basin hypothesis and a two-stage Cenozoic collision between India and Asia. Proc. Natl Acad. Sci. USA 109, 7659–7664. (10.1073/pnas.1117262109) PubMed DOI PMC
Moss SJ, Wilson MEJ. 1998. Biogeographic implications of the Tertiary palaeogeographic evolution of Sulawesi and Borneo. In Biogeography and geological evolution of SE Asia (eds Hall R, Holloway JD), pp. 133–163. Leiden, The Netherlands: Backhuys Publishers.
Hall R. 1998. The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. In Biogeography and geological evolution of SE Asia (eds Hall R, Holloway JD), pp. 99–131. Leiden, The Netherlands: Backhuys Publishers.
Rögl F. 1999. Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short review). Geol. Carpathica 50, 339–349.
Bourguignon T, Roisin Y. 2011. Revision of the termite family Rhinotermitidae (Isoptera) in New Guinea. ZooKeys 148, 55–103. (10.3897/zookeys.148.1826) PubMed DOI PMC
Noirot C. 1970. The nests of termites. In Biology of termites, vol. II (eds Krishna K, Weesner FM), pp. 311–350. New York, NY: Academic Press.
Noirot C, Darlington JPEC. 2000. Termite nests: architecture, regulation and defence. In Termites: evolution, sociality, symbioses, ecology (eds Abe T, Bignell DE, Higashi M), pp. 121–139. Dordrecht, The Netherlands: Kluwer Academic Publishing.
Myles TG. 1999. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33, 1–88.
de Queiroz A. 2005. The resurrection of oceanic dispersal in historical biogeography. Trends Ecol. Evol. 20, 68–73. (10.1016/j.tree.2004.11.006) PubMed DOI
Ward PS, Brady SG, Fisher BL, Schultz TR. 2015. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst. Entomol. 40, 61–81. (10.1111/syen.12090) DOI
Friedman M, Keck BP, Dornburg A, Eytan RI, Martin CH, Hulsey CD, Wainwright PC, Near TJ. 2013. Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proc. R. Soc. B 280, 20131733 (10.1098/rspb.2013.1733) PubMed DOI PMC
Antoine PO, et al. 2012. Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proc. R. Soc. B 279, 1319–1326. (10.1098/rspb.2011.1732) PubMed DOI PMC
Evidence of cospeciation between termites and their gut bacteria on a geological time scale
The functional evolution of termite gut microbiota
Termite dispersal is influenced by their diet
Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae