Termite dispersal is influenced by their diet
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35611530
PubMed Central
PMC9132130
DOI
10.1098/rspb.2022.0246
Knihovny.cz E-zdroje
- Klíčová slova
- Isoptera, biogeography, ecology, feeding group, mitogenomes, stable isotopes,
- MeSH
- dieta MeSH
- ekosystém MeSH
- genom mitochondriální * MeSH
- Isoptera * genetika MeSH
- půda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda MeSH
Termites feed on vegetal matter at various stages of decomposition. Lineages of wood- and soil-feeding termites are distributed across terrestrial ecosystems located between 45°N and 45°S of latitude, a distribution they acquired through many transoceanic dispersal events. While wood-feeding termites often live in the wood on which they feed and are efficient at dispersing across oceans by rafting, soil-feeders are believed to be poor dispersers. Therefore, their distribution across multiple continents requires an explanation. Here, we reconstructed the historical biogeography and the ancestral diet of termites using mitochondrial genomes and δ13C and δ15N stable isotope measurements obtained from 324 termite samples collected in five biogeographic realms. Our biogeographic models showed that wood-feeders are better at dispersing across oceans than soil-feeders, further corroborated by the presence of wood-feeders on remote islands devoid of soil-feeders. However, our ancestral range reconstructions identified 33 dispersal events among biogeographic realms, 18 of which were performed by soil-feeders. Therefore, despite their lower dispersal ability, soil-feeders performed several transoceanic dispersals that shaped the distribution of modern termites.
Zobrazit více v PubMed
Krishna K, Grimaldi DA, Krishna V, Engel MS. 2013. Treatise on the Isoptera of the World. 1. Introduction. Bull. Am. Museum Nat. Hist. 377, 1-200. (10.1206/377.1) DOI
Bignell DE, Abe T, Higashi M. 2000. Termites in ecosystems. In Termites: evolution, sociality, symbioses, ecology (eds Abe T, Bignell DE, Higashi M), pp. 363-387. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Holt JA, et al. 2000. Termite and soil properties. In Termites: evolution, sociality, symbioses, ecology (eds Abe T, Bignell DE, Higashi M), pp. 389-407. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Donovan SE, Eggleton P, Bignell DE. 2001. Gut content analysis and a new feeding group classification of termites. Ecol. Entomol. 26, 356-366. (10.1046/j.1365-2311.2001.00342.x) DOI
Tayasu I, Abe T, Eggleton P, Bignell DE. 1997. Nitrogen and carbon isotope ratios in termites: an indicator of trophic habit along the gradient from wood-feeding to soil-feeding. Ecol. Entomol. 22, 343-351. (10.1046/j.1365-2311.1997.00070.x) DOI
Eggleton P, Tayasu I. et al. 2001. Feeding groups, lifetypes and the global ecology of termites. Ecol. Res. 16, 941-960. (10.1046/j.1440-1703.2001.00444.x) DOI
Potapov AM, Tiunov AV, Scheu S. 2019. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. 94, 37-59. (10.1111/brv.12434) PubMed DOI
Bourguignon T, Šobotník J, Lepoint G, Martin JM, Hardy OJ, Dejean A, Roisin Y. 2011. Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol. Entomol. 36, 261-269. (10.1111/j.1365-2311.2011.01265.x) DOI
Jones DT, et al. 2011. Global biogeography of termites: a compilation of sources. In Biology of termites: a modern synthesis (eds Bignell DE, Roisin Y, Lo N), pp. 477-498. Dordrecht, The Netherlands: Springer.
Eggleton P. 2000. Global patterns of termite diversity. In Termites: evolution, sociality, symbioses, ecology (eds Abe T, Bignell DE, Higashi M), pp. 25-51. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Bourguignon T, et al. 2015. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32, 406-421. (10.1093/molbev/msu308) PubMed DOI
Bourguignon T, et al. 2017. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol. Biol. Evol. 34, 589-597. (10.1093/molbev/msw253) PubMed DOI
Bourguignon T, Lo N, Šobotník J, Sillam-Dussès D, Roisin Y, Evans TA. 2016. Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proc. R. Soc. B 283, 20160179. (10.1098/rspb.2016.0179) PubMed DOI PMC
Wang M, Buček A, Šobotník J, Sillam-Dussès D, Evans TA, Roisin Y, Lo N, Bourguignon T. 2019. Historical biogeography of the termite clade Rhinotermitinae (Blattodea: Isoptera). Mol. Phylogenet. Evol. 132, 100-104. (10.1016/j.ympev.2018.11.005) PubMed DOI
Wang M, et al. . 2021. Neoisoptera repetitively colonised Madagascar after the Middle Miocene climatic optimum. bioRxiv, 2021.12.01.470872. (10.1101/2021.12.01.470872) DOI
Buček A, et al. . 2022. Molecular phylogeny reveals the past transoceanic voyages of drywood termites (Isoptera, Kalotermitidae). Mol. Biol. Evol. (10.1093/molbev/msac093) PubMed DOI PMC
Evans TA, Forschler BT, Grace JK. et al. 2013. Biology of invasive termites: a worldwide review. Annu. Rev. Entomol. 58, 455-474. (10.1146/annurev-ento-120811-153554) PubMed DOI
Thorne BL, et al. 2000. Early fossil history of the termites. In Termites: evolution, sociality, symbioses, ecology (eds Abe T, Bignell DE, Higashi M), pp. 77-93. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Engel MS, Barden P, Riccio ML, Grimaldi DA. 2016. Morphologically specialized termite castes and advanced sociality in the early Cretaceous. Curr. Biol. 26, 522-530. (10.1016/j.cub.2015.12.061) PubMed DOI
Bucek A, Šobotník J, He S, Shi M, McMahon DP, Holmes EC, Roisin Y, Lo N, Bourguignon T. 2019. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr. Biol. 29, 3728-3734. (10.1016/j.cub.2019.08.076) PubMed DOI
Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686-693. (10.1126/science.1059412) PubMed DOI
Rögl F. 1998. Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann. Naturhist. Mus. Wien 99A, 279-310.
Aanen DK, Eggleton P. 2005. Fungus-growing termites originated in African rain forest. Curr. Biol. 15, 851-855. (10.1016/j.cub.2005.03.043) PubMed DOI
Hu J, et al. 2007. Alate dispersal distances of the black-winged subterranean termite Odontotermes formosanus (Isoptera: Termitidae) in southern China. Sociobiology 50, 513-520.
Messenger MT, Mullins AJ. 2005. New flight distance recorded for Coptotermes formosanus (Isoptera: Rhinotermitidae). Florida Entomol. 88, 99-100. (10.1653/0015-4040(2005)088[0099:NFDRFC]2.0.CO;2) DOI
Thiel M, et al. 2006. The ecology of rafting in the marine environment. III. Biogeographical and evolutionary consequences. Oceanogr. Mar. Biol. 44, 323-429. (10.1201/9781420006391.ch7) DOI
Chiu CI, Mullins AJ, Kuan KC, Lin MD, Su NY, Li HF. 2021. Termite salinity tolerance and potential for transoceanic dispersal through rafting. Ecol. Entomol. 46, 106-116. (10.1111/een.12946) DOI
Emerson AE. 1924. A new termite from the Juan Fernandez Islands. In The natural history of Juan Fernandez and Easter island, vol. 3 (ed. Skottsberg CJF), pp. 392-394. Uppsala, Sweden: Almqvist and Wiksells.
Bahder BW, Scheffrahn RH, Křeček J, Keil C, Whitney-King S. 2009. Termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of Ecuador. Ann. Soc. Entomol. Fr. (N.S.) 45, 529-536. (10.1080/00379271.2009.10697634) DOI
Abe T. 1984. Colonization of the Krakatau Islands by termites (Insecta: Isoptera). Physiol. Ecol. Japan 21, 63-88.
Gathorne-Hardy FJ, Jones DT, Mawdsley NA. 2000. The recolonization of the Krakatau islands by termites (Isoptera), and their biogeographical origins. Biol. J. Linn. Soc. 71, 251-267. (10.1111/j.1095-8312.2000.tb01257.x) DOI
Grace JK, et al. 2002. Distribution and management of termites in Hawaii. Sociobiology 40, 87-93.
Scheffrahn RH, Křeček J, Chase JA, Maharajh B, Mangold JR. 2006. Taxonomy, biogeography, and notes on termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of the Bahamas and Turks and Caicos Islands. Ann. Entomol. Soc. Am. 99, 463-486. (10.1603/0013-8746(2006)99[463:TBANOT]2.0.CO;2) DOI
Davies RG, Eggleton P, Jones DT, Gathorne-Hardy FJ, Hernández LM. 2003. Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. J. Biogeogr. 30, 847-877. (10.1046/j.1365-2699.2003.00883.x) DOI
Inward DJG, Vogler AP, Eggleton P. 2007. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol. 44, 953-967. (10.1016/j.ympev.2007.05.014) PubMed DOI
Davies RG, Hernández LM, Eggleton P, Didham RK, Fagan LL, Winchester NN. 2003. Environmental and spatial influences upon species composition of a termite assemblage across neotropical forest islands. J. Trop. Ecol. 19, 509-524. (10.1017/S0266467403003560) DOI
Martius C. 1997. The termites. In Ecological studies 126. The central-amazonian floodplain: ecology of a pulsing system (ed. Junk W), pp. 361-371. Berlin, Germany: Springer.
Noirot C, et al. 2000. Termite nests: architecture, regulation and defence. In Termites: evolution, sociality, symbioses, ecology (eds Abe T, Bignell DE, Higashi M), pp. 121-139. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Holt BG, et al. 2013. An update of Wallace's zoogeographic regions of the world. Science 339, 74-78. (10.1126/science.1228282) PubMed DOI
Pequeno PACL, et al. 2021. Can shifts in metabolic scaling predict coevolution between diet quality and body size? Evolution 75, 141-148. (10.1111/evo.14128) PubMed DOI
Wu LW, Bourguignon T, Šobotník J, Wen P, Liang WR, Li HF. 2018. Phylogenetic position of the enigmatic termite family Stylotermitidae (Insecta: Blattodea). Invertebr. Syst. 32, 1111-1117. (10.1071/IS17093) DOI
Romero Arias J, Boom A, Wang M, Clitheroe C, Šobotník J, Stiblik P, Bourguignon T, Roisin Y. 2021. Molecular phylogeny and historical biogeography of Apicotermitinae (Blattodea: Termitidae). Syst. Entomol. 46, 741-756. (10.1111/syen.12486) DOI
Wang M, et al. . 2022. Phylogeny, biogeography and classification of Teletisoptera (Blattaria: Isoptera) (Isoptera: Teletisoptera). Syst. Entomol. (10.1111/syen.12548) DOI
Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. et al. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824-834. (10.1101/gr.213959.116) PubMed DOI PMC
Allio R, Schomaker-Bastos A, Romiguier J, Prosdocimi F, Nabholz B, Delsuc F. 2020. MitoFinder: efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Mol. Ecol. Resour. 20, 892-905. (10.1111/1755-0998.13160) PubMed DOI PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772-780. (10.1093/molbev/mst010) PubMed DOI PMC
Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276-277. (10.1016/S0168-9525(00)02024-2) PubMed DOI
Suyama M, Torrents D, Bork P. et al. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609-W612. (10.1093/nar/gkl315) PubMed DOI PMC
Kück P, Longo GC. 2014. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 11, 81. (10.1186/s12983-014-0081-x) PubMed DOI PMC
Bouckaert R, et al. 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650. (10.1371/journal.pcbi.1006650) PubMed DOI PMC
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. et al. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274. (10.1093/molbev/msu300) PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587-589. (10.1038/nmeth.4285) PubMed DOI PMC
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88. (10.1371/journal.pbio.0040088) PubMed DOI PMC
Ho SYW, Phillips MJ. 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. 58, 367-380. (10.1093/sysbio/syp035) PubMed DOI
Rambaut A, Drummond AJ, Xie D, Baele G, Susko E. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901-904. (10.1093/sysbio/syy032) PubMed DOI PMC
R Core Team. 2020. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Wang LG, et al. 2020. Treeio: an R package for phylogenetic tree input and output with richly annotated and associated data. Mol. Biol. Evol. 37, 599-603. (10.1093/molbev/msz240) PubMed DOI PMC
Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. et al. 2017. GGTREE: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28-36. (10.1111/2041-210X.12628) DOI
Parnell AC, Inger R, Bearhop S, Jackson AL. 2010. Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5, e9672. (10.1371/journal.pone.0009672) PubMed DOI PMC
Jackson AL, Inger R, Parnell AC, Bearhop S. 2011. Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595-602. (10.1111/j.1365-2656.2011.01806.x) PubMed DOI
Keck F, Rimet F, Bouchez A, Franc A. et al. 2016. Phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774-2780. (10.1002/ece3.2051) PubMed DOI PMC
Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217-223. (10.1111/j.2041-210X.2011.00169.x) DOI
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129-131. (10.1093/bioinformatics/btm538) PubMed DOI
Uyeda JC, Harmon LJ. 2014. A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data. Syst. Biol. 63, 902-918. (10.1093/sysbio/syu057) PubMed DOI
Paradis E, Schwartz R. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526-528. (10.1093/bioinformatics/bty633) PubMed DOI
Pagel M. 1994. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. B 255, 37-45. (10.1098/rspb.1994.0006) DOI
Klaus KV, Matzke NJ. 2020. Statistical comparison of trait-dependent biogeographical models indicates that Podocarpaceae dispersal is influenced by both seed cone traits and geographical distance. Syst. Biol. 69, 61-75. (10.1093/sysbio/syz034) PubMed DOI
Matzke NJ. 2013. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242-248. (10.21425/F55419694) DOI
Holm RJ, Spandler C, Richards SW. 2015. Continental collision, orogenesis and arc magmatism of the Miocene Maramuni arc, Papua New Guinea. Gondwana Res. 28, 1117-1136. (10.1016/j.gr.2014.09.011) DOI
Ree RH, et al. 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst. Biol. 57, 4-14. (10.1080/10635150701883881) PubMed DOI
Ronquist F. 1997. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst. Biol. 46, 195-203. (10.1093/sysbio/46.1.195) DOI
Landis MJ, Matzke NJ, Moore BR, Huelsenbeck JP. 2013. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62, 789-804. (10.1093/sysbio/syt040) PubMed DOI PMC
Scheffrahn RH, Jones SC, Křeček J, Chase JA, Mangold JR, Su NY. 2003. Taxonomy, distribution, and notes on the termites (Isoptera: Kalotermitidae, Rhinotermitidae, Termitidae) of Puerto Rico and the U.S. Virgin Islands. Ann. Entomol. Soc. Am. 96, 181-201. (10.1603/0013-8746(2003)096[0181:TDANOT]2.0.CO;2) DOI
Myles TG. 1999. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33, 1-91.
Chouvenc T, Šobotník J, Engel MS, Bourguignon T. 2021. Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae. Cell. Mol. Life Sci. 78, 2749-2769. (10.1007/s00018-020-03728-z) PubMed DOI PMC
Brauman A, et al. 2000. Soil-feeding termites: biology, microbial associations and digestive mechanisms. In Termites: evolution, sociality, symbioses, ecology (eds Abe T, Bignell DE, Higashi M), pp. 233-259. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Grassé PP. 1984. Termitologia, vol. 2. Fondation des sociétés - construction. Paris, France: Masson.
Arab DA, Namyatova A, Evans TA, Cameron SL, Yeates DK, Ho SYW, Lo N. et al. 2017. Parallel evolution of mound-building and grass-feeding in Australian nasute termites. Biol. Lett. 13, 20160665. (10.1098/rsbl.2016.0665) PubMed DOI PMC
Sands WA. 1972. The soldierless termites of Africa (Isoptera: Termitidae). Bull. Br. Mus. Nat. Hist. Entomol. 18, 1-244. (10.5962/p.192782) DOI
Polly PD. 2001. Paleontology and the comparative method: ancestral node reconstructions versus observed node values. Am. Nat. 157, 596-609. (10.1086/320622) PubMed DOI
Webster AJ, Purvis A. 2002. Testing the accuracy of methods for reconstructing ancestral states of continuous characters. Proc. R. Soc. B 269, 143-149. (10.1098/rspb.2001.1873) PubMed DOI PMC
Joy JB, Liang RH, McCloskey RM, Nguyen T, Poon AFY. 2016. Ancestral reconstruction. PLoS Comput. Biol. 12, e1004763. (10.1371/journal.pcbi.1004763) PubMed DOI PMC
DeNiro MJ, Epstein S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341-351. (10.1016/0016-7037(81)90244-1) DOI
Eggleton P. 2011. An introduction to termites: biology, taxonomy and functional morphology. In Biology of termites: a modern synthesis (eds Bignell DE, Roisin Y, Lo N), pp. 1-26. Dordrecht, The Netherlands: Springer.
Hellemans S, et al. . 2022. Termite dispersal is influenced by their diet. FigShare. (10.6084/m9.figshare.c.5975234) PubMed DOI PMC
Hellemans S, et al. 2022. Data from: Termite dispersal is influenced by their diet. Dryad Digital Repository. (10.5061/dryad.41ns1rngs) PubMed DOI PMC
Termite dispersal is influenced by their diet