Can shifts in metabolic scaling predict coevolution between diet quality and body size?
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33196103
DOI
10.1111/evo.14128
Knihovny.cz E-resources
- Keywords
- Allometry, digestive efficiency, niche evolution, selective regime shift, termites, trophic ecology,
- MeSH
- Biological Evolution * MeSH
- Diet * MeSH
- Isoptera genetics metabolism MeSH
- Mandible MeSH
- Body Size * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Larger species tend to feed on abundant resources, which nonetheless have lower quality or degradability, the so-called Jarman-Bell principle. The "eat more" hypothesis posits that larger animals compensate for lower quality diets through higher consumption rates. If so, evolutionary shifts in metabolic scaling should affect the scope for this compensation, but whether this has happened is unknown. Here, we investigated this issue using termites, major tropical detritivores that feed along a humification gradient ranging from dead plant tissue to mineral soil. Metabolic scaling is shallower in termites with pounding mandibles adapted to soil-like substrates than in termites with grinding mandibles adapted to fibrous plant tissue. Accordingly, we predicted that only larger species of the former group should have more humified, lower quality diets, given their higher scope to compensate for such a diet. Using literature data on 65 termite species, we show that diet humification does increase with body size in termites with pounding mandibles, but is weakly related to size in termites with grinding mandibles. Our findings suggest that evolution of metabolic scaling may shape the strength of the Jarman-Bell principle.
See more in PubMed
Bignell, D. E. 2011. Morphology, physiology, biochemistry and functional design of the termite gut: an evolutionary wonderland. Pp. 375-412 in D. E. Bignell, Y. Roisin, and N. Lo, eds. Biology of termites-a modern synthesis. Springer, London.
Bignell, D. E. 2016. The role of symbionts in the evolution of termites and their rise to ecological dominance in the tropics. Pp. 121-172 in C. J. Hurst, ed. The mechanistic benefits of microbial symbionts. Springer, Berlin.
Bourguignon, T., J. Šobotník, G. Lepoint, J.-M. Martin, O. J. Hardy, A. Dejean, and Y. Roisin. 2011. Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecol. Entomol. 36:261-269.
Bourguignon, T., N. Lo, S. L. Cameron, J. Sobotn, Y. Hayashi, S. Shigenobu, D. Watanabe, Y. Roisin, T. Miura, and T. A. Evans. 2015. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 32:406-421.
Bourguignon, T., R. H. Scheffrahn, Z. T. Nagy, G. Sonet, B. Host, and Y. Roisin. 2016. Towards a revision of the Neotropical soldierless termites (Isoptera: Termitidae): Redescription of the genus Grigiotermes Mathews and description of five new genera. Zool. J. Linn. Soc. 176:15-35.
Bourguignon, T., N. Lo, J. Sobotnik, S. Y. W. Ho, N. Iqbal, E. Coissac, M. Lee, M. M. Jendryka, D. Sillam-Dussès, B. Krizkova, et al. 2017. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol. Biol. Evol. 34:589-597.
Breheny, P., and W. Burchett. 2017. Visualization of regression models using visreg. R J. 9:56-71.
Breznak, J. A. 2000. Ecology of prokaryotic microbes in the guts of wood- and litter-feeding termites. Pp. 209-232 in T. Abe, D. E. Bignell, and M. Higashi, eds. Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Press, Dordrecht.
Brune, A., and C. Dietrich. 2015. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. Annu. Rev. Microbiol. 69:145-166.
Brune, A., and M. Ohkuma. 2011. Role of the termite gut microbiota in symbiotic digestion. Pp. 439-476 in Biology of termites: a modern synthesis. Springer, Berlin.
Bucek, A., J. Šobotník, S. He, M. Shi, D. P. McMahon, E. C. Holmes, Y. Roisin, N. Lo, and T. Bourguignon. 2019. Evolution of termite symbiosis informed by transcriptome-based phylogenies. Curr. Biol. 29:3728-3734.e4.
Cizek, L. 2005. Diet composition and body size in insect herbivores: why do small species prefer young leaves? Eur. J. Entomol. 102:675-681.
Clauss, M., P. Steuer, D. W. H. Müller, D. Codron, and J. Hummel. 2013. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS One 8:e68714.
Cooper, W. E., and L. J. Vitt. 2002. Distribution, extent, and evolution of plant consumption by lizards. J. Zool. 257:487-517.
Dangerfield, J. M., and G. Schuurman. 2000. Foraging by fungus-growing termites (Isoptera: Termitidae, Macrotermitinae) in the Okavango Delta, Botswana. J. Trop. Ecol. 16:717-731.
Demment, M. W., and P. J. Van Soest. 1985. A nutritional explanation for body-size patterns of ruminant and nonruminant herbivores. Am. Nat. 125:641-672.
Donovan, S., P. Eggleton, and D. Bignell. 2001. Gut content analysis and a new feeding group classification of termites. Ecol. Entomol. 26:356-366.
Eggleton, P. 2011. An introduction to termites: biology, taxonomy and functional morphology. Pp. 1-26 in D. E. Bignell, Y. Roisin, and N. Lo, eds. Biology of termites: a modern synthesis. Springer, London.
Eggleton, P., R. G. Davies, and D. E. Bignell. 1998. Body size and energy use in termites (Isoptera): the responses of soil feeders and wood feeders differ in a tropical forest assemblage. Oikos 81:525-530.
Fagan, W. F., E. Siemann, C. Mitter, R. F. Denno, A. F. Huberty, H. A. Woods, and J. J. Elser. 2002. Nitrogen in insects: implications for trophic complexity and species diversification. Am. Nat. 160:784-802.
Geist, V. 1974. On the relationship of social evolution and ecology in ungulates. Integr. Comp. Biol. 14:205-220.
Glazier, D. 2018. Rediscovering and reviving old observations and explanations of metabolic scaling in living systems. Systems 6:4.
Grömping, U. 2015. Variable importance in regression models. Wiley Interdiscip. Rev. Comput. Stat. 7:137-152.
Hackmann, T. J., and J. N. Spain. 2010. Ruminant ecology and evolution: perspectives useful to ruminant livestock research and production. J. Dairy Sci. 93:1320-1334.
Harrison, J. F. 2017. Do performance-safety tradeoffs cause hypometric metabolic scaling in animals? Trends Ecol. Evol. 32:653-664.
Hu, J., K. B. Neoh, A. G. Appel, and C. Y. Lee. 2012. Subterranean termite open-air foraging and tolerance to desiccation: comparative water relation of two sympatric Macrotermes spp. (Blattodea: Termitidae). Comp. Biochem. Physiol. 161:201-207.
Hyodo, F. 2015. Use of stable carbon and nitrogen isotopes in insect trophic ecology. Entomol. Sci. 18:295-312.
Hyodo, F., I. Tayasu, S. Konaté, J. E. Tondoh, P. Lavelle, and E. Wada. 2008. Gradual enrichment of 15N with humification of diets in a below-ground food web: relationship between 15N and diet age determined using 14C. Funct. Ecol. 22:516-522.
Inward, D. J. G., A. P. Vogler, and P. Eggleton. 2007. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Evol. 44:953-967.
Janzow, M. P., and T. M. Judd. 2015. The termite reticulitermes flavipes (Rhinotermitidae: Isoptera) can acquire micronutrients from soil. Environ. Entomol. 44:814-820.
Karasov, W. H., C. M. del Rio, and E. Caviedes-Vidal. 2011. Ecological physiology of diet and digestive systems. Annu. Rev. Physiol. 73:69-93.
Krishna, K., D. A. Grimaldi, and V. Krishna. 2013. Treatise on the Isoptera of the world: 1. Introduction. Bull. Am. Museum Nat. Hist. 371:1-200.
Liao, Y., H. Chen, S. Lu, Y. Xie, and D. Zhang. 2018. The complete mitochondrial genome of drywood termite, Incisitermes minor (Isoptera: Kalotermitidae). Mitochondr. DNA Part B 3:324-325.
Lo, N., G. Tokuda, H. Watanabe, H. Rose, M. Slaytor, K. Maekawa, C. Bandi, and H. Noda. 2000. Evidence from multiple gene seqeunces indicates that termites evolved from wood-feeding cockroaches. Curr. Biol. 10:801-804.
Maino, J. L., and M. R. Kearney. 2014. Ontogenetic and interspecific metabolic scaling in insects. Am. Nat. 184:695-701.
Maino, J. L., and M. R. Kearney 2015. Ontogenetic and interspecific scaling of consumption in insects. Oikos 124:1564-1570.
Martinson, H. M., K. Schneider, J. Gilbert, J. E. Hines, P. a. Hambäck, and W. F. Fagan. 2008. Detritivory: stoichiometry of a neglected trophic level. Ecol. Res. 23:487-491.
Meuti, M. E., S. C. Jones, and P. S. Curtis. 2010. 15N discrimination and the sensitivity of nitrogen fixation to changes in dietary nitrogen in Reticulitermes flavipes (Isoptera: Rhinotermitidae). Environ. Entomol. 39:1810-1815.
Miltner, A., P. Bombach, B. Schmidt-Brücken, and M. Kästner. 2012. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111:41-55.
Molina-Venegas, R., and M. Rodríguez. 2017. Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evol. Biol. 17:1-10.
Müller, D. W. H., D. Codron, C. Meloro, A. Munn, A. Schwarm, J. Hummel, and M. Clauss. 2013. Assessing the Jarman-Bell Principle: scaling of intake, digestibility, retention time and gut fill with body mass in mammalian herbivores. Comp. Biochem. Physiol. 164:129-140.
Nalepa, C. A. 2011. Body size and termite evolution. Evol. Biol. 38:243-257.
Olsen, A. M. 2015. Exceptional avian herbivores: multiple transitions toward herbivory in the bird order Anseriformes and its correlation with body mass. Ecol. Evol. 5:5016-5032.
Orme, D., R. Freckleton, G. Thomas, T. Petzoldt, S. Fritz, N. Isaac, and W. Pearse. 2013. caper: comparative analyses of phylogenetics and evolution in R. R. Meth. Ecol. Evol. 3:145-151.
Paradis, E., J. Claude, and K. Strimmer. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289-290.
Pawar, S., A. I. Dell, and V. M. Savage. 2012. Dimensionality of consumer search space drives trophic interaction strengths. Nature 486:485-489.
Pawar, S., A. I. Dell, T. Lin, D. J. Wieczynski, and V. M. Savage. 2019. Interaction dimensionality scales up to generate bimodal consumer-resource size-ratio distributions in ecological communities. Front. Ecol. Evol 7:1-11.
Pequeno, P. A. C. L., F. B. Baccaro, J. L. P. Souza, and E. Franklin. 2017. Ecology shapes metabolic and life history scalings in termites. Ecol. Entomol. 42:115-124.
Pequeno, P. A. C. L., M. B. Graça, J. R. Oliveira, J. Šobotník, and A. N. S. Acioli. 2020. Comparative data on termite diet humification. figshare. Dataset. https://doi.org/10.6084/m9.figshare.6952967.v1
Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R. C. Team. 2020. nlme: linear and nonlinear mixed effects models. R package version 3.1-150. Available at https://CRAN.R-project.org/package=nlme.
Potapov, A. M., A. V. Tiunov, and S. Scheu. 2019a. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. 94:37-59.
Potapov, A. M., U. Brose, S. Scheu, and A. V. Tiunov. 2019b. Trophic position of consumers and size structure of food webs across aquatic and terrestrial ecosystems. Am. Nat. 194:823-839.
Price, S. A., and S. S. B. Hopkins. 2015. The macroevolutionary relationship between diet and body mass across mammals. Biol. J. Linn. Soc. 115:173-184.
Rohatgi, A. 2018. WebPlotDigitizer. Austin, TX. Available at http://arohatgi.info/WebPlotDigitizer.
Roisin, Y., and J. Korb. 2011. Social organisation and the status of workers in termites. Pp. 133-164 in D. E. Bignell, Y. Roisin, and N. Lo, eds. Biology of termites: a modern synthesis. Springer, Dordrecht.
Slaytor, M., P. C. Veivers, and N. Lo. 1997. Aerobic and anaerobic metabolism in the higher termite Nasutitermes walkeri (Hill). Insect Biochem. Mol. Biol. 27:291-303.
Steuer, P., K. H. Südekum, T. Tütken, D. W. H. Müller, J. Kaandorp, M. Bucher, M. Clauss, and J. Hummel. 2014. Does body mass convey a digestive advantage for large herbivores? Funct. Ecol. 28:1127-1134.
R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
Tan, H., A. G. Hirst, D. S. Glazier, and D. Atkinson. 2019. Ecological pressures and the contrasting scaling of metabolism and body shape in coexisting taxa: cephalopods versus teleost fish. Phil. Trans. R. Soc. B 374:20180543.
Villamarín, F., T. D. Jardine, S. E. Bunn, B. Marioni, and W. E. Magnusson. 2018. Body size is more important than diet in determining stable-isotope estimates of trophic position in crocodilians. Sci. Rep. 8:1-11.
Walsh, C., and R. MacNally. 2013. hier.part: hierarchical partitioning. Available at https://CRAN.R-project.org/package=hier.part.
Webb, C., D. Ackerly, and S. Kembel. 2008. Phylocom: software for the analysis of phylogenetic community structure and character evolution. Bioinformatics 24:32098-32100.
White, C. R., D. J. Marshall, L. A. Alton, P. A. Arnold, J. E. Beaman, C. L. Bywater, C. Condon, T. S. Crispin, A. Janetzki, E. Pirtle, et al. 2019. The origin and maintenance of metabolic allometry in animals. Nat. Ecol. Evol. 3:598-603.
Yang, Y., and A. Joern. 1994a. Gut size changes in relation to variable food quality and body size in grasshoppers. Funct. Ecol. 8:36.
Yang, Y., and A. Joern. 1994b. Influence of diet quality, developmental stage, and temperature on food residence time in the grasshopper Melanoplus differentialis. Physiol. Zool. 67:598-616.
Termite dispersal is influenced by their diet
figshare
10.6084/m9.figshare.6952967.v1