Complete mitochondrial genomes from transcriptomes: assessing pros and cons of data mining for assembling new mitogenomes
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, validační studie
PubMed
31616005
PubMed Central
PMC6794255
DOI
10.1038/s41598-019-51313-7
PII: 10.1038/s41598-019-51313-7
Knihovny.cz E-zdroje
- MeSH
- anotace sekvence metody MeSH
- data mining metody MeSH
- fylogeneze MeSH
- genom mitochondriální * MeSH
- Isoptera genetika MeSH
- reprodukovatelnost výsledků MeSH
- sekvence nukleotidů genetika MeSH
- sekvenční analýza DNA MeSH
- sekvenování transkriptomu MeSH
- transkriptom genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
Thousands of eukaryotes transcriptomes have been generated, mainly to investigate nuclear genes expression, and the amount of available data is constantly increasing. A neglected but promising use of this large amount of data is to assemble organelle genomes. To assess the reliability of this approach, we attempted to reconstruct complete mitochondrial genomes from RNA-Seq experiments of Reticulitermes termite species, for which transcriptomes and conspecific mitogenomes are available. We successfully assembled complete molecules, although a few gaps corresponding to tRNAs had to be filled manually. We also reconstructed, for the first time, the mitogenome of Reticulitermes banyulensis. The accuracy and completeness of mitogenomes reconstruction appeared independent from transcriptome size, read length and sequencing design (single/paired end), and using reference genomes from congeneric or intra-familial taxa did not significantly affect the assembly. Transcriptome-derived mitogenomes were found highly similar to the conspecific ones obtained from genome sequencing (nucleotide divergence ranging from 0% to 3.5%) and yielded a congruent phylogenetic tree. Reads from contaminants and nuclear transcripts, although slowing down the process, did not result in chimeric sequence reconstruction. We suggest that the described approach has the potential to increase the number of available mitogenomes by exploiting the rapidly increasing number of transcriptomes.
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
School of Animal Biology University of Western Australia Perth WA 6009 Australia
Zobrazit více v PubMed
Cameron SL. Insect mitochondrial genomics: implications for evolution and phylogeny. Ann. Rev. Entomol. 2014;59:95–117. doi: 10.1146/annurev-ento-011613-162007. PubMed DOI
Song N, Li H, Song F, Cai W. Molecular phylogeny of Polyneoptera (Insecta) inferred from expanded mitogenomic data. Sci. Rep. 2016;6:36175. doi: 10.1038/srep36175. PubMed DOI PMC
Bourguignon T, et al. The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol. Biol. Evol. 2015;32:406–421. doi: 10.1093/molbev/msu308. PubMed DOI
Ometto L, et al. Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biol. Evol. 2013;5:745–757. doi: 10.1093/gbe/evt034. PubMed DOI PMC
Bourguignon T, et al. Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Mol. Biol. Evol. 2017;34:589–597. PubMed
Ma C, et al. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Mol. Ecol. 2012;21:4344–4358. doi: 10.1111/j.1365-294X.2012.05684.x. PubMed DOI
Mikheyev AS, et al. Museum genomics confirms that the Lord Howe Island stick insect survived extinction. Curr. Biol. 2017;27:3157–3161. doi: 10.1016/j.cub.2017.08.058. PubMed DOI
Cameron SL. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research. Syst. Entomol. 2014;39:400–411. doi: 10.1111/syen.12071. DOI
Sullivan KAM, Platt RN, II, Bradley RD, Ray DA. Whole mitochondrial genomes provide increased resolution and indicate paraphyly in deer mice. BMC Zool. 2017;2:11. doi: 10.1186/s40850-017-0020-3. DOI
Smith DR. RNA-Seq data: a goldmine for organelle research. Brief. Funct. Genomics. 2013;12:454–456. doi: 10.1093/bfgp/els066. PubMed DOI
Smith DR. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs? Brief. Funct. Genomics. 2016;15:47–54. PubMed PMC
Sanitá Lima M, Smith DR. Pervasive transcription of mitochondrial, plastid, and nucleomorph genomes across diverse plastid-bearing species. Genome Biol. Evol. 2017;9:2650–2657. doi: 10.1093/gbe/evx207. PubMed DOI PMC
Williams ST, et al. Curius bivalves: systematic utility and unusual properties of anomalodesmatan mitochondrial genomes. Mol. Phylogenet. Evol. 2017;110:60–72. doi: 10.1016/j.ympev.2017.03.004. PubMed DOI
Wang HL, et al. The characteristics and expression profiles of the mitochondrial genome for the Mediterranean species of the Bemisia tabaci complex. BMC Genomics. 2013;14:401. doi: 10.1186/1471-2164-14-401. PubMed DOI PMC
Tian Y, Smith DR. Recovering complete mitochondrial genome sequences from RNA-Seq: A case study of Polytomella non-photosynthetic green algae. Mol. Phylogenet. Evol. 2016;98:57–62. doi: 10.1016/j.ympev.2016.01.017. PubMed DOI
Moreira DA, Furtado C, Parente TE. The use of transcriptomic next-generation sequencing data to assembly mitochondrial genomes of Ancistrus spp. (Loricariidae) Gene. 2015;573(1):171–175. doi: 10.1016/j.gene.2015.08.059. PubMed DOI
Song N, An S, Yin X, Cai W, Li H. Application of RNA-seq for mitogenome reconstruction, and reconsideration of long-branch artifacts in Hemiptera phylogeny. Sci. Rep. 2016;6:33465. doi: 10.1038/srep33465. PubMed DOI PMC
Bourguignon T, et al. Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proc. R. Soc. B. 2016;283:20160179. doi: 10.1098/rspb.2016.0179. PubMed DOI PMC
Dedeine F, et al. Historical biogeography of Reticulitermes termites (Isoptera: Rhinotermitidae) inferred from analyses of mitochondrial and nuclear loci. Mol. Phylogenet. Evol. 2016;94:778–790. doi: 10.1016/j.ympev.2015.10.020. PubMed DOI
Perera PO, Walsh TK, Luttrell LG. Complete mitochondrial genome of Helicoverpa zea (Lepidoptera: Noctuidae) and expression profiles of mitochondrial-encoded genes in early and late embryos. J. Insect Sci. 2016;16:1–10. doi: 10.1093/jisesa/iew023. PubMed DOI PMC
Sun Y, Kurisaki M, Hashiguchi Y, Kumazawa Y. Variation and evolution of polyadenylation profiles in sauropsid mitochondrial mRNAs as deduced from the high-throughput RNA sequencing. BMC Genomics. 2017;18:665. doi: 10.1186/s12864-017-4080-0. PubMed DOI PMC
Ghiselli F, et al. The complete mitochondrial genome of the grooved carpet shell, Ruditapes decussatus (Bivalvia, Veneridae) PeerJ. 2017;5:e3692. doi: 10.7717/peerj.3692. PubMed DOI PMC
Konrad A, et al. Mitochondrial mutation rate, spectrum and heteroplasmy in Caenorhabditis elegans spontaneous mutation accumulation lines of differing population size. Mol. Biol. Evol. 2017;34:1319–1334. PubMed PMC
Timbó RV, Togawa RC, Costa MMC, Andow AD, Paula DP. Mitogenome sequence accuracy using different elucidation methods. PLoS One. 2017;12:e0179971. doi: 10.1371/journal.pone.0179971. PubMed DOI PMC
Mercer TR, et al. The human mitochondrial transcriptome. Cell. 2011;146(4):645–658. doi: 10.1016/j.cell.2011.06.051. PubMed DOI PMC
Boore JL, Brown WM. Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr. Biol. 1998;8:668–674. PubMed
Cameron SL, Lo N, Bourguignon T, Svenson GJ, Evans TA. A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades. Mol. Phylogenet. Evol. 2012;65:163–173. doi: 10.1016/j.ympev.2012.05.034. PubMed DOI
Zhang D, et al. Mitochondrial architecture rearrangements produce asymmetrical nonadaptive mutational pressures that subvert the phylogenetic reconstruction in Isopoda. Genome Biol. Evol. 2019;11:1797–1812. doi: 10.1093/gbe/evz121. PubMed DOI PMC
Romiguier J, et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature. 2014;515:261–263. doi: 10.1038/nature13685. PubMed DOI
Mitaka Y, Kobayashi K, Matsuura K. Caste-, sex-, and age-dependent expression of immune-related genes in a Japanese subterranean termite, Reticulitermes speratus. PLoS One. 2017;12:e0175417–22. doi: 10.1371/journal.pone.0175417. PubMed DOI PMC
Sanitá Lima M, Woods LC, Cartwright MW, Smith DR. The (in)complete organelle genome: exploring the use and nonuse of available technologies for characterizing mitochondrial and plastid chromosomes. Mol. Ecol. Res. 2016;16:1279–1286. doi: 10.1111/1755-0998.12585. PubMed DOI
Castandet B, Hotto AM, Strickler SR, Stern DB. ChloroSeq, an optimized chloroplast RNA-Seq bioinformatic pipeline, reveals remodeling of the organellar transcriptome under heat stress. G3-Genes Genom Genet. G3-GENES GENOM. GENET. 2016;6:2817–2827. PubMed PMC
Andrews, S. Fast QC, A Quality Control tool for High Throughput Sequence Data. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, last accessed January 2019 (2014).
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Haas BJ, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013;8:1494–1512. doi: 10.1038/nprot.2013.084. PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30:3276–3278. doi: 10.1093/bioinformatics/btu531. PubMed DOI PMC
Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res. 1999;9:868–877. doi: 10.1101/gr.9.9.868. PubMed DOI PMC
Katoh K, Kuma KI, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33(2):511–518. doi: 10.1093/nar/gki198. PubMed DOI PMC
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–2993. doi: 10.1093/bioinformatics/btr509. PubMed DOI PMC
Bernt M, et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet. Evol. 2013;69:313–319. doi: 10.1016/j.ympev.2012.08.023. PubMed DOI
Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 November 2010. New Orleans, LA. pp 1–8 (2010).
Kalyaanamoorthy S, et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Nguyen L-T, Schmidt HA, Haeseler, von A, Minh BQ. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol Biol Evol. 2014;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Ronquist F, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
figshare
10.6084/m9.figshare.7181969