Mycophagy: A Global Review of Interactions between Invertebrates and Fungi
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
B.A.E.F. Graduate study Fellowship for the academic year 2021-2022 (to B.S.)
Belgian American Educational Foundation
PubMed
36836278
PubMed Central
PMC9968043
DOI
10.3390/jof9020163
PII: jof9020163
Knihovny.cz E-zdroje
- Klíčová slova
- biological control, fungal cultivation, fungivory, grazing, invertebrate ecology, literature data, microhabitats, secondary metabolites, spore dispersal,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Fungi are diverse organisms that occupy important niches in natural settings and agricultural settings, acting as decomposers, mutualists, and parasites and pathogens. Interactions between fungi and other organisms, specifically invertebrates, are understudied. Their numbers are also severely underestimated. Invertebrates exist in many of the same spaces as fungi and are known to engage in fungal feeding or mycophagy. This review aims to provide a comprehensive, global view of mycophagy in invertebrates to bring attention to areas that need more research, by prospecting the existing literature. Separate searches on the Web of Science were performed using the terms "mycophagy" and "fungivore". Invertebrate species and corresponding fungal species were extracted from the articles retrieved, whether the research was field- or laboratory-based, and the location of the observation if field-based. Articles were excluded if they did not list at least a genus identification for both the fungi and invertebrates. The search yielded 209 papers covering seven fungal phyla and 19 invertebrate orders. Ascomycota and Basidiomycota are the most represented fungal phyla whereas Coleoptera and Diptera make up most of the invertebrate observations. Most field-based observations originated from North America and Europe. Research on invertebrate mycophagy is lacking in some important fungal phyla, invertebrate orders, and geographic regions.
Centro de Investigaciones Micológicas Universidad Autónoma de Chiriquí David 0427 Panama
Faculty of Science University of South Bohemia Branišovská 31 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Leveau J.H.J., Preston G.M. Bacterial Mycophagy: Definition and Diagnosis of a Unique Bacterial–Fungal Interaction. New Phytol. 2008;177:859–876. doi: 10.1111/j.1469-8137.2007.02325.x. PubMed DOI
Elliott T.F., Truong C., Jackson S.M., Zúñiga C.L., Trappe J.M., Vernes K. Mammalian Mycophagy: A Global Review of Ecosystem Interactions Between Mammals and Fungi. Fungal Syst. Evol. 2022;9:99–159. doi: 10.3114/fuse.2022.09.07. PubMed DOI PMC
Elliott T. Reptilian Mycophagy: A Global Review of Mutually Beneficial Associations between Reptiles and Macrofungi. Mycosphere. 2019;10:776–797. doi: 10.5943/mycosphere/10/1/18. DOI
Elliott T.F., Jusino M.A., Trappe J.M., Lepp H., Ballard G.-A., Bruhl J.J., Vernes K. A Global Review of the Ecological Significance of Symbiotic Associations between Birds and Fungi. Fungal Divers. 2019;98:161–194. doi: 10.1007/s13225-019-00436-3. DOI
Biedermann P.H.W., Vega F.E. Ecology and Evolution of Insect–Fungus Mutualisms. Annu. Rev. Entomol. 2020;65:431–455. doi: 10.1146/annurev-ento-011019-024910. PubMed DOI
Macias A.M., Marek P.E., Morrissey E.M., Brewer M.S., Short D.P.G., Stauder C.M., Wickert K.L., Berger M.C., Metheny A.M., Stajich J.E., et al. Diversity and Function of Fungi Associated with the Fungivorous Millipede, Brachycybe lecontii. Fungal Ecol. 2019;41:187–197. doi: 10.1016/j.funeco.2019.06.006. PubMed DOI PMC
Hernández-Santiago F., Díaz-Aguilar I., Pérez-Moreno J., Tovar-Salinas J.L. Mushrooms, Humans and Nature in a Changing World. Springer International Publishing; Cham, Switzerland: 2020. Interactions Between Soil Mesofauna and Edible Ectomycorrhizal Mushrooms; pp. 367–405.
Heath R.N., Wingfield M.J., Van Wyk M., Roux J. Insect Associates of Ceratocystis albifundus and Patterns of Association in a Native Savanna Ecosystem in South Africa. Environ. Entomol. 2009;38:356–364. doi: 10.1603/022.038.0207. PubMed DOI
Wingfield M.J., Barnes I., de Beer Z.W., Roux J., Wingfield B.D., Taerum S.J. Novel Associations between Ophiostomatoid Fungi, Insects and Tree Hosts: Current Status—Future Prospects. Biol. Invasions. 2017;19:3215–3228. doi: 10.1007/s10530-017-1468-3. DOI
Hubert J., Stejskal V., Kubátová A., Munzbergová Z., Váňová M., Žd’árková E. Mites as Selective Fungal Carriers in Stored Grain Habitats. Exp. Appl. Acarol. 2003;29:69–87. doi: 10.1023/A:1024271107703. PubMed DOI
Gracia-Garza J.A., Reeleder R.D., Paulitz T.C. Degradation of Sclerotia of Sclerotinia sclerotiorum by Fungus Gnats (Bradysia coprophila) and the Biocontrol Fungi Trichoderma Spp. Soil Biol. Biochem. 1997;29:123–129. doi: 10.1016/S0038-0717(96)00299-4. DOI
English-Loeb G., Norton A.P., Gadoury D.M., Seem R.C., Wilcox W.F. Control of Powdery Mildew in Wild and Cultivated Grapes by a Tydeid Mite. Biol. Control. 1999;14:97–103. doi: 10.1006/bcon.1998.0681. DOI
Hamby K.A., Hernández A., Boundy-Mills K., Zalom F.G. Associations of Yeasts with Spotted-Wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in Cherries and Raspberries. Appl. Environ. Microbiol. 2012;78:4869–4873. doi: 10.1128/AEM.00841-12. PubMed DOI PMC
Shaw P.J.A. The Fungal Community: Its Organization and Role in the Ecosystem. Marcel Dekker Inc.; New City, NY, USA: 1992. Fungi, Fungivores, and Fungal Food Webs; pp. 295–310.
Fogel R. Insect Mycophagy: A Preliminary Bibliography. U.S. Department of Agriculture; Washington, DC, USA: 1975.
Wheeler Q.D., Blackwell M. Fungus-Insect Relationships: Perspectives in Ecology and Evolution. Columbia University Press; New York, NY, USA: 1984.
Bruns T.D. Fungus-Insect Relationships: Perspectives in Ecology and Evolution. Columbia University Press; New York, NY, USA: 1984. Insect Mycophagy in the Boletales: Fungivore Diversity and the Mushroom Habitat; pp. 91–129.
Lacy R.C. Fungus-Insect Relationships: Perspectives in Ecology and Evolution. Columbia University Press; New York, NY, USA: 1984. Mycophagy in Drosophilidae (Diptera) pp. 286–301.
Newton Jr. A. Fungus-Insect Relationships: Perspectives in Ecology and Evolution. Columbia University Press; New York, NY, USA: 1984. F. Mycophagy in the Staphylinoidea; pp. 302–353.
Rawlins D.E. Fungus-Insect Relationships. Columbia University Press; New York, NY, USA: 1984. Mycophagy in Lepidoptera; pp. 382–423.
Hanley R.S., Goodrich M.A. Review of Mycophagy, Host Relationships and Behavior in the New World Oxyporinae (Coleoptera: Staphylinidae) Coleopt. Bull. 1995;49:267–280.
Sutherland A.M., Parrella M.P. Mycophagy in Coccinellidae: Review and Synthesis. Biol. Control. 2009;51:284–293. doi: 10.1016/j.biocontrol.2009.05.012. DOI
Schigel D.S. Fungivory and Host Associations of Coleoptera: A Bibliography and Review of Research Approaches. Mycology. 2012;3:258–272. doi: 10.1080/21501203.2012.741078. DOI
Kimura M.T. Drosophila Survey of Hokkaido, XXXII: A Field Survey of Fungus Preferences of Drosophilid Flies in Sapporo (With 1 Text-Figure and 8 Tables) J. Fac. Sci. Hokkaido Univ. VI. 1976;20:288–298.
Krivosheina N.P. Macromycete Fruit Bodies as a Habitat for Dipterans (Insecta, Diptera) Entomol. Rev. 2008;88:778–792. doi: 10.1134/S0013873808070038. DOI
Ševčík J. Czech and Slovak Diptera Associated with Fungi. Slezské Zemské Museum; Opava, Czech Republic: 2010.
Disney R.H.L., Nitta M., Kobayashi M., Tuno N. New Records of Megaselia (Diptera: Phoridae) Reared from Fungus Sporophores in Japan, Including Five New Species. Appl. Entomol. Zool. 2014;49:541–552. doi: 10.1007/s13355-014-0284-9. DOI
Valer F.B., Bernardi E., Mendes M.F., Blauth M.L., Gottschalk M.S. Diversity and Associations between Drosophilidae (Diptera) Species and Basidiomycetes in a Neotropical Forest. An. Acad. Bras. Ciênc. 2016;88:705–718. doi: 10.1590/0001-3765201620150366. PubMed DOI
Jonsell M., Nordlander G., Jonsson M. Colonization Patterns of Insects Breeding in Wood-Decaying Fungi. J. Insect Conserv. 1999;3:145–161. doi: 10.1023/A:1009665513184. DOI
Jonsell M., Nordlander G., Ehnström B. Substrate Associations of Insects Breeding in Fruiting Bodies of Wood-Decaying Fungi. Ecol. Bull. 2001;49:173–194.
Jonsell M., González Alonso C., Forshage M., van Achterberg C., Komonen A. Structure of Insect Community in the Fungus Inonotus radiatus in Riparian Boreal Forests. J. Nat. Hist. 2016;50:1613–1631. doi: 10.1080/00222933.2016.1145273. DOI
Jonsell M., Nordlander G. Insects in Polypore Fungi as Indicator Species: A Comparison between Forest Sites Differing in Amounts and Continuity of Dead Wood. Forest Ecol. Manag. 2002;157:101–118. doi: 10.1016/S0378-1127(00)00662-9. DOI
Jonsell M., Nordlander G. Host Selection Patterns in Insects Breeding in Bracket Fungi. Ecol. Entomol. 2004;29:697–705. doi: 10.1111/j.0307-6946.2004.00654.x. DOI
Jonsson M., Nordlander G. Insect Colonisation of Fruiting Bodies of the Wood-Decaying Fungus Fomitopsis pinicola at Different Distances from an Old-Growth Forest. Biodivers. Conserv. 2006;15:295–309. doi: 10.1007/s10531-005-1536-3. DOI
Volf M., Segar S.T., Miller S.E., Isua B., Sisol M., Aubona G., Šimek P., Moos M., Laitila J., Kim J., et al. Community Structure of Insect Herbivores Is Driven by Conservatism, Escalation and Divergence of Defensive Traits in Ficus. Ecol. Lett. 2018;21:83–92. doi: 10.1111/ele.12875. PubMed DOI
Masters G.J., Brown V.K., Gange A.C. Plant Mediated Interactions between Above- and Below-Ground Insect Herbivores. Oikos. 1993;66:148. doi: 10.2307/3545209. DOI
Moreira X., Abdala-Roberts L., Rasmann S., Castagneyrol B., Mooney K.A. Plant Diversity Effects on Insect Herbivores and Their Natural Enemies: Current Thinking, Recent Findings, and Future Directions. Curr. Opin. Insect Sci. 2016;14:1–7. doi: 10.1016/j.cois.2015.10.003. PubMed DOI
Malloch D., Blackwell M. The Fungal Community: Its Organization and Role in the Ecosystem. CRC press; Boca Raton, FL, USA: 1992. Dispersal of Fungal Diasporas; pp. 147–171.
Kobayashi M., Kitabayashi K., Tuno N. Spore Dissemination by Mycophagous Adult Drosophilids. Ecol. Res. 2017;32:621–626. doi: 10.1007/s11284-017-1477-9. DOI
Kitabayashi K., Tuno N. Soil Burrowing Muscina angustifrons (Diptera: Muscidae) Larvae Excrete Spores Capable of Forming Mycorrhizae Underground. Mycoscience. 2018;59:252–258. doi: 10.1016/j.myc.2018.02.003. DOI
Sánchez-Peña S.R. New View on Origin of Attine Ant–Fungus Mutualism: Exploitation of a Preexisting Insect–Fungus Symbiosis (Hymenoptera: Formicidae) Ann. Entomol. Soc. Am. 2005;98:151–164. doi: 10.1603/0013-8746(2005)098[0151:NVOOOA]2.0.CO;2. DOI
Kirkendall L.R., Biedermann P.H.W., Jordal B.H. Bark Beetles. Elsevier; Amsterdam, The Netherlands: 2015. Evolution and Diversity of Bark and Ambrosia Beetles; pp. 85–156.
Chouvenc T., Šobotník J., Engel M.S., Bourguignon T. Termite Evolution: Mutualistic Associations, Key Innovations, and the Rise of Termitidae. Cell. Mol. Life Sci. 2021;78:2749–2769. doi: 10.1007/s00018-020-03728-z. PubMed DOI PMC
Rohlfs M., Albert M., Keller N.P., Kempken F. Secondary Chemicals Protect Mould from Fungivory. Biol. Lett. 2007;3:523–525. doi: 10.1098/rsbl.2007.0338. PubMed DOI PMC
Böllmann J., Elmer M., Wöllecke J., Raidl S., Hüttl R.F. Defensive Strategies of Soil Fungi to Prevent Grazing by Folsomia candida (Collembola) Pedobiologia. 2010;53:107–114. doi: 10.1016/j.pedobi.2009.06.003. DOI
Caballero Ortiz S., Trienens M., Rohlfs M. Induced Fungal Resistance to Insect Grazing: Reciprocal Fitness Consequences and Fungal Gene Expression in the Drosophila—Aspergillus Model System. PLoS ONE. 2013;8:e74951. doi: 10.1371/journal.pone.0074951. PubMed DOI PMC
Hutchison L.J., Madzia S.E., Barron G.L. The Presence and Antifeedant Function of Toxin-Producing Secretory Cells on Hyphae of the Lawn-Inhabiting Agaric Conocybe lactea. Can. J. Bot. 1996;74:431–434. doi: 10.1139/b96-053. DOI
McGonigle T.P. The Significance of Grazing on Fungi in Nutrient Cycling. Can. J. Bot. 1995;73:1370–1376. doi: 10.1139/b95-399. DOI
Bonkowski M., Cheng W., Griffiths B.S., Alphei J., Scheu S. Microbial-Faunal Interactions in the Rhizosphere and Effects on Plant Growth. Eur. J. Soil Biol. 2000;36:135–147. doi: 10.1016/S1164-5563(00)01059-1. DOI
A’Bear A.D., Jones T.H., Boddy L. Size Matters: What Have We Learnt from Microcosm Studies of Decomposer Fungus–Invertebrate Interactions? Soil Biol. Biochem. 2014;78:274–283. doi: 10.1016/j.soilbio.2014.08.009. DOI
Mueller G.M., Schmit J.P. Fungal Biodiversity: What Do We Know? What Can We Predict? Biodivers. Conserv. 2007;16:1–5. doi: 10.1007/s10531-006-9117-7. DOI
Bhunjun C.S., Niskanen T., Suwannarach N., Wannathes N., Chen Y.-J., McKenzie E.H., Maharachchikumbura S.S., Buyck B., Zhao C.-L., Fan Y.-G. The Numbers of Fungi: Are the Most Speciose Genera Truly Diverse? Fungal Divers. 2022;114:387–462. doi: 10.1007/s13225-022-00501-4. DOI
Cavalier-Smith T. Proceedings of the Evolutionary Biology of the Fungi, British Mycological Society Symposium. Cambridge University Press; Cambridge, UK: 1987. The Origin of Fungi and Pseudofungi; pp. 339–353.
Hanley R.S., Setsuda K. Immature Stages of Oxyporus japonicus Sharp (Coleoptera: Staphylinidae: Oxyporinae), with Notes on Patterns of Host Use. Pan-Pac. Entomol. 1999;75:94–102.
Harrington T.C. Insect-Fungal Associations. Oxford University Press; Oxford, UK: 2005. Ecology and Evolution of Mycophagous Bark Beetles and Their Fungal Partners; pp. 257–291.
Henk D.A., Farr D.F., Aime M.C. Mycodiplosis (Diptera) Infestation of Rust Fungi Is Frequent, Wide Spread and Possibly Host Specific. Fungal Ecol. 2011;4:284–289. doi: 10.1016/j.funeco.2011.03.006. DOI
Leschen R.A.B. Pallodes Austrinus, a New Species of Nitidulidae (Nitidulinae) with Discussions on Pallodes Mycophagy. J. N. Y. Entomol. Soc. 1988;96:452–458.
Index Fungorum Search Index Fungorum. [(accessed on 25 December 2022)]. Available online: http://www.indexfungorum.org/Names/Names.asp.
Global Biodiversity Information Facility GBIF Home Page. [(accessed on 25 December 2022)]. Available online: https://www.gbif.org/
Wickham H. Ggplot2: Elegant Graphics for Data Analysis by Wickham, H. Biometrics. 2011;67:678–679.
Hibbett D.S., Bauer R., Binder M., Giachini A.J., Hosaka K., Justo A., Larsson E., Larsson K.H., Lawrey J.D., Miettinen O., et al. Systematics and Evolution. Springer; Berlin/Heidelberg, Germany: 2014. 14 Agaricomycetes; pp. 373–429.
Økland B. Insect Fauna Compared between Six Polypore Species in a Southern Norwegian Spruce Forest. Fauna Norv. Ser. B. 1995;42:21–26.
Põldmaa K., Jürgenstein S., Bahram M., Teder T., Kurina O. Host Diversity and Trophic Status as Determinants of Species Richness and Community Composition of Fungus Gnats. Basic Appl. Ecol. 2015;16:46–53. doi: 10.1016/j.baae.2014.10.004. DOI
van Klinken R.D., Walter G.H. Larval Hosts of Australian Drosophilidae (Diptera): A Field Survey in Subtropical and Tropical Australia. Aust. J. Entomol. 2001;40:163–179. doi: 10.1046/j.1440-6055.2001.00221.x. DOI
Yamashita S., Hijii N. The Role of Fungal Taxa and Developmental Stage of Mushrooms in Determining the Composition of the Mycophagous Insect Community in a Japanese Forest. Eur. J. Entomol. 2007;104:225–233. doi: 10.14411/eje.2007.035. DOI
Komonen A. Structure of Insect Communities Inhabiting Old-Growth Forest Specialist Bracket Fungi: Insect Communities in Old-Growth Forest Fungi. Ecol. Entomol. 2001;26:63–75. doi: 10.1046/j.1365-2311.2001.00295.x. DOI
Graf-Peters L.V., Lopes-Andrade C., da Silveira R.M.B., de Moura L.A., Reck M.A., de Sá F.N. Host Fungi and Feeding Habits of Ciidae (Coleoptera) in a Subtropical Rainforest in Southern Brazil, with an Overview of Host Fungi of Neotropical Ciids. Fla. Entomol. 2011;94:553–566. doi: 10.1653/024.094.0320. DOI
Guevara R., Rayner A.D.M., Reynolds S.E. Effects of Fungivory by Two Specialist Ciid Beetles (Octotemnus glabriculus and Cis boleti) on the Reproductive Fitness of Their Host Fungus, Coriolus versicolor: Effects of Fungivory on Fungal Fitness. New Phytol. 2000;145:137–144. doi: 10.1046/j.1469-8137.2000.00552.x. DOI
Paviour-Smith K. The Fruiting-Bodies of Macrofungi as Habitats for Beetles of the Family Ciidae (Coleoptera) Oikos. 1960;11:43. doi: 10.2307/3564883. DOI
Graf L.V., Barbieri F., Sperb E., Soares Rivaldo D., de Moura L.A., da Silveira R.M.B., Reck M.A., Nogueira-de-Sá F. Factors Affecting the Structure of Coleoptera Assemblages on Bracket Fungi (Basidiomycota) in a Brazilian Forest. Biotropica. 2018;50:357–365. doi: 10.1111/btp.12520. DOI
Epps M.J., Arnold A.E. Diversity, Abundance and Community Network Structure in Sporocarp-Associated Beetle Communities of the Central Appalachian Mountains. Mycologia. 2010;102:785–802. doi: 10.3852/09-161. PubMed DOI
Carvalho J. Neotropical Miridae, LXXIV: Two New Genera of Cylapinae from Brazil (Hemiptera) Proc. Iowa Acad. Sci. 1954;61:504–510.
Kim J., Lim J., Jung S. A Taxonomic Review of the Fungal-Inhabiting Plant Bugs (Hemiptera: Heteroptera: Miridae: Cylapinae) from the Korean Peninsula. J. Asia-Pac. Biodivers. 2019;12:249–256. doi: 10.1016/j.japb.2019.01.006. DOI
Nuhn M.E. Ph.D. Thesis. Clark University; Worcester, MA, USA: 2016. Molecular Ecology of Boletinellus merulioides and Systematics of the Boletineae.
Worthen W.B. Slugs (Arion Spp.) Facilitate Mycophagous Drosophilids in Laboratory and Field Experiments. Oikos. 1988;53:161. doi: 10.2307/3566058. DOI
Guedegbe H.J., Miambi E., Pando A., Roman J., Houngnandan P., Rouland-Lefevre C. Occurrence of Fungi in Combs of Fungus-Growing Termites (Isoptera: Termitidae, Macrotermitinae) Mycol. Res. 2009;113:1039–1045. doi: 10.1016/j.mycres.2009.06.008. PubMed DOI
Remén C., Fransson P., Persson T. Population Responses of Oribatids and Enchytraeids to Ectomycorrhizal and Saprotrophic Fungi in Plant–Soil Microcosms. Soil Biol. Biochem. 2010;42:978–985. doi: 10.1016/j.soilbio.2010.02.017. DOI
Sulzbacher M.A., Grebenc T., Köhler A., Antoniolli Z.I., Giachini A.J., Baseia I.G. Notes on Mycophagy of Descomyces albus (Basidiomycota) in Southern Brazil. Mycosphere. 2015;6:620–629. doi: 10.5943/mycosphere/6/5/11. DOI
Anslan S., Bahram M., Tedersoo L. Temporal Changes in Fungal Communities Associated with Guts and Appendages of Collembola as Based on Culturing and High-Throughput Sequencing. Soil Biol. Biochem. 2016;96:152–159. doi: 10.1016/j.soilbio.2016.02.006. DOI
Maharachchikumbura S.S.N., Chen Y., Ariyawansa H.A., Hyde K.D., Haelewaters D., Perera R.H., Samarakoon M.C., Wanasinghe D.N., Bustamante D.E., Liu J.-K., et al. Integrative Approaches for Species Delimitation in Ascomycota. Fungal Divers. 2021;109:155–179. doi: 10.1007/s13225-021-00486-6. DOI
Maharachchikumbura S.S.N., Hyde K.D., Jones E.B.G., McKenzie E.H.C., Bhat J.D., Dayarathne M.C., Huang S.-K., Norphanphoun C., Senanayake I.C., Perera R.H., et al. Families of Sordariomycetes. Fungal Divers. 2016;79:1–317. doi: 10.1007/s13225-016-0369-6. DOI
Farrell B.D., Sequeira A.S., O’Meara B.C., Normark B.B., Chung J.H., Jordal B.H. The Evolution of Agriculture in Beetles (Curculionidae: Scolytinae and Platypodinae) Evolution. 2001;55:2011–2027. doi: 10.1111/j.0014-3820.2001.tb01318.x. PubMed DOI
Harrington T.C., Fraedrich S.W. Quantification of Propagules of the Laurel Wilt Fungus and Other Mycangial Fungi from the Redbay Ambrosia Beetle, Xyleborus glabratus. Phytopathology. 2010;100:1118–1123. doi: 10.1094/PHYTO-01-10-0032. PubMed DOI
Ploetz R.C., Hulcr J., Wingfield M.J., de Beer Z.W. Destructive Tree Diseases Associated with Ambrosia and Bark Beetles: Black Swan Events in Tree Pathology? Plant Dis. 2013;97:856–872. doi: 10.1094/PDIS-01-13-0056-FE. PubMed DOI
Moller W.J., DeVay D.E. Insect Transmission of Ceratocystis fimbriata in Deciduous Fruit Orchards. Phytopathology. 1968;58:1499–1508.
Visser S., Whittaker J.B. Feeding Preferences for Certain Litter Fungi by Onychiurus subtenuis (Collembola) Oikos. 1977;29:320. doi: 10.2307/3543621. DOI
Hiol Hiol F., Dixon R.K., Curl E.A. The Feeding Preference of Mycophagous Collembola Varies with the Ectomycorrhizal Symbiont. Mycorrhiza. 1994;5:99–103. doi: 10.1007/BF00202340. DOI
Bonfante P., Venice F. Mucoromycota: Going to the Roots of Plant-Interacting Fungi. Fungal Biol. Rev. 2020;34:100–113. doi: 10.1016/j.fbr.2019.12.003. DOI
Redecker D., Schüßler A. Systematics and Evolution. Springer; Berlin/Heidelberg, Germany: 2014. Glomeromycota; pp. 251–269. DOI
Wijayawardene N.N., Pawłowska J., Letcher P.M., Kirk P.M., Humber R.A., Schüßler A., Wrzosek M., Muszewska A., Okrasińska A., Istel Ł., et al. Notes for Genera: Basal Clades of Fungi (Including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota) Fungal Divers. 2018;92:43–129. doi: 10.1007/s13225-018-0409-5. DOI
Chen Q.-L., Hu H.-W., Zhu D., Zhu Y.-G., He J.-Z. Calling for Comprehensive Explorations between Soil Invertebrates and Arbuscular Mycorrhizas. Trends Plant Sci. 2022;27:793–801. doi: 10.1016/j.tplants.2022.03.005. PubMed DOI
Wallis I.R., Claridge A.W., Trappe J.M. Nitrogen Content, Amino Acid Composition and Digestibility of Fungi from a Nutritional Perspective in Animal Mycophagy. Fungal Biol. 2012;116:590–602. doi: 10.1016/j.funbio.2012.02.007. PubMed DOI
Gessner M.O. Methods to Study Litter Decomposition. Springer International Publishing; Cham, Switzerland: 2020. Ergosterol as a Measure of Fungal Biomass; pp. 247–255. DOI
Jaenike J. Host Selection by Mycophagous Drosophila. Ecology. 1978;59:1286–1288. doi: 10.2307/1938245. DOI
Koukol O., Mourek J., Janovský Z., Černá K. Do Oribatid Mites (Acari: Oribatida) Show a Higher Preference for Ubiquitous vs. Specialized Saprotrophic Fungi from Pine Litter? Soil Biol. Biochem. 2009;41:1124–1131. doi: 10.1016/j.soilbio.2009.02.018. DOI
Heděnec P., Radochová P., Nováková A., Kaneda S., Frouz J. Grazing Preference and Utilization of Soil Fungi by Folsomia candida (Isotomidae: Collembola) Eur. J. Soil Biol. 2013;55:66–70. doi: 10.1016/j.ejsobi.2012.12.005. DOI
Smrž J., Soukalová H., Čatská V., Hubert J. Feeding Patterns of Tyrophagus putrescentiae (Sarcoptiformes: Acaridae) Indicate that Mycophagy is Not a Single and Homogeneous Category of Nutritional Biology. J Insect Sci. 2016;16:94. doi: 10.1093/jisesa/iew070. PubMed DOI PMC
Hanski I. Insect-fungus Interactions. Elsevier; Amsterdam, The Netherlands: 1989. Fungivory: Fungi, Insects and Ecology; pp. 25–68.
Tuno N., Nitta M., Kobayashi M., Kitabayashi K. Diversity and Host Associations of Dipteran Insects Exploiting Fungal Fruiting Bodies in Hokuriku, Central Japan. Entomol. Sci. 2019;22:161–166. doi: 10.1111/ens.12349. DOI
Bärlocher F., Newell S.Y., Arsuffi T.L. Digestion of Spartina alterniflora Loisel Material with and without Fungal Constituents by the Periwinkle Littorina irrorata Say (Mollusca: Gastropoda) J. Exp. Mar. Biol. Ecol. 1989;130:45–53. doi: 10.1016/0022-0981(89)90017-8. DOI
Graça M.A., Newell S.Y., Kneib R.T. Grazing Rates of Organic Matter and Living Fungal Biomass of Decaying Spartina alterniflora by Three Species of Salt-Marsh Invertebrates. Mar. Biol. 2000;136:281–289. doi: 10.1007/s002270050686. DOI
Hågvar S., Steen R. Succession of Beetles (Genus Cis) and Oribatid Mites (Genus Carabodes) in Dead Sporocarps of the Red-Banded Polypore Fungus Fomitopsis pinicola. Scand. J. For. Res. 2013;28:436–444. doi: 10.1080/02827581.2012.755562. DOI
Yamashita S., Ando K., Hoshina H., Ito N., Katayama Y., Kawanabe M., Maruyama M., Itioka T. Food Web Structure of the Fungivorous Insect Community on Bracket Fungi in a Bornean Tropical Rain Forest: Bornean Fungivorous Insect Food Webs. Ecol. Entomol. 2015;40:390–400. doi: 10.1111/een.12200. DOI
Koskinen J., Roslin T., Nyman T., Abrego N., Michell C., Vesterinen E.J. Finding Flies in the Mushroom Soup: Host Specificity of Fungus-associated Communities Revisited with a Novel Molecular Method. Mol. Ecol. 2019;28:190–202. doi: 10.1111/mec.14810. PubMed DOI
Lunde L.F., Birkemoe T., Kauserud H., Boddy L., Jacobsen R.M., Morgado L., Sverdrup-Thygeson A., Maurice S. DNA Metabarcoding Reveals Host-Specific Communities of Arthropods Residing in Fungal Fruit Bodies. Proc. R. Soc. B. 2022;289:20212622. doi: 10.1098/rspb.2021.2622. PubMed DOI PMC
Alberdi A., Aizpurua O., Bohmann K., Gopalakrishnan S., Lynggaard C., Nielsen M., Gilbert M.T.P. Promises and Pitfalls of Using High-throughput Sequencing for Diet Analysis. Mol. Ecol. Resour. 2019;19:327–348. doi: 10.1111/1755-0998.12960. PubMed DOI
Koskinen J.S., Abrego N., Vesterinen E.J., Schulz T., Roslin T., Nyman T. Imprints of Latitude, Host Taxon, and Decay Stage on Fungus-associated Arthropod Communities. Ecol. Monogr. 2022;92:e1516. doi: 10.1002/ecm.1516. DOI
Roslin T., Traugott M., Jonsson M., Stone G.N., Creer S., Symondson W.O.C. Introduction: Special Issue on Species Interactions, Ecological Networks and Community Dynamics—Untangling the Entangled Bank Using Molecular Techniques. Mol. Ecol. 2019;28:157–164. doi: 10.1111/mec.14974. PubMed DOI
Ma Y., Gao W., Zhang F., Zhu X., Kong W., Niu S., Gao K., Yang H. Community Composition and Trophic Mode Diversity of Fungi Associated with Fruiting Body of Medicinal Sanghuangporus vaninii. BMC Microbiol. 2022;22:251. doi: 10.1186/s12866-022-02663-2. PubMed DOI PMC
Hulcr J., Stelinski L.L. The Ambrosia Symbiosis: From Evolutionary Ecology to Practical Management. Annu. Rev. Entomol. 2017;62:285–303. doi: 10.1146/annurev-ento-031616-035105. PubMed DOI
Aanen D.K., Boomsma J.J. Insect-Fungal Associations: Ecology and Evolution. Oxford University Press; Oxford, UK: 2005. Evolutionary Dynamics of the Mutualistic Symbiosis between Fungus-Growing Termites and Termitomyces Fungi; pp. 191–210.
Mueller U.G., Rehner S.A., Schultz T.R. The Evolution of Agriculture in Ants. Science. 1998;281:2034–2038. doi: 10.1126/science.281.5385.2034. PubMed DOI
Aanen D.K., Boomsma J.J. Insect Symbiosis. Volume 2. CRC Press; Boca Raton, FL, USA: 2006. The Evolutionary Origin and Maintenance of the Mutualistic Symbiosis between Termites and Fungi; pp. 101–118. DOI
Mueller U.G., Schultz T.R., Currie C.R., Malloch D. The Origin of the Attine Ant-Fungus Mutualism. Q. Rev. Biol. 2001;76:169–197. doi: 10.1086/393867. PubMed DOI
Mueller U.G., Kardish M.R., Ishak H.D., Wright A.M., Solomon S.E., Bruschi S.M., Carlson A.L., Bacci M. Phylogenetic Patterns of Ant–Fungus Associations Indicate That Farming Strategies, Not Only a Superior Fungal Cultivar, Explain the Ecological Success of Leafcutter Ants. Mol. Ecol. 2018;27:2414–2434. doi: 10.1111/mec.14588. PubMed DOI
Aanen D.K. As You Reap, so Shall You Sow: Coupling of Harvesting and Inoculating Stabilizes the Mutualism between Termites and Fungi. Biol. Lett. 2006;2:209–212. doi: 10.1098/rsbl.2005.0424. PubMed DOI PMC
Dighton J., White J.F. The Fungal Community. CRC Press; Boca Raton, FL, USA: 2017. DOI
Harris K.K., Boerner R.E.J. Effects of Belowground Grazing by Collembola on Growth, Mycorrhizal Infection, and P Uptake of Geranium Robertianum. Plant Soil. 1990;129:203–210. doi: 10.1007/BF00032414. DOI
Johnson S.N., Douglas A.E., Woodward S., Hartley S.E. Microbial Impacts on Plant-Herbivore Interactions: The Indirect Effects of a Birch Pathogen on a Birch Aphid. Oecologia. 2003;134:388–396. doi: 10.1007/s00442-002-1139-6. PubMed DOI
Johnson D., Krsek M., Wellington E.M.H., Stott A.W., Cole L., Bardgett R.D., Read D.J., Leake J.R. Soil Invertebrates Disrupt Carbon Flow Through Fungal Networks. Science. 2005;309:1047. doi: 10.1126/science.1114769. PubMed DOI
Biere A., Bennett A.E. Three-way Interactions between Plants, Microbes and Insects. Funct. Ecol. 2013;27:567–573. doi: 10.1111/1365-2435.12100. DOI
Lilleskov E.A., Bruns T.D. Spore Dispersal of a Resupinate Ectomycorrhizal Fungus, Tomentella sublilacina, via Soil Food Webs. Mycologia. 2005;97:762–769. doi: 10.1080/15572536.2006.11832767. PubMed DOI
Vašutová M., Mleczko P., López-García A., Maček I., Boros G., Ševčík J., Fujii S., Hackenberger D., Tuf I.H., Hornung E., et al. Taxi Drivers: The Role of Animals in Transporting Mycorrhizal Fungi. Mycorrhiza. 2019;29:413–434. doi: 10.1007/s00572-019-00906-1. PubMed DOI
Fogel R., Peck S.B. Ecological Studies of Hypogeous Fungi. I. Coleoptera Associated with Sporocarps. Mycologia. 1975;67:741–747. doi: 10.1080/00275514.1975.12019804. PubMed DOI
Ori F., Menotta M., Leonardi M., Amicucci A., Zambonelli A., Covès H., Selosse M.-A., Schneider-Maunoury L., Pacioni G., Iotti M. Effect of Slug Mycophagy on Tuber aestivum Spores. Fungal Biol. 2021;125:796–805. doi: 10.1016/j.funbio.2021.05.002. PubMed DOI
Kitabayashi K., Kitamura S., Tuno N. Fungal Spore Transport by Omnivorous Mycophagous Slug in Temperate Forest. Ecol. Evol. 2022;12:e8565. doi: 10.1002/ece3.8565. PubMed DOI PMC
Thomas P.W., Thomas H.W. Mycorrhizal Fungi and Invertebrates: Impacts on Tuber melanosporum Ascospore Dispersal and Lifecycle by Isopod Mycophagy. Food Webs. 2022;33:e00260. doi: 10.1016/j.fooweb.2022.e00260. DOI
Koch R.A., Aime M.C. Population Structure of Guyanagaster necrorhizus Supports Termite Dispersal for This Enigmatic Fungus. Mol. Ecol. 2018;27:2667–2679. doi: 10.1111/mec.14710. PubMed DOI
Love D.E. The Activities of Various Diptera at the Stinkhorn Phallus impudicus Pers. Ir. Nat. J. 1976;18:301–303.
James R.L., Dumroese R.K., Wenny D.L. Botrytis cinerea Carried by Adult Fungus Gnats (Diptera: Sciaridae) in Container Nurseries. Tree Plant. Notes. 1995;46:48–53.
Okada H., Sueyoshi M., Suetsugu K. Consumption of the Ectomycorrhizal Fungi Rhizopogon roseolus and R. luteolus by Chamaesyrphus japonicus (Diptera: Syrphidae) Entomol. Sci. 2021;24:123–126. doi: 10.1111/ens.12460. DOI
Mazin M., Harvey R., Andreadis S., Pecchia J., Cloonan K., Rajotte E.G. Mushroom Sciarid Fly, Lycoriella ingenua (Diptera: Sciaridae) Adults and Larvae Vector Mushroom Green Mold (Trichoderma aggressivum Ft. aggressivum) Spores. Appl. Entomol. Zool. 2019;54:369–376. doi: 10.1007/s13355-019-00632-2. DOI
Claridge A.W., May T.W. Mycophagy among Australian Mammals. Austral. Ecol. 1994;19:251–275. doi: 10.1111/j.1442-9993.1994.tb00489.x. DOI
Ashkannejhad S., Horton T.R. Ectomycorrhizal Ecology under Primary Succession on Coastal Sand Dunes: Interactions Involving Pinus contorta, Suilloid Fungi and Deer. New Phytol. 2006;169:345–354. doi: 10.1111/j.1469-8137.2005.01593.x. PubMed DOI
Bruns T.D., Peay K.G., Boynton P.J., Grubisha L.C., Hynson N.A., Nguyen N.H., Rosenstock N.P. Inoculum Potential of Rhizopogon Spores Increases with Time over the First 4 Yr of a 99-yr Spore Burial Experiment. New Phytol. 2009;181:463–470. doi: 10.1111/j.1469-8137.2008.02652.x. PubMed DOI
Sarwar S., Saba M., Khalid A.N., Dentinger B.M. Suillus marginielevatus, a New Species and S. triacicularis, a New Record from Western Himalaya, Pakistan. Phytotaxa. 2015;203:169. doi: 10.11646/phytotaxa.203.2.6. DOI
Miyamoto Y., Maximov T.C., Sugimoto A., Nara K. Discovery of Rhizopogon Associated with Larix from Northeastern Siberia: Insights into Host Shift of Ectomycorrhizal Fungi. Mycoscience. 2019;60:274–280. doi: 10.1016/j.myc.2019.03.003. DOI
Leyronas C., Raynal G. Role of Fungal Ascospores in the Infection of Orchardgrass (Dactylis glomerata) by Epichloë typhina Agent if Choke Disease. J. Plant Pathol. 2008;90:15–21.
Bultman T.L., Jr J.F.W., Bowdish T.I., Welch A.M. A New Kind of Mutualism between Fungi and Insects. Mycol. Res. 1998;102:235–238. doi: 10.1017/S0953756297004802. DOI
Hoffman G.D., Rao S. Association of Slugs with the Fungal Pathogen Epichloë typhina (Ascomycotina: Clavicipitaceae): Potential Role in Stroma Fertilisation and Disease Spread: Slug Consumption of Epichloë Stromata. Ann. Appl. Biol. 2013;162:324–334. doi: 10.1111/aab.12024. DOI
Bultman T.L., Mathews P.L. Mycophagy by a Millipede and Its Possible Impact on an Insect-Fungus Mutualism. Oikos. 1996;75:67. doi: 10.2307/3546322. DOI
Six D.L. Ecological and Evolutionary Determinants of Bark Beetle —Fungus Symbioses. Insects. 2012;3:339–366. doi: 10.3390/insects3010339. PubMed DOI PMC
Joseph R., Keyhani N.O. Fungal Mutualisms and Pathosystems: Life and Death in the Ambrosia Beetle Mycangia. Appl. Microbiol. Biotechnol. 2021;105:3393–3410. doi: 10.1007/s00253-021-11268-0. PubMed DOI
Harrington T.C., Fraedrich S.W., Aghayeva D.N. Raffaelea lauricola, a New Ambrosia Beetle Symbiont and Pathogen on the Lauracea. Mycotaxon. 2008;104:399–404.
Jiang Z.-R., Morita T., Jikumaru S., Kuroda K., Masuya H., Kajimura H. The Role of Mycangial Fungi Associated with Ambrosia Beetles (Euwallacea interjectus) in Fig Wilt Disease: Dual Inoculation of Fusarium kuroshium and Ceratocystis ficicola Can Bring Fig Saplings to Early Symptom Development. Microorganisms. 2022;10:1912. doi: 10.3390/microorganisms10101912. PubMed DOI PMC
Slippers B., Coutinho T.A., Wingfield B.D., Wingfield M.J. A Review of the Genus Amylostereum and Its Association with Woodwasps. S. Afr. J. Sci. 2003;99:70–74.
Pažoutová S., Šrůtka P., Holuša J., Chudíčková M., Kolařík M. Diversity of Xylariaceous Symbionts in Xiphydria Woodwasps: Role of Vector and a Host Tree. Fungal Ecol. 2010;3:392–401. doi: 10.1016/j.funeco.2010.07.002. DOI
Kadowaki K., Leschen R.A.B., Beggs J.R. No Evidence for a Ganoderma Spore Dispersal Mutualism in an Obligate Spore-Feeding Beetle Zearagytodes maculifer. Fungal Biol. 2011;115:768–774. doi: 10.1016/j.funbio.2011.06.001. PubMed DOI
Crowther T.W., Boddy L., Jones T.H. Outcomes of Fungal Interactions Are Determined by Soil Invertebrate Grazers: Grazers Alter Fungal Community. Ecol. Lett. 2011;14:1134–1142. doi: 10.1111/j.1461-0248.2011.01682.x. PubMed DOI
Boddy L. Interspecific Combative Interactions between Wood-Decaying Basidiomycetes. FEMS Microbiol. Ecol. 2000;31:185–194. doi: 10.1111/j.1574-6941.2000.tb00683.x. PubMed DOI
A′Bear A.D., Murray W., Webb R., Boddy L., Jones T.H. Contrasting Effects of Elevated Temperature and Invertebrate Grazing Regulate Multispecies Interactions between Decomposer Fungi. PLoS ONE. 2013;8:e77610. doi: 10.1371/journal.pone.0077610. PubMed DOI PMC
Crowther T.W., Stanton D.W.G., Thomas S.M., A’Bear A.D., Hiscox J., Jones T.H., Voříšková J., Baldrian P., Boddy L. Top-down Control of Soil Fungal Community Composition by a Globally Distributed Keystone Consumer. Ecology. 2013;94:2518–2528. doi: 10.1890/13-0197.1. PubMed DOI
Janoušková M., Kohout P., Moradi J., Doubková P., Frouz J., Vosolsobě S., Rydlová J. Microarthropods Influence the Composition of Rhizospheric Fungal Communities by Stimulating Specific Taxa. Soil Biol. Biochem. 2018;122:120–130. doi: 10.1016/j.soilbio.2018.04.016. DOI
Leopold D.R., Wilkie J.P., Dickie I.A., Allen R.B., Buchanan P.K., Fukami T. Priority Effects Are Interactively Regulated by Top-down and Bottom-up Forces: Evidence from Wood Decomposer Communities. Ecol. Lett. 2017;20:1054–1063. doi: 10.1111/ele.12803. PubMed DOI
Sauvadet M., Chauvat M., Brunet N., Bertrand I. Can Changes in Litter Quality Drive Soil Fauna Structure and Functions? Soil Biol. Biochem. 2017;107:94–103. doi: 10.1016/j.soilbio.2016.12.018. DOI
Jacobsen R.M., Sverdrup-Thygeson A., Kauserud H., Mundra S., Birkemoe T. Exclusion of Invertebrates Influences Saprotrophic Fungal Community and Wood Decay Rate in an Experimental Field Study. Funct. Ecol. 2018;32:2571–2582. doi: 10.1111/1365-2435.13196. DOI
Macheleidt J., Mattern D.J., Fischer J., Netzker T., Weber J., Schroeckh V., Valiante V., Brakhage A.A. Regulation and Role of Fungal Secondary Metabolites. Annu. Rev. Genet. 2016;50:371–392. doi: 10.1146/annurev-genet-120215-035203. PubMed DOI
Rohlfs M., Churchill A.C.L. Fungal Secondary Metabolites as Modulators of Interactions with Insects and Other Arthropods. Fungal Genet. Biol. 2011;48:23–34. doi: 10.1016/j.fgb.2010.08.008. PubMed DOI
Fox E.M., Howlett B.J. Secondary Metabolism: Regulation and Role in Fungal Biology. Curr. Opin. Microbiol. 2008;11:481–487. doi: 10.1016/j.mib.2008.10.007. PubMed DOI
Demain A.L., Fang A. History of Modern Biotechnology I. Springer; Berlin/Heidelberg, Germany: 2000. The Natural Functions of Secondary Metabolites.39p. PubMed DOI
Staaden S., Milcu A., Rohlfs M., Scheu S. Olfactory Cues Associated with Fungal Grazing Intensity and Secondary Metabolite Pathway Modulate Collembola Foraging Behaviour. Soil Biol. Biochem. 2011;43:1411–1416. doi: 10.1016/j.soilbio.2010.10.002. DOI
Caballero Ortiz S., Rohlfs M. Isopod Grazing Induces Down-Regulation of Aspergillus nidulans Anti-Fungivore Defence Marker Genes. Fungal Ecol. 2016;20:84–87. doi: 10.1016/j.funeco.2015.12.004. DOI
Stötefeld L., Scheu S., Rohlfs M. Fungal Chemical Defence Alters Density-Dependent Foraging Behaviour and Success in a Fungivorous Soil Arthropod. Ecol. Entomol. 2012;37:323–329. doi: 10.1111/j.1365-2311.2012.01373.x. DOI
Wölfle S., Trienens M., Rohlfs M. Experimental Evolution of Resistance against a Competing Fungus in Drosophila melanogaster. Oecologia. 2009;161:781–790. doi: 10.1007/s00442-009-1414-x. PubMed DOI
Kempken F., Rohlfs M. Fungal Secondary Metabolite Biosynthesis—A Chemical Defence Strategy against Antagonistic Animals? Fungal Ecol. 2010;3:107–114. doi: 10.1016/j.funeco.2009.08.001. DOI
Künzler M. How Fungi Defend Themselves against Microbial Competitors and Animal Predators. PLoS Pathog. 2018;14:e1007184. doi: 10.1371/journal.ppat.1007184. PubMed DOI PMC
Tehan R.M., Blount R.R., Goold R.L., Mattos D.R., Spatafora N.R., Tabima J.F., Gazis R., Wang C., Ishmael J.E., Spatafora J.W., et al. Tolypocladamide H and the Proposed Tolypocladamide NRPS in Tolypocladium Species. J. Nat. Prod. 2022;85:1363–1373. doi: 10.1021/acs.jnatprod.2c00153. PubMed DOI PMC
Schiestl F.P., Steinebrunner F., Schulz C., von Reuß S., Francke W., Weymuth C., Leuchtmann A. Evolution of ‘Pollinator’- Attracting Signals in Fungi. Biol. Lett. 2006;2:401–404. doi: 10.1098/rsbl.2006.0479. PubMed DOI PMC
Becher P.G., Hagman A., Verschut V., Chakraborty A., Rozpędowska E., Lebreton S., Bengtsson M., Flick G., Witzgall P., Piškur J. Chemical Signaling and Insect Attraction Is a Conserved Trait in Yeasts. Ecol. Evol. 2018;8:2962–2974. doi: 10.1002/ece3.3905. PubMed DOI PMC
Pacioni G., Bologna M.A., Laurenzi M. Insect Attraction by Tuber: A Chemical Explanation. Mycol. Res. 1991;95:1359–1363. doi: 10.1016/S0953-7562(09)80385-7. DOI
Griffiths D.A., Hodson A.C., Christensen C.M. Grain Storage Fungi Associated with Mites. J. Econ. Entomol. 1959;52:514–518. doi: 10.1093/jee/52.3.514. DOI
Vanhaelen M., Vanhaelen-Fastré R., Geeraerts J., Wirthlin T. Cis-and Trans-Octa-1,5-Dien-3-Ol, New Attractants to the Cheese Mite Tyrophagus putrescentiae (Schrank) (Acarina, Acaridae) Idintified in Trichothecium roseum (Fungi Imperfecti) Microbios. 1978;23:199–212. PubMed
Brückner A., Schuster R., Smit T., Pollierer M.M., Schaeffler I., Heethoff M. Track the Snack–Olfactory Cues Shape Foraging Behaviour of Decomposing Soil Mites (Oribatida) Pedobiologia. 2018;66:74–80. doi: 10.1016/j.pedobi.2017.10.004. DOI
Hubert J., Kubátová A., Šárová J. Feeding of Scheloribates laevigatus (Acari: Oribatida) on Different Stadia of Decomposing Grass Litter (Holcus lanatus) Pedobiologia. 2000;44:627–639. doi: 10.1078/S0031-4056(04)70077-3. DOI
Stökl J., Strutz A., Dafni A., Svatos A., Doubsky J., Knaden M., Sachse S., Hansson B.S., Stensmyr M.C. A Deceptive Pollination System Targeting Drosophilids through Olfactory Mimicry of Yeast. Curr. Biol. 2010;20:1846–1852. doi: 10.1016/j.cub.2010.09.033. PubMed DOI
Bengtsson G. Fungal Odour Attracts Soil Collembola. Soil Biol. Biochem. 1988;20:25–30. doi: 10.1016/0038-0717(88)90122-8. DOI
Bengtsson G., Ohlsson L., Rundgren S. Influence of Fungi on Growth and Survival of Onychiurus armatus (Collembola) in a Metal Polluted Soil. Oecologia. 1985;68:63–68. doi: 10.1007/BF00379475. PubMed DOI
Rangel L.I., Hamilton O., Jonge R., Bolton M.D. Fungal Social Influencers: Secondary Metabolites as a Platform for Shaping the Plant-Associated Community. Plant J. 2021;108:632–645. doi: 10.1111/tpj.15490. PubMed DOI
Laraba I., McCormick S.P., Vaughan M.M., Proctor R.H., Busman M., Appell M., O’Donnell K., Felker F.C., Catherine Aime M., Wurdack K.J. Pseudoflowers Produced by Fusarium xyrophilum on Yellow-Eyed Grass (Xyris Spp.) in Guyana: A Novel Floral Mimicry System? Fungal Genet. Biol. 2020;144:103466. doi: 10.1016/j.fgb.2020.103466. PubMed DOI
Roy B.A. Floral Mimicry by a Plant Pathogen. Nature. 1993;362:56–58. doi: 10.1038/362056a0. DOI
Roy B.A. The Use and Abuse of Pollinators by Fungi. Trends Ecol. Evol. 1994;9:335–339. doi: 10.1016/0169-5347(94)90154-6. PubMed DOI
Tanney J.B., Hutchison L.J. Encapsulation and Immobilization of a Mycophagous Nematode by Two Sphaerobolus Species. Botany. 2011;89:745–751. doi: 10.1139/b11-060. DOI
Tanney J.B., Hutchison L.J. The Production of Nematode-Immobilizing Secretory Cells by Climacodon septentrionalis. Mycoscience. 2012;53:31–35. doi: 10.1007/s10267-011-0128-1. DOI
Hibbett D.S., Thorn R.G. Nematode-Trapping in Pleurotus tuberregium. Mycologia. 1994;86:696–699. doi: 10.1080/00275514.1994.12026471. DOI
Barron G.L., Thorn R.G. Destruction of nematodes by species of Pleurotus. Can. J. Bot. 1987;65:774–778. doi: 10.1139/b87-103. DOI
Heydari R., Pourjam E., Goltapeh E.M. Antagonistic Effect of Some Species of Pleurotus on the Root-Knot Nematode, Meloidogyne javanica in Vitro. Plant Pathol. J. 2006;5:173–177. doi: 10.3923/ppj.2006.173.177. DOI
Hsueh Y.-P., Mahanti P., Schroeder F.C., Sternberg P.W. Nematode-Trapping Fungi Eavesdrop on Nematode Pheromones. Curr. Biol. 2013;23:83–86. doi: 10.1016/j.cub.2012.11.035. PubMed DOI PMC
Nordbring-Hertz B., Jansson H., Tunlid A. eLS. John Wiley & Sons; Hoboken, NJ, USA: 2011. Nematophagous Fungi.
Vidal-Diez de Ulzurrun G., Hsueh Y.-P. Predator-Prey Interactions of Nematode-Trapping Fungi and Nematodes: Both Sides of the Coin. Appl. Microbiol. Biotechnol. 2018;102:3939–3949. doi: 10.1007/s00253-018-8897-5. PubMed DOI
Rehermann G., Spitaler U., Sahle K., Cossu C.S., Donne L.D., Bianchi F., Eisenstecken D., Angeli S., Schmidt S., Becher P.G. Behavioral Manipulation of Drosophila suzukii for Pest Control: High Attraction to Yeast Enhances Insecticide Efficacy When Applied on Leaves. Pest Manag. Sci. 2022;78:896–904. doi: 10.1002/ps.6699. PubMed DOI
Scheidler N.H., Liu C., Hamby K.A., Zalom F.G., Syed Z. Volatile Codes: Correlation of Olfactory Signals and Reception in Drosophila–Yeast Chemical Communication. Sci. Rep. 2015;5:14059. doi: 10.1038/srep14059. PubMed DOI PMC
Günther C.S., Goddard M.R. Do Yeasts and Drosophila Interact Just by Chance? Fungal Ecol. 2019;38:37–43. doi: 10.1016/j.funeco.2018.04.005. DOI
Davis T.S., Crippen T.L., Hofstetter R.W., Tomberlin J.K. Microbial Volatile Emissions as Insect Semiochemicals. J. Chem. Ecol. 2013;39:840–859. doi: 10.1007/s10886-013-0306-z. PubMed DOI
Inamdar A.A., Morath S., Bennett J.W. Fungal Volatile Organic Compounds: More Than Just a Funky Smell? Annu. Rev. Microbiol. 2020;74:101–116. doi: 10.1146/annurev-micro-012420-080428. PubMed DOI
Kemp G.H.J. Fusarium Glume Spot of Wheat: A Newly Recorded Mite-Associated Disease in South Africa. Plant Dis. 1996;80:48. doi: 10.1094/PD-80-0048. DOI
da Silva G.L., Esswein I.Z., Heidrich D., Dresch F., Maciel M.J., Pagani D.M., Valente P., Scroferneker M.L., Johann L., Ferla N.J., et al. Population Growth of the Stored Product Pest Tyrophagus putrescentiae (Acari: Acaridae) on Environmentally and Medically Important Fungi. Exp. Appl. Acarol. 2019;78:49–64. doi: 10.1007/s10493-019-00370-8. PubMed DOI
Novgorodova T., Vladimirova N., Marchenko I., Sadokhina T., Tyurin M., Ashmarina L., Bakshaev D., Lednev G., Danilov V. The Effect of Bean Seed Treatment with Entomopathogenic Fungus Metarhizium robertsii on Soil Microarthropods (Acari, Collembola) Insects. 2022;13:807. doi: 10.3390/insects13090807. PubMed DOI PMC
Bae Y.-S., Knudsen G.R. Influence of a Fungus-Feeding Nematode on Growth and Biocontrol Efficacy of Trichoderma harzianum. Phytopathology. 2001;91:301–306. doi: 10.1094/PHYTO.2001.91.3.301. PubMed DOI
Knudsen G.R., Kim T.G., Bae Y.-S., Dandurand L.-M.C. Use of Quantitative Real-Time PCR to Unravel Ecological Complexity in a Biological Control System. Adv. Biosci. Biotechnol. 2015;06:237–244. doi: 10.4236/abb.2015.64023. DOI
De la Cruz R.G., Knudsen G.R., Dandurand L.-M.C. Colonisation of Sclerotia of Sclerotinia sclerotiorum by a Fungivorous Nematode. Biocontrol Sci. Technol. 2016;26:1166–1170. doi: 10.1080/09583157.2016.1183765. DOI
Bourdôt G.W., Hurrell G.A., Saville D.J., Leathwick D.M. Impacts of Applied Sclerotinia sclerotiorum on the Dynamics of a Cirsium arvense Population. Weed Res. 2006;46:61–72. doi: 10.1111/j.1365-3180.2006.00481.x. DOI
Abu-Dieyeh M.H., Watson A.K. Efficacy of Sclerotinia minor for Dandelion Control: Effect of Dandelion Accession, Age and Grass Competition. Weed Res. 2007;47:63–72. doi: 10.1111/j.1365-3180.2007.00542.x. DOI
García De la Cruz R., Knudsen G.R., Carta L.K., Newcombe G. Either Low Inoculum or a Multi-Trophic Interaction Can Reduce the Ability of Sclerotinia sclerotiorum to Kill an Invasive Plant. Rhizosphere. 2018;5:76–80. doi: 10.1016/j.rhisph.2018.01.002. DOI
Ek H., Sjögren M., Arnebrant K., Söderström B. Extramatrical Mycelial Growth, Biomass Allocation and Nitrogen Uptake in Ectomycorrhizal Systems in Response to Collembolan Grazing. Appl. Soil Ecol. 1994;1:155–169. doi: 10.1016/0929-1393(94)90035-3. DOI
Innocenti G., Sabatini M.A. Collembola and Plant Pathogenic, Antagonistic and Arbuscular Mycorrhizal Fungi: A Review. Bull. Insectol. 2018;71:71–76.
Melidossian H.S., Seem R.C., English-Loeb G., Wilcox W.F., Gadoury D.M. Suppression of Grapevine Powdery Mildew by a Mycophagous Mite. Plant Dis. 2005;89:1331–1338. doi: 10.1094/PD-89-1331. PubMed DOI
Pozzebon A., Duso C. Grape Downy Mildew Plasmopara viticola, an Alternative Food for Generalist Predatory Mites Occurring in Vineyards. Biol. Control. 2008;45:441–449. doi: 10.1016/j.biocontrol.2008.02.001. DOI
Gruss I., Twardowski J., Matkowski K., Jurga M. Impact of Collembola on the Winter Wheat Growth in Soil Infected by Soil-Borne Pathogenic Fungi. Agronomy. 2022;12:1599. doi: 10.3390/agronomy12071599. DOI