Mycophagy: A Global Review of Interactions between Invertebrates and Fungi

. 2023 Jan 26 ; 9 (2) : . [epub] 20230126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36836278

Grantová podpora
B.A.E.F. Graduate study Fellowship for the academic year 2021-2022 (to B.S.) Belgian American Educational Foundation

Fungi are diverse organisms that occupy important niches in natural settings and agricultural settings, acting as decomposers, mutualists, and parasites and pathogens. Interactions between fungi and other organisms, specifically invertebrates, are understudied. Their numbers are also severely underestimated. Invertebrates exist in many of the same spaces as fungi and are known to engage in fungal feeding or mycophagy. This review aims to provide a comprehensive, global view of mycophagy in invertebrates to bring attention to areas that need more research, by prospecting the existing literature. Separate searches on the Web of Science were performed using the terms "mycophagy" and "fungivore". Invertebrate species and corresponding fungal species were extracted from the articles retrieved, whether the research was field- or laboratory-based, and the location of the observation if field-based. Articles were excluded if they did not list at least a genus identification for both the fungi and invertebrates. The search yielded 209 papers covering seven fungal phyla and 19 invertebrate orders. Ascomycota and Basidiomycota are the most represented fungal phyla whereas Coleoptera and Diptera make up most of the invertebrate observations. Most field-based observations originated from North America and Europe. Research on invertebrate mycophagy is lacking in some important fungal phyla, invertebrate orders, and geographic regions.

Zobrazit více v PubMed

Leveau J.H.J., Preston G.M. Bacterial Mycophagy: Definition and Diagnosis of a Unique Bacterial–Fungal Interaction. New Phytol. 2008;177:859–876. doi: 10.1111/j.1469-8137.2007.02325.x. PubMed DOI

Elliott T.F., Truong C., Jackson S.M., Zúñiga C.L., Trappe J.M., Vernes K. Mammalian Mycophagy: A Global Review of Ecosystem Interactions Between Mammals and Fungi. Fungal Syst. Evol. 2022;9:99–159. doi: 10.3114/fuse.2022.09.07. PubMed DOI PMC

Elliott T. Reptilian Mycophagy: A Global Review of Mutually Beneficial Associations between Reptiles and Macrofungi. Mycosphere. 2019;10:776–797. doi: 10.5943/mycosphere/10/1/18. DOI

Elliott T.F., Jusino M.A., Trappe J.M., Lepp H., Ballard G.-A., Bruhl J.J., Vernes K. A Global Review of the Ecological Significance of Symbiotic Associations between Birds and Fungi. Fungal Divers. 2019;98:161–194. doi: 10.1007/s13225-019-00436-3. DOI

Biedermann P.H.W., Vega F.E. Ecology and Evolution of Insect–Fungus Mutualisms. Annu. Rev. Entomol. 2020;65:431–455. doi: 10.1146/annurev-ento-011019-024910. PubMed DOI

Macias A.M., Marek P.E., Morrissey E.M., Brewer M.S., Short D.P.G., Stauder C.M., Wickert K.L., Berger M.C., Metheny A.M., Stajich J.E., et al. Diversity and Function of Fungi Associated with the Fungivorous Millipede, Brachycybe lecontii. Fungal Ecol. 2019;41:187–197. doi: 10.1016/j.funeco.2019.06.006. PubMed DOI PMC

Hernández-Santiago F., Díaz-Aguilar I., Pérez-Moreno J., Tovar-Salinas J.L. Mushrooms, Humans and Nature in a Changing World. Springer International Publishing; Cham, Switzerland: 2020. Interactions Between Soil Mesofauna and Edible Ectomycorrhizal Mushrooms; pp. 367–405.

Heath R.N., Wingfield M.J., Van Wyk M., Roux J. Insect Associates of Ceratocystis albifundus and Patterns of Association in a Native Savanna Ecosystem in South Africa. Environ. Entomol. 2009;38:356–364. doi: 10.1603/022.038.0207. PubMed DOI

Wingfield M.J., Barnes I., de Beer Z.W., Roux J., Wingfield B.D., Taerum S.J. Novel Associations between Ophiostomatoid Fungi, Insects and Tree Hosts: Current Status—Future Prospects. Biol. Invasions. 2017;19:3215–3228. doi: 10.1007/s10530-017-1468-3. DOI

Hubert J., Stejskal V., Kubátová A., Munzbergová Z., Váňová M., Žd’árková E. Mites as Selective Fungal Carriers in Stored Grain Habitats. Exp. Appl. Acarol. 2003;29:69–87. doi: 10.1023/A:1024271107703. PubMed DOI

Gracia-Garza J.A., Reeleder R.D., Paulitz T.C. Degradation of Sclerotia of Sclerotinia sclerotiorum by Fungus Gnats (Bradysia coprophila) and the Biocontrol Fungi Trichoderma Spp. Soil Biol. Biochem. 1997;29:123–129. doi: 10.1016/S0038-0717(96)00299-4. DOI

English-Loeb G., Norton A.P., Gadoury D.M., Seem R.C., Wilcox W.F. Control of Powdery Mildew in Wild and Cultivated Grapes by a Tydeid Mite. Biol. Control. 1999;14:97–103. doi: 10.1006/bcon.1998.0681. DOI

Hamby K.A., Hernández A., Boundy-Mills K., Zalom F.G. Associations of Yeasts with Spotted-Wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in Cherries and Raspberries. Appl. Environ. Microbiol. 2012;78:4869–4873. doi: 10.1128/AEM.00841-12. PubMed DOI PMC

Shaw P.J.A. The Fungal Community: Its Organization and Role in the Ecosystem. Marcel Dekker Inc.; New City, NY, USA: 1992. Fungi, Fungivores, and Fungal Food Webs; pp. 295–310.

Fogel R. Insect Mycophagy: A Preliminary Bibliography. U.S. Department of Agriculture; Washington, DC, USA: 1975.

Wheeler Q.D., Blackwell M. Fungus-Insect Relationships: Perspectives in Ecology and Evolution. Columbia University Press; New York, NY, USA: 1984.

Bruns T.D. Fungus-Insect Relationships: Perspectives in Ecology and Evolution. Columbia University Press; New York, NY, USA: 1984. Insect Mycophagy in the Boletales: Fungivore Diversity and the Mushroom Habitat; pp. 91–129.

Lacy R.C. Fungus-Insect Relationships: Perspectives in Ecology and Evolution. Columbia University Press; New York, NY, USA: 1984. Mycophagy in Drosophilidae (Diptera) pp. 286–301.

Newton Jr. A. Fungus-Insect Relationships: Perspectives in Ecology and Evolution. Columbia University Press; New York, NY, USA: 1984. F. Mycophagy in the Staphylinoidea; pp. 302–353.

Rawlins D.E. Fungus-Insect Relationships. Columbia University Press; New York, NY, USA: 1984. Mycophagy in Lepidoptera; pp. 382–423.

Hanley R.S., Goodrich M.A. Review of Mycophagy, Host Relationships and Behavior in the New World Oxyporinae (Coleoptera: Staphylinidae) Coleopt. Bull. 1995;49:267–280.

Sutherland A.M., Parrella M.P. Mycophagy in Coccinellidae: Review and Synthesis. Biol. Control. 2009;51:284–293. doi: 10.1016/j.biocontrol.2009.05.012. DOI

Schigel D.S. Fungivory and Host Associations of Coleoptera: A Bibliography and Review of Research Approaches. Mycology. 2012;3:258–272. doi: 10.1080/21501203.2012.741078. DOI

Kimura M.T. Drosophila Survey of Hokkaido, XXXII: A Field Survey of Fungus Preferences of Drosophilid Flies in Sapporo (With 1 Text-Figure and 8 Tables) J. Fac. Sci. Hokkaido Univ. VI. 1976;20:288–298.

Krivosheina N.P. Macromycete Fruit Bodies as a Habitat for Dipterans (Insecta, Diptera) Entomol. Rev. 2008;88:778–792. doi: 10.1134/S0013873808070038. DOI

Ševčík J. Czech and Slovak Diptera Associated with Fungi. Slezské Zemské Museum; Opava, Czech Republic: 2010.

Disney R.H.L., Nitta M., Kobayashi M., Tuno N. New Records of Megaselia (Diptera: Phoridae) Reared from Fungus Sporophores in Japan, Including Five New Species. Appl. Entomol. Zool. 2014;49:541–552. doi: 10.1007/s13355-014-0284-9. DOI

Valer F.B., Bernardi E., Mendes M.F., Blauth M.L., Gottschalk M.S. Diversity and Associations between Drosophilidae (Diptera) Species and Basidiomycetes in a Neotropical Forest. An. Acad. Bras. Ciênc. 2016;88:705–718. doi: 10.1590/0001-3765201620150366. PubMed DOI

Jonsell M., Nordlander G., Jonsson M. Colonization Patterns of Insects Breeding in Wood-Decaying Fungi. J. Insect Conserv. 1999;3:145–161. doi: 10.1023/A:1009665513184. DOI

Jonsell M., Nordlander G., Ehnström B. Substrate Associations of Insects Breeding in Fruiting Bodies of Wood-Decaying Fungi. Ecol. Bull. 2001;49:173–194.

Jonsell M., González Alonso C., Forshage M., van Achterberg C., Komonen A. Structure of Insect Community in the Fungus Inonotus radiatus in Riparian Boreal Forests. J. Nat. Hist. 2016;50:1613–1631. doi: 10.1080/00222933.2016.1145273. DOI

Jonsell M., Nordlander G. Insects in Polypore Fungi as Indicator Species: A Comparison between Forest Sites Differing in Amounts and Continuity of Dead Wood. Forest Ecol. Manag. 2002;157:101–118. doi: 10.1016/S0378-1127(00)00662-9. DOI

Jonsell M., Nordlander G. Host Selection Patterns in Insects Breeding in Bracket Fungi. Ecol. Entomol. 2004;29:697–705. doi: 10.1111/j.0307-6946.2004.00654.x. DOI

Jonsson M., Nordlander G. Insect Colonisation of Fruiting Bodies of the Wood-Decaying Fungus Fomitopsis pinicola at Different Distances from an Old-Growth Forest. Biodivers. Conserv. 2006;15:295–309. doi: 10.1007/s10531-005-1536-3. DOI

Volf M., Segar S.T., Miller S.E., Isua B., Sisol M., Aubona G., Šimek P., Moos M., Laitila J., Kim J., et al. Community Structure of Insect Herbivores Is Driven by Conservatism, Escalation and Divergence of Defensive Traits in Ficus. Ecol. Lett. 2018;21:83–92. doi: 10.1111/ele.12875. PubMed DOI

Masters G.J., Brown V.K., Gange A.C. Plant Mediated Interactions between Above- and Below-Ground Insect Herbivores. Oikos. 1993;66:148. doi: 10.2307/3545209. DOI

Moreira X., Abdala-Roberts L., Rasmann S., Castagneyrol B., Mooney K.A. Plant Diversity Effects on Insect Herbivores and Their Natural Enemies: Current Thinking, Recent Findings, and Future Directions. Curr. Opin. Insect Sci. 2016;14:1–7. doi: 10.1016/j.cois.2015.10.003. PubMed DOI

Malloch D., Blackwell M. The Fungal Community: Its Organization and Role in the Ecosystem. CRC press; Boca Raton, FL, USA: 1992. Dispersal of Fungal Diasporas; pp. 147–171.

Kobayashi M., Kitabayashi K., Tuno N. Spore Dissemination by Mycophagous Adult Drosophilids. Ecol. Res. 2017;32:621–626. doi: 10.1007/s11284-017-1477-9. DOI

Kitabayashi K., Tuno N. Soil Burrowing Muscina angustifrons (Diptera: Muscidae) Larvae Excrete Spores Capable of Forming Mycorrhizae Underground. Mycoscience. 2018;59:252–258. doi: 10.1016/j.myc.2018.02.003. DOI

Sánchez-Peña S.R. New View on Origin of Attine Ant–Fungus Mutualism: Exploitation of a Preexisting Insect–Fungus Symbiosis (Hymenoptera: Formicidae) Ann. Entomol. Soc. Am. 2005;98:151–164. doi: 10.1603/0013-8746(2005)098[0151:NVOOOA]2.0.CO;2. DOI

Kirkendall L.R., Biedermann P.H.W., Jordal B.H. Bark Beetles. Elsevier; Amsterdam, The Netherlands: 2015. Evolution and Diversity of Bark and Ambrosia Beetles; pp. 85–156.

Chouvenc T., Šobotník J., Engel M.S., Bourguignon T. Termite Evolution: Mutualistic Associations, Key Innovations, and the Rise of Termitidae. Cell. Mol. Life Sci. 2021;78:2749–2769. doi: 10.1007/s00018-020-03728-z. PubMed DOI PMC

Rohlfs M., Albert M., Keller N.P., Kempken F. Secondary Chemicals Protect Mould from Fungivory. Biol. Lett. 2007;3:523–525. doi: 10.1098/rsbl.2007.0338. PubMed DOI PMC

Böllmann J., Elmer M., Wöllecke J., Raidl S., Hüttl R.F. Defensive Strategies of Soil Fungi to Prevent Grazing by Folsomia candida (Collembola) Pedobiologia. 2010;53:107–114. doi: 10.1016/j.pedobi.2009.06.003. DOI

Caballero Ortiz S., Trienens M., Rohlfs M. Induced Fungal Resistance to Insect Grazing: Reciprocal Fitness Consequences and Fungal Gene Expression in the Drosophila—Aspergillus Model System. PLoS ONE. 2013;8:e74951. doi: 10.1371/journal.pone.0074951. PubMed DOI PMC

Hutchison L.J., Madzia S.E., Barron G.L. The Presence and Antifeedant Function of Toxin-Producing Secretory Cells on Hyphae of the Lawn-Inhabiting Agaric Conocybe lactea. Can. J. Bot. 1996;74:431–434. doi: 10.1139/b96-053. DOI

McGonigle T.P. The Significance of Grazing on Fungi in Nutrient Cycling. Can. J. Bot. 1995;73:1370–1376. doi: 10.1139/b95-399. DOI

Bonkowski M., Cheng W., Griffiths B.S., Alphei J., Scheu S. Microbial-Faunal Interactions in the Rhizosphere and Effects on Plant Growth. Eur. J. Soil Biol. 2000;36:135–147. doi: 10.1016/S1164-5563(00)01059-1. DOI

A’Bear A.D., Jones T.H., Boddy L. Size Matters: What Have We Learnt from Microcosm Studies of Decomposer Fungus–Invertebrate Interactions? Soil Biol. Biochem. 2014;78:274–283. doi: 10.1016/j.soilbio.2014.08.009. DOI

Mueller G.M., Schmit J.P. Fungal Biodiversity: What Do We Know? What Can We Predict? Biodivers. Conserv. 2007;16:1–5. doi: 10.1007/s10531-006-9117-7. DOI

Bhunjun C.S., Niskanen T., Suwannarach N., Wannathes N., Chen Y.-J., McKenzie E.H., Maharachchikumbura S.S., Buyck B., Zhao C.-L., Fan Y.-G. The Numbers of Fungi: Are the Most Speciose Genera Truly Diverse? Fungal Divers. 2022;114:387–462. doi: 10.1007/s13225-022-00501-4. DOI

Cavalier-Smith T. Proceedings of the Evolutionary Biology of the Fungi, British Mycological Society Symposium. Cambridge University Press; Cambridge, UK: 1987. The Origin of Fungi and Pseudofungi; pp. 339–353.

Hanley R.S., Setsuda K. Immature Stages of Oxyporus japonicus Sharp (Coleoptera: Staphylinidae: Oxyporinae), with Notes on Patterns of Host Use. Pan-Pac. Entomol. 1999;75:94–102.

Harrington T.C. Insect-Fungal Associations. Oxford University Press; Oxford, UK: 2005. Ecology and Evolution of Mycophagous Bark Beetles and Their Fungal Partners; pp. 257–291.

Henk D.A., Farr D.F., Aime M.C. Mycodiplosis (Diptera) Infestation of Rust Fungi Is Frequent, Wide Spread and Possibly Host Specific. Fungal Ecol. 2011;4:284–289. doi: 10.1016/j.funeco.2011.03.006. DOI

Leschen R.A.B. Pallodes Austrinus, a New Species of Nitidulidae (Nitidulinae) with Discussions on Pallodes Mycophagy. J. N. Y. Entomol. Soc. 1988;96:452–458.

Index Fungorum Search Index Fungorum. [(accessed on 25 December 2022)]. Available online: http://www.indexfungorum.org/Names/Names.asp.

Global Biodiversity Information Facility GBIF Home Page. [(accessed on 25 December 2022)]. Available online: https://www.gbif.org/

Wickham H. Ggplot2: Elegant Graphics for Data Analysis by Wickham, H. Biometrics. 2011;67:678–679.

Hibbett D.S., Bauer R., Binder M., Giachini A.J., Hosaka K., Justo A., Larsson E., Larsson K.H., Lawrey J.D., Miettinen O., et al. Systematics and Evolution. Springer; Berlin/Heidelberg, Germany: 2014. 14 Agaricomycetes; pp. 373–429.

Økland B. Insect Fauna Compared between Six Polypore Species in a Southern Norwegian Spruce Forest. Fauna Norv. Ser. B. 1995;42:21–26.

Põldmaa K., Jürgenstein S., Bahram M., Teder T., Kurina O. Host Diversity and Trophic Status as Determinants of Species Richness and Community Composition of Fungus Gnats. Basic Appl. Ecol. 2015;16:46–53. doi: 10.1016/j.baae.2014.10.004. DOI

van Klinken R.D., Walter G.H. Larval Hosts of Australian Drosophilidae (Diptera): A Field Survey in Subtropical and Tropical Australia. Aust. J. Entomol. 2001;40:163–179. doi: 10.1046/j.1440-6055.2001.00221.x. DOI

Yamashita S., Hijii N. The Role of Fungal Taxa and Developmental Stage of Mushrooms in Determining the Composition of the Mycophagous Insect Community in a Japanese Forest. Eur. J. Entomol. 2007;104:225–233. doi: 10.14411/eje.2007.035. DOI

Komonen A. Structure of Insect Communities Inhabiting Old-Growth Forest Specialist Bracket Fungi: Insect Communities in Old-Growth Forest Fungi. Ecol. Entomol. 2001;26:63–75. doi: 10.1046/j.1365-2311.2001.00295.x. DOI

Graf-Peters L.V., Lopes-Andrade C., da Silveira R.M.B., de Moura L.A., Reck M.A., de Sá F.N. Host Fungi and Feeding Habits of Ciidae (Coleoptera) in a Subtropical Rainforest in Southern Brazil, with an Overview of Host Fungi of Neotropical Ciids. Fla. Entomol. 2011;94:553–566. doi: 10.1653/024.094.0320. DOI

Guevara R., Rayner A.D.M., Reynolds S.E. Effects of Fungivory by Two Specialist Ciid Beetles (Octotemnus glabriculus and Cis boleti) on the Reproductive Fitness of Their Host Fungus, Coriolus versicolor: Effects of Fungivory on Fungal Fitness. New Phytol. 2000;145:137–144. doi: 10.1046/j.1469-8137.2000.00552.x. DOI

Paviour-Smith K. The Fruiting-Bodies of Macrofungi as Habitats for Beetles of the Family Ciidae (Coleoptera) Oikos. 1960;11:43. doi: 10.2307/3564883. DOI

Graf L.V., Barbieri F., Sperb E., Soares Rivaldo D., de Moura L.A., da Silveira R.M.B., Reck M.A., Nogueira-de-Sá F. Factors Affecting the Structure of Coleoptera Assemblages on Bracket Fungi (Basidiomycota) in a Brazilian Forest. Biotropica. 2018;50:357–365. doi: 10.1111/btp.12520. DOI

Epps M.J., Arnold A.E. Diversity, Abundance and Community Network Structure in Sporocarp-Associated Beetle Communities of the Central Appalachian Mountains. Mycologia. 2010;102:785–802. doi: 10.3852/09-161. PubMed DOI

Carvalho J. Neotropical Miridae, LXXIV: Two New Genera of Cylapinae from Brazil (Hemiptera) Proc. Iowa Acad. Sci. 1954;61:504–510.

Kim J., Lim J., Jung S. A Taxonomic Review of the Fungal-Inhabiting Plant Bugs (Hemiptera: Heteroptera: Miridae: Cylapinae) from the Korean Peninsula. J. Asia-Pac. Biodivers. 2019;12:249–256. doi: 10.1016/j.japb.2019.01.006. DOI

Nuhn M.E. Ph.D. Thesis. Clark University; Worcester, MA, USA: 2016. Molecular Ecology of Boletinellus merulioides and Systematics of the Boletineae.

Worthen W.B. Slugs (Arion Spp.) Facilitate Mycophagous Drosophilids in Laboratory and Field Experiments. Oikos. 1988;53:161. doi: 10.2307/3566058. DOI

Guedegbe H.J., Miambi E., Pando A., Roman J., Houngnandan P., Rouland-Lefevre C. Occurrence of Fungi in Combs of Fungus-Growing Termites (Isoptera: Termitidae, Macrotermitinae) Mycol. Res. 2009;113:1039–1045. doi: 10.1016/j.mycres.2009.06.008. PubMed DOI

Remén C., Fransson P., Persson T. Population Responses of Oribatids and Enchytraeids to Ectomycorrhizal and Saprotrophic Fungi in Plant–Soil Microcosms. Soil Biol. Biochem. 2010;42:978–985. doi: 10.1016/j.soilbio.2010.02.017. DOI

Sulzbacher M.A., Grebenc T., Köhler A., Antoniolli Z.I., Giachini A.J., Baseia I.G. Notes on Mycophagy of Descomyces albus (Basidiomycota) in Southern Brazil. Mycosphere. 2015;6:620–629. doi: 10.5943/mycosphere/6/5/11. DOI

Anslan S., Bahram M., Tedersoo L. Temporal Changes in Fungal Communities Associated with Guts and Appendages of Collembola as Based on Culturing and High-Throughput Sequencing. Soil Biol. Biochem. 2016;96:152–159. doi: 10.1016/j.soilbio.2016.02.006. DOI

Maharachchikumbura S.S.N., Chen Y., Ariyawansa H.A., Hyde K.D., Haelewaters D., Perera R.H., Samarakoon M.C., Wanasinghe D.N., Bustamante D.E., Liu J.-K., et al. Integrative Approaches for Species Delimitation in Ascomycota. Fungal Divers. 2021;109:155–179. doi: 10.1007/s13225-021-00486-6. DOI

Maharachchikumbura S.S.N., Hyde K.D., Jones E.B.G., McKenzie E.H.C., Bhat J.D., Dayarathne M.C., Huang S.-K., Norphanphoun C., Senanayake I.C., Perera R.H., et al. Families of Sordariomycetes. Fungal Divers. 2016;79:1–317. doi: 10.1007/s13225-016-0369-6. DOI

Farrell B.D., Sequeira A.S., O’Meara B.C., Normark B.B., Chung J.H., Jordal B.H. The Evolution of Agriculture in Beetles (Curculionidae: Scolytinae and Platypodinae) Evolution. 2001;55:2011–2027. doi: 10.1111/j.0014-3820.2001.tb01318.x. PubMed DOI

Harrington T.C., Fraedrich S.W. Quantification of Propagules of the Laurel Wilt Fungus and Other Mycangial Fungi from the Redbay Ambrosia Beetle, Xyleborus glabratus. Phytopathology. 2010;100:1118–1123. doi: 10.1094/PHYTO-01-10-0032. PubMed DOI

Ploetz R.C., Hulcr J., Wingfield M.J., de Beer Z.W. Destructive Tree Diseases Associated with Ambrosia and Bark Beetles: Black Swan Events in Tree Pathology? Plant Dis. 2013;97:856–872. doi: 10.1094/PDIS-01-13-0056-FE. PubMed DOI

Moller W.J., DeVay D.E. Insect Transmission of Ceratocystis fimbriata in Deciduous Fruit Orchards. Phytopathology. 1968;58:1499–1508.

Visser S., Whittaker J.B. Feeding Preferences for Certain Litter Fungi by Onychiurus subtenuis (Collembola) Oikos. 1977;29:320. doi: 10.2307/3543621. DOI

Hiol Hiol F., Dixon R.K., Curl E.A. The Feeding Preference of Mycophagous Collembola Varies with the Ectomycorrhizal Symbiont. Mycorrhiza. 1994;5:99–103. doi: 10.1007/BF00202340. DOI

Bonfante P., Venice F. Mucoromycota: Going to the Roots of Plant-Interacting Fungi. Fungal Biol. Rev. 2020;34:100–113. doi: 10.1016/j.fbr.2019.12.003. DOI

Redecker D., Schüßler A. Systematics and Evolution. Springer; Berlin/Heidelberg, Germany: 2014. Glomeromycota; pp. 251–269. DOI

Wijayawardene N.N., Pawłowska J., Letcher P.M., Kirk P.M., Humber R.A., Schüßler A., Wrzosek M., Muszewska A., Okrasińska A., Istel Ł., et al. Notes for Genera: Basal Clades of Fungi (Including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota) Fungal Divers. 2018;92:43–129. doi: 10.1007/s13225-018-0409-5. DOI

Chen Q.-L., Hu H.-W., Zhu D., Zhu Y.-G., He J.-Z. Calling for Comprehensive Explorations between Soil Invertebrates and Arbuscular Mycorrhizas. Trends Plant Sci. 2022;27:793–801. doi: 10.1016/j.tplants.2022.03.005. PubMed DOI

Wallis I.R., Claridge A.W., Trappe J.M. Nitrogen Content, Amino Acid Composition and Digestibility of Fungi from a Nutritional Perspective in Animal Mycophagy. Fungal Biol. 2012;116:590–602. doi: 10.1016/j.funbio.2012.02.007. PubMed DOI

Gessner M.O. Methods to Study Litter Decomposition. Springer International Publishing; Cham, Switzerland: 2020. Ergosterol as a Measure of Fungal Biomass; pp. 247–255. DOI

Jaenike J. Host Selection by Mycophagous Drosophila. Ecology. 1978;59:1286–1288. doi: 10.2307/1938245. DOI

Koukol O., Mourek J., Janovský Z., Černá K. Do Oribatid Mites (Acari: Oribatida) Show a Higher Preference for Ubiquitous vs. Specialized Saprotrophic Fungi from Pine Litter? Soil Biol. Biochem. 2009;41:1124–1131. doi: 10.1016/j.soilbio.2009.02.018. DOI

Heděnec P., Radochová P., Nováková A., Kaneda S., Frouz J. Grazing Preference and Utilization of Soil Fungi by Folsomia candida (Isotomidae: Collembola) Eur. J. Soil Biol. 2013;55:66–70. doi: 10.1016/j.ejsobi.2012.12.005. DOI

Smrž J., Soukalová H., Čatská V., Hubert J. Feeding Patterns of Tyrophagus putrescentiae (Sarcoptiformes: Acaridae) Indicate that Mycophagy is Not a Single and Homogeneous Category of Nutritional Biology. J Insect Sci. 2016;16:94. doi: 10.1093/jisesa/iew070. PubMed DOI PMC

Hanski I. Insect-fungus Interactions. Elsevier; Amsterdam, The Netherlands: 1989. Fungivory: Fungi, Insects and Ecology; pp. 25–68.

Tuno N., Nitta M., Kobayashi M., Kitabayashi K. Diversity and Host Associations of Dipteran Insects Exploiting Fungal Fruiting Bodies in Hokuriku, Central Japan. Entomol. Sci. 2019;22:161–166. doi: 10.1111/ens.12349. DOI

Bärlocher F., Newell S.Y., Arsuffi T.L. Digestion of Spartina alterniflora Loisel Material with and without Fungal Constituents by the Periwinkle Littorina irrorata Say (Mollusca: Gastropoda) J. Exp. Mar. Biol. Ecol. 1989;130:45–53. doi: 10.1016/0022-0981(89)90017-8. DOI

Graça M.A., Newell S.Y., Kneib R.T. Grazing Rates of Organic Matter and Living Fungal Biomass of Decaying Spartina alterniflora by Three Species of Salt-Marsh Invertebrates. Mar. Biol. 2000;136:281–289. doi: 10.1007/s002270050686. DOI

Hågvar S., Steen R. Succession of Beetles (Genus Cis) and Oribatid Mites (Genus Carabodes) in Dead Sporocarps of the Red-Banded Polypore Fungus Fomitopsis pinicola. Scand. J. For. Res. 2013;28:436–444. doi: 10.1080/02827581.2012.755562. DOI

Yamashita S., Ando K., Hoshina H., Ito N., Katayama Y., Kawanabe M., Maruyama M., Itioka T. Food Web Structure of the Fungivorous Insect Community on Bracket Fungi in a Bornean Tropical Rain Forest: Bornean Fungivorous Insect Food Webs. Ecol. Entomol. 2015;40:390–400. doi: 10.1111/een.12200. DOI

Koskinen J., Roslin T., Nyman T., Abrego N., Michell C., Vesterinen E.J. Finding Flies in the Mushroom Soup: Host Specificity of Fungus-associated Communities Revisited with a Novel Molecular Method. Mol. Ecol. 2019;28:190–202. doi: 10.1111/mec.14810. PubMed DOI

Lunde L.F., Birkemoe T., Kauserud H., Boddy L., Jacobsen R.M., Morgado L., Sverdrup-Thygeson A., Maurice S. DNA Metabarcoding Reveals Host-Specific Communities of Arthropods Residing in Fungal Fruit Bodies. Proc. R. Soc. B. 2022;289:20212622. doi: 10.1098/rspb.2021.2622. PubMed DOI PMC

Alberdi A., Aizpurua O., Bohmann K., Gopalakrishnan S., Lynggaard C., Nielsen M., Gilbert M.T.P. Promises and Pitfalls of Using High-throughput Sequencing for Diet Analysis. Mol. Ecol. Resour. 2019;19:327–348. doi: 10.1111/1755-0998.12960. PubMed DOI

Koskinen J.S., Abrego N., Vesterinen E.J., Schulz T., Roslin T., Nyman T. Imprints of Latitude, Host Taxon, and Decay Stage on Fungus-associated Arthropod Communities. Ecol. Monogr. 2022;92:e1516. doi: 10.1002/ecm.1516. DOI

Roslin T., Traugott M., Jonsson M., Stone G.N., Creer S., Symondson W.O.C. Introduction: Special Issue on Species Interactions, Ecological Networks and Community Dynamics—Untangling the Entangled Bank Using Molecular Techniques. Mol. Ecol. 2019;28:157–164. doi: 10.1111/mec.14974. PubMed DOI

Ma Y., Gao W., Zhang F., Zhu X., Kong W., Niu S., Gao K., Yang H. Community Composition and Trophic Mode Diversity of Fungi Associated with Fruiting Body of Medicinal Sanghuangporus vaninii. BMC Microbiol. 2022;22:251. doi: 10.1186/s12866-022-02663-2. PubMed DOI PMC

Hulcr J., Stelinski L.L. The Ambrosia Symbiosis: From Evolutionary Ecology to Practical Management. Annu. Rev. Entomol. 2017;62:285–303. doi: 10.1146/annurev-ento-031616-035105. PubMed DOI

Aanen D.K., Boomsma J.J. Insect-Fungal Associations: Ecology and Evolution. Oxford University Press; Oxford, UK: 2005. Evolutionary Dynamics of the Mutualistic Symbiosis between Fungus-Growing Termites and Termitomyces Fungi; pp. 191–210.

Mueller U.G., Rehner S.A., Schultz T.R. The Evolution of Agriculture in Ants. Science. 1998;281:2034–2038. doi: 10.1126/science.281.5385.2034. PubMed DOI

Aanen D.K., Boomsma J.J. Insect Symbiosis. Volume 2. CRC Press; Boca Raton, FL, USA: 2006. The Evolutionary Origin and Maintenance of the Mutualistic Symbiosis between Termites and Fungi; pp. 101–118. DOI

Mueller U.G., Schultz T.R., Currie C.R., Malloch D. The Origin of the Attine Ant-Fungus Mutualism. Q. Rev. Biol. 2001;76:169–197. doi: 10.1086/393867. PubMed DOI

Mueller U.G., Kardish M.R., Ishak H.D., Wright A.M., Solomon S.E., Bruschi S.M., Carlson A.L., Bacci M. Phylogenetic Patterns of Ant–Fungus Associations Indicate That Farming Strategies, Not Only a Superior Fungal Cultivar, Explain the Ecological Success of Leafcutter Ants. Mol. Ecol. 2018;27:2414–2434. doi: 10.1111/mec.14588. PubMed DOI

Aanen D.K. As You Reap, so Shall You Sow: Coupling of Harvesting and Inoculating Stabilizes the Mutualism between Termites and Fungi. Biol. Lett. 2006;2:209–212. doi: 10.1098/rsbl.2005.0424. PubMed DOI PMC

Dighton J., White J.F. The Fungal Community. CRC Press; Boca Raton, FL, USA: 2017. DOI

Harris K.K., Boerner R.E.J. Effects of Belowground Grazing by Collembola on Growth, Mycorrhizal Infection, and P Uptake of Geranium Robertianum. Plant Soil. 1990;129:203–210. doi: 10.1007/BF00032414. DOI

Johnson S.N., Douglas A.E., Woodward S., Hartley S.E. Microbial Impacts on Plant-Herbivore Interactions: The Indirect Effects of a Birch Pathogen on a Birch Aphid. Oecologia. 2003;134:388–396. doi: 10.1007/s00442-002-1139-6. PubMed DOI

Johnson D., Krsek M., Wellington E.M.H., Stott A.W., Cole L., Bardgett R.D., Read D.J., Leake J.R. Soil Invertebrates Disrupt Carbon Flow Through Fungal Networks. Science. 2005;309:1047. doi: 10.1126/science.1114769. PubMed DOI

Biere A., Bennett A.E. Three-way Interactions between Plants, Microbes and Insects. Funct. Ecol. 2013;27:567–573. doi: 10.1111/1365-2435.12100. DOI

Lilleskov E.A., Bruns T.D. Spore Dispersal of a Resupinate Ectomycorrhizal Fungus, Tomentella sublilacina, via Soil Food Webs. Mycologia. 2005;97:762–769. doi: 10.1080/15572536.2006.11832767. PubMed DOI

Vašutová M., Mleczko P., López-García A., Maček I., Boros G., Ševčík J., Fujii S., Hackenberger D., Tuf I.H., Hornung E., et al. Taxi Drivers: The Role of Animals in Transporting Mycorrhizal Fungi. Mycorrhiza. 2019;29:413–434. doi: 10.1007/s00572-019-00906-1. PubMed DOI

Fogel R., Peck S.B. Ecological Studies of Hypogeous Fungi. I. Coleoptera Associated with Sporocarps. Mycologia. 1975;67:741–747. doi: 10.1080/00275514.1975.12019804. PubMed DOI

Ori F., Menotta M., Leonardi M., Amicucci A., Zambonelli A., Covès H., Selosse M.-A., Schneider-Maunoury L., Pacioni G., Iotti M. Effect of Slug Mycophagy on Tuber aestivum Spores. Fungal Biol. 2021;125:796–805. doi: 10.1016/j.funbio.2021.05.002. PubMed DOI

Kitabayashi K., Kitamura S., Tuno N. Fungal Spore Transport by Omnivorous Mycophagous Slug in Temperate Forest. Ecol. Evol. 2022;12:e8565. doi: 10.1002/ece3.8565. PubMed DOI PMC

Thomas P.W., Thomas H.W. Mycorrhizal Fungi and Invertebrates: Impacts on Tuber melanosporum Ascospore Dispersal and Lifecycle by Isopod Mycophagy. Food Webs. 2022;33:e00260. doi: 10.1016/j.fooweb.2022.e00260. DOI

Koch R.A., Aime M.C. Population Structure of Guyanagaster necrorhizus Supports Termite Dispersal for This Enigmatic Fungus. Mol. Ecol. 2018;27:2667–2679. doi: 10.1111/mec.14710. PubMed DOI

Love D.E. The Activities of Various Diptera at the Stinkhorn Phallus impudicus Pers. Ir. Nat. J. 1976;18:301–303.

James R.L., Dumroese R.K., Wenny D.L. Botrytis cinerea Carried by Adult Fungus Gnats (Diptera: Sciaridae) in Container Nurseries. Tree Plant. Notes. 1995;46:48–53.

Okada H., Sueyoshi M., Suetsugu K. Consumption of the Ectomycorrhizal Fungi Rhizopogon roseolus and R. luteolus by Chamaesyrphus japonicus (Diptera: Syrphidae) Entomol. Sci. 2021;24:123–126. doi: 10.1111/ens.12460. DOI

Mazin M., Harvey R., Andreadis S., Pecchia J., Cloonan K., Rajotte E.G. Mushroom Sciarid Fly, Lycoriella ingenua (Diptera: Sciaridae) Adults and Larvae Vector Mushroom Green Mold (Trichoderma aggressivum Ft. aggressivum) Spores. Appl. Entomol. Zool. 2019;54:369–376. doi: 10.1007/s13355-019-00632-2. DOI

Claridge A.W., May T.W. Mycophagy among Australian Mammals. Austral. Ecol. 1994;19:251–275. doi: 10.1111/j.1442-9993.1994.tb00489.x. DOI

Ashkannejhad S., Horton T.R. Ectomycorrhizal Ecology under Primary Succession on Coastal Sand Dunes: Interactions Involving Pinus contorta, Suilloid Fungi and Deer. New Phytol. 2006;169:345–354. doi: 10.1111/j.1469-8137.2005.01593.x. PubMed DOI

Bruns T.D., Peay K.G., Boynton P.J., Grubisha L.C., Hynson N.A., Nguyen N.H., Rosenstock N.P. Inoculum Potential of Rhizopogon Spores Increases with Time over the First 4 Yr of a 99-yr Spore Burial Experiment. New Phytol. 2009;181:463–470. doi: 10.1111/j.1469-8137.2008.02652.x. PubMed DOI

Sarwar S., Saba M., Khalid A.N., Dentinger B.M. Suillus marginielevatus, a New Species and S. triacicularis, a New Record from Western Himalaya, Pakistan. Phytotaxa. 2015;203:169. doi: 10.11646/phytotaxa.203.2.6. DOI

Miyamoto Y., Maximov T.C., Sugimoto A., Nara K. Discovery of Rhizopogon Associated with Larix from Northeastern Siberia: Insights into Host Shift of Ectomycorrhizal Fungi. Mycoscience. 2019;60:274–280. doi: 10.1016/j.myc.2019.03.003. DOI

Leyronas C., Raynal G. Role of Fungal Ascospores in the Infection of Orchardgrass (Dactylis glomerata) by Epichloë typhina Agent if Choke Disease. J. Plant Pathol. 2008;90:15–21.

Bultman T.L., Jr J.F.W., Bowdish T.I., Welch A.M. A New Kind of Mutualism between Fungi and Insects. Mycol. Res. 1998;102:235–238. doi: 10.1017/S0953756297004802. DOI

Hoffman G.D., Rao S. Association of Slugs with the Fungal Pathogen Epichloë typhina (Ascomycotina: Clavicipitaceae): Potential Role in Stroma Fertilisation and Disease Spread: Slug Consumption of Epichloë Stromata. Ann. Appl. Biol. 2013;162:324–334. doi: 10.1111/aab.12024. DOI

Bultman T.L., Mathews P.L. Mycophagy by a Millipede and Its Possible Impact on an Insect-Fungus Mutualism. Oikos. 1996;75:67. doi: 10.2307/3546322. DOI

Six D.L. Ecological and Evolutionary Determinants of Bark Beetle —Fungus Symbioses. Insects. 2012;3:339–366. doi: 10.3390/insects3010339. PubMed DOI PMC

Joseph R., Keyhani N.O. Fungal Mutualisms and Pathosystems: Life and Death in the Ambrosia Beetle Mycangia. Appl. Microbiol. Biotechnol. 2021;105:3393–3410. doi: 10.1007/s00253-021-11268-0. PubMed DOI

Harrington T.C., Fraedrich S.W., Aghayeva D.N. Raffaelea lauricola, a New Ambrosia Beetle Symbiont and Pathogen on the Lauracea. Mycotaxon. 2008;104:399–404.

Jiang Z.-R., Morita T., Jikumaru S., Kuroda K., Masuya H., Kajimura H. The Role of Mycangial Fungi Associated with Ambrosia Beetles (Euwallacea interjectus) in Fig Wilt Disease: Dual Inoculation of Fusarium kuroshium and Ceratocystis ficicola Can Bring Fig Saplings to Early Symptom Development. Microorganisms. 2022;10:1912. doi: 10.3390/microorganisms10101912. PubMed DOI PMC

Slippers B., Coutinho T.A., Wingfield B.D., Wingfield M.J. A Review of the Genus Amylostereum and Its Association with Woodwasps. S. Afr. J. Sci. 2003;99:70–74.

Pažoutová S., Šrůtka P., Holuša J., Chudíčková M., Kolařík M. Diversity of Xylariaceous Symbionts in Xiphydria Woodwasps: Role of Vector and a Host Tree. Fungal Ecol. 2010;3:392–401. doi: 10.1016/j.funeco.2010.07.002. DOI

Kadowaki K., Leschen R.A.B., Beggs J.R. No Evidence for a Ganoderma Spore Dispersal Mutualism in an Obligate Spore-Feeding Beetle Zearagytodes maculifer. Fungal Biol. 2011;115:768–774. doi: 10.1016/j.funbio.2011.06.001. PubMed DOI

Crowther T.W., Boddy L., Jones T.H. Outcomes of Fungal Interactions Are Determined by Soil Invertebrate Grazers: Grazers Alter Fungal Community. Ecol. Lett. 2011;14:1134–1142. doi: 10.1111/j.1461-0248.2011.01682.x. PubMed DOI

Boddy L. Interspecific Combative Interactions between Wood-Decaying Basidiomycetes. FEMS Microbiol. Ecol. 2000;31:185–194. doi: 10.1111/j.1574-6941.2000.tb00683.x. PubMed DOI

A′Bear A.D., Murray W., Webb R., Boddy L., Jones T.H. Contrasting Effects of Elevated Temperature and Invertebrate Grazing Regulate Multispecies Interactions between Decomposer Fungi. PLoS ONE. 2013;8:e77610. doi: 10.1371/journal.pone.0077610. PubMed DOI PMC

Crowther T.W., Stanton D.W.G., Thomas S.M., A’Bear A.D., Hiscox J., Jones T.H., Voříšková J., Baldrian P., Boddy L. Top-down Control of Soil Fungal Community Composition by a Globally Distributed Keystone Consumer. Ecology. 2013;94:2518–2528. doi: 10.1890/13-0197.1. PubMed DOI

Janoušková M., Kohout P., Moradi J., Doubková P., Frouz J., Vosolsobě S., Rydlová J. Microarthropods Influence the Composition of Rhizospheric Fungal Communities by Stimulating Specific Taxa. Soil Biol. Biochem. 2018;122:120–130. doi: 10.1016/j.soilbio.2018.04.016. DOI

Leopold D.R., Wilkie J.P., Dickie I.A., Allen R.B., Buchanan P.K., Fukami T. Priority Effects Are Interactively Regulated by Top-down and Bottom-up Forces: Evidence from Wood Decomposer Communities. Ecol. Lett. 2017;20:1054–1063. doi: 10.1111/ele.12803. PubMed DOI

Sauvadet M., Chauvat M., Brunet N., Bertrand I. Can Changes in Litter Quality Drive Soil Fauna Structure and Functions? Soil Biol. Biochem. 2017;107:94–103. doi: 10.1016/j.soilbio.2016.12.018. DOI

Jacobsen R.M., Sverdrup-Thygeson A., Kauserud H., Mundra S., Birkemoe T. Exclusion of Invertebrates Influences Saprotrophic Fungal Community and Wood Decay Rate in an Experimental Field Study. Funct. Ecol. 2018;32:2571–2582. doi: 10.1111/1365-2435.13196. DOI

Macheleidt J., Mattern D.J., Fischer J., Netzker T., Weber J., Schroeckh V., Valiante V., Brakhage A.A. Regulation and Role of Fungal Secondary Metabolites. Annu. Rev. Genet. 2016;50:371–392. doi: 10.1146/annurev-genet-120215-035203. PubMed DOI

Rohlfs M., Churchill A.C.L. Fungal Secondary Metabolites as Modulators of Interactions with Insects and Other Arthropods. Fungal Genet. Biol. 2011;48:23–34. doi: 10.1016/j.fgb.2010.08.008. PubMed DOI

Fox E.M., Howlett B.J. Secondary Metabolism: Regulation and Role in Fungal Biology. Curr. Opin. Microbiol. 2008;11:481–487. doi: 10.1016/j.mib.2008.10.007. PubMed DOI

Demain A.L., Fang A. History of Modern Biotechnology I. Springer; Berlin/Heidelberg, Germany: 2000. The Natural Functions of Secondary Metabolites.39p. PubMed DOI

Staaden S., Milcu A., Rohlfs M., Scheu S. Olfactory Cues Associated with Fungal Grazing Intensity and Secondary Metabolite Pathway Modulate Collembola Foraging Behaviour. Soil Biol. Biochem. 2011;43:1411–1416. doi: 10.1016/j.soilbio.2010.10.002. DOI

Caballero Ortiz S., Rohlfs M. Isopod Grazing Induces Down-Regulation of Aspergillus nidulans Anti-Fungivore Defence Marker Genes. Fungal Ecol. 2016;20:84–87. doi: 10.1016/j.funeco.2015.12.004. DOI

Stötefeld L., Scheu S., Rohlfs M. Fungal Chemical Defence Alters Density-Dependent Foraging Behaviour and Success in a Fungivorous Soil Arthropod. Ecol. Entomol. 2012;37:323–329. doi: 10.1111/j.1365-2311.2012.01373.x. DOI

Wölfle S., Trienens M., Rohlfs M. Experimental Evolution of Resistance against a Competing Fungus in Drosophila melanogaster. Oecologia. 2009;161:781–790. doi: 10.1007/s00442-009-1414-x. PubMed DOI

Kempken F., Rohlfs M. Fungal Secondary Metabolite Biosynthesis—A Chemical Defence Strategy against Antagonistic Animals? Fungal Ecol. 2010;3:107–114. doi: 10.1016/j.funeco.2009.08.001. DOI

Künzler M. How Fungi Defend Themselves against Microbial Competitors and Animal Predators. PLoS Pathog. 2018;14:e1007184. doi: 10.1371/journal.ppat.1007184. PubMed DOI PMC

Tehan R.M., Blount R.R., Goold R.L., Mattos D.R., Spatafora N.R., Tabima J.F., Gazis R., Wang C., Ishmael J.E., Spatafora J.W., et al. Tolypocladamide H and the Proposed Tolypocladamide NRPS in Tolypocladium Species. J. Nat. Prod. 2022;85:1363–1373. doi: 10.1021/acs.jnatprod.2c00153. PubMed DOI PMC

Schiestl F.P., Steinebrunner F., Schulz C., von Reuß S., Francke W., Weymuth C., Leuchtmann A. Evolution of ‘Pollinator’- Attracting Signals in Fungi. Biol. Lett. 2006;2:401–404. doi: 10.1098/rsbl.2006.0479. PubMed DOI PMC

Becher P.G., Hagman A., Verschut V., Chakraborty A., Rozpędowska E., Lebreton S., Bengtsson M., Flick G., Witzgall P., Piškur J. Chemical Signaling and Insect Attraction Is a Conserved Trait in Yeasts. Ecol. Evol. 2018;8:2962–2974. doi: 10.1002/ece3.3905. PubMed DOI PMC

Pacioni G., Bologna M.A., Laurenzi M. Insect Attraction by Tuber: A Chemical Explanation. Mycol. Res. 1991;95:1359–1363. doi: 10.1016/S0953-7562(09)80385-7. DOI

Griffiths D.A., Hodson A.C., Christensen C.M. Grain Storage Fungi Associated with Mites. J. Econ. Entomol. 1959;52:514–518. doi: 10.1093/jee/52.3.514. DOI

Vanhaelen M., Vanhaelen-Fastré R., Geeraerts J., Wirthlin T. Cis-and Trans-Octa-1,5-Dien-3-Ol, New Attractants to the Cheese Mite Tyrophagus putrescentiae (Schrank) (Acarina, Acaridae) Idintified in Trichothecium roseum (Fungi Imperfecti) Microbios. 1978;23:199–212. PubMed

Brückner A., Schuster R., Smit T., Pollierer M.M., Schaeffler I., Heethoff M. Track the Snack–Olfactory Cues Shape Foraging Behaviour of Decomposing Soil Mites (Oribatida) Pedobiologia. 2018;66:74–80. doi: 10.1016/j.pedobi.2017.10.004. DOI

Hubert J., Kubátová A., Šárová J. Feeding of Scheloribates laevigatus (Acari: Oribatida) on Different Stadia of Decomposing Grass Litter (Holcus lanatus) Pedobiologia. 2000;44:627–639. doi: 10.1078/S0031-4056(04)70077-3. DOI

Stökl J., Strutz A., Dafni A., Svatos A., Doubsky J., Knaden M., Sachse S., Hansson B.S., Stensmyr M.C. A Deceptive Pollination System Targeting Drosophilids through Olfactory Mimicry of Yeast. Curr. Biol. 2010;20:1846–1852. doi: 10.1016/j.cub.2010.09.033. PubMed DOI

Bengtsson G. Fungal Odour Attracts Soil Collembola. Soil Biol. Biochem. 1988;20:25–30. doi: 10.1016/0038-0717(88)90122-8. DOI

Bengtsson G., Ohlsson L., Rundgren S. Influence of Fungi on Growth and Survival of Onychiurus armatus (Collembola) in a Metal Polluted Soil. Oecologia. 1985;68:63–68. doi: 10.1007/BF00379475. PubMed DOI

Rangel L.I., Hamilton O., Jonge R., Bolton M.D. Fungal Social Influencers: Secondary Metabolites as a Platform for Shaping the Plant-Associated Community. Plant J. 2021;108:632–645. doi: 10.1111/tpj.15490. PubMed DOI

Laraba I., McCormick S.P., Vaughan M.M., Proctor R.H., Busman M., Appell M., O’Donnell K., Felker F.C., Catherine Aime M., Wurdack K.J. Pseudoflowers Produced by Fusarium xyrophilum on Yellow-Eyed Grass (Xyris Spp.) in Guyana: A Novel Floral Mimicry System? Fungal Genet. Biol. 2020;144:103466. doi: 10.1016/j.fgb.2020.103466. PubMed DOI

Roy B.A. Floral Mimicry by a Plant Pathogen. Nature. 1993;362:56–58. doi: 10.1038/362056a0. DOI

Roy B.A. The Use and Abuse of Pollinators by Fungi. Trends Ecol. Evol. 1994;9:335–339. doi: 10.1016/0169-5347(94)90154-6. PubMed DOI

Tanney J.B., Hutchison L.J. Encapsulation and Immobilization of a Mycophagous Nematode by Two Sphaerobolus Species. Botany. 2011;89:745–751. doi: 10.1139/b11-060. DOI

Tanney J.B., Hutchison L.J. The Production of Nematode-Immobilizing Secretory Cells by Climacodon septentrionalis. Mycoscience. 2012;53:31–35. doi: 10.1007/s10267-011-0128-1. DOI

Hibbett D.S., Thorn R.G. Nematode-Trapping in Pleurotus tuberregium. Mycologia. 1994;86:696–699. doi: 10.1080/00275514.1994.12026471. DOI

Barron G.L., Thorn R.G. Destruction of nematodes by species of Pleurotus. Can. J. Bot. 1987;65:774–778. doi: 10.1139/b87-103. DOI

Heydari R., Pourjam E., Goltapeh E.M. Antagonistic Effect of Some Species of Pleurotus on the Root-Knot Nematode, Meloidogyne javanica in Vitro. Plant Pathol. J. 2006;5:173–177. doi: 10.3923/ppj.2006.173.177. DOI

Hsueh Y.-P., Mahanti P., Schroeder F.C., Sternberg P.W. Nematode-Trapping Fungi Eavesdrop on Nematode Pheromones. Curr. Biol. 2013;23:83–86. doi: 10.1016/j.cub.2012.11.035. PubMed DOI PMC

Nordbring-Hertz B., Jansson H., Tunlid A. eLS. John Wiley & Sons; Hoboken, NJ, USA: 2011. Nematophagous Fungi.

Vidal-Diez de Ulzurrun G., Hsueh Y.-P. Predator-Prey Interactions of Nematode-Trapping Fungi and Nematodes: Both Sides of the Coin. Appl. Microbiol. Biotechnol. 2018;102:3939–3949. doi: 10.1007/s00253-018-8897-5. PubMed DOI

Rehermann G., Spitaler U., Sahle K., Cossu C.S., Donne L.D., Bianchi F., Eisenstecken D., Angeli S., Schmidt S., Becher P.G. Behavioral Manipulation of Drosophila suzukii for Pest Control: High Attraction to Yeast Enhances Insecticide Efficacy When Applied on Leaves. Pest Manag. Sci. 2022;78:896–904. doi: 10.1002/ps.6699. PubMed DOI

Scheidler N.H., Liu C., Hamby K.A., Zalom F.G., Syed Z. Volatile Codes: Correlation of Olfactory Signals and Reception in Drosophila–Yeast Chemical Communication. Sci. Rep. 2015;5:14059. doi: 10.1038/srep14059. PubMed DOI PMC

Günther C.S., Goddard M.R. Do Yeasts and Drosophila Interact Just by Chance? Fungal Ecol. 2019;38:37–43. doi: 10.1016/j.funeco.2018.04.005. DOI

Davis T.S., Crippen T.L., Hofstetter R.W., Tomberlin J.K. Microbial Volatile Emissions as Insect Semiochemicals. J. Chem. Ecol. 2013;39:840–859. doi: 10.1007/s10886-013-0306-z. PubMed DOI

Inamdar A.A., Morath S., Bennett J.W. Fungal Volatile Organic Compounds: More Than Just a Funky Smell? Annu. Rev. Microbiol. 2020;74:101–116. doi: 10.1146/annurev-micro-012420-080428. PubMed DOI

Kemp G.H.J. Fusarium Glume Spot of Wheat: A Newly Recorded Mite-Associated Disease in South Africa. Plant Dis. 1996;80:48. doi: 10.1094/PD-80-0048. DOI

da Silva G.L., Esswein I.Z., Heidrich D., Dresch F., Maciel M.J., Pagani D.M., Valente P., Scroferneker M.L., Johann L., Ferla N.J., et al. Population Growth of the Stored Product Pest Tyrophagus putrescentiae (Acari: Acaridae) on Environmentally and Medically Important Fungi. Exp. Appl. Acarol. 2019;78:49–64. doi: 10.1007/s10493-019-00370-8. PubMed DOI

Novgorodova T., Vladimirova N., Marchenko I., Sadokhina T., Tyurin M., Ashmarina L., Bakshaev D., Lednev G., Danilov V. The Effect of Bean Seed Treatment with Entomopathogenic Fungus Metarhizium robertsii on Soil Microarthropods (Acari, Collembola) Insects. 2022;13:807. doi: 10.3390/insects13090807. PubMed DOI PMC

Bae Y.-S., Knudsen G.R. Influence of a Fungus-Feeding Nematode on Growth and Biocontrol Efficacy of Trichoderma harzianum. Phytopathology. 2001;91:301–306. doi: 10.1094/PHYTO.2001.91.3.301. PubMed DOI

Knudsen G.R., Kim T.G., Bae Y.-S., Dandurand L.-M.C. Use of Quantitative Real-Time PCR to Unravel Ecological Complexity in a Biological Control System. Adv. Biosci. Biotechnol. 2015;06:237–244. doi: 10.4236/abb.2015.64023. DOI

De la Cruz R.G., Knudsen G.R., Dandurand L.-M.C. Colonisation of Sclerotia of Sclerotinia sclerotiorum by a Fungivorous Nematode. Biocontrol Sci. Technol. 2016;26:1166–1170. doi: 10.1080/09583157.2016.1183765. DOI

Bourdôt G.W., Hurrell G.A., Saville D.J., Leathwick D.M. Impacts of Applied Sclerotinia sclerotiorum on the Dynamics of a Cirsium arvense Population. Weed Res. 2006;46:61–72. doi: 10.1111/j.1365-3180.2006.00481.x. DOI

Abu-Dieyeh M.H., Watson A.K. Efficacy of Sclerotinia minor for Dandelion Control: Effect of Dandelion Accession, Age and Grass Competition. Weed Res. 2007;47:63–72. doi: 10.1111/j.1365-3180.2007.00542.x. DOI

García De la Cruz R., Knudsen G.R., Carta L.K., Newcombe G. Either Low Inoculum or a Multi-Trophic Interaction Can Reduce the Ability of Sclerotinia sclerotiorum to Kill an Invasive Plant. Rhizosphere. 2018;5:76–80. doi: 10.1016/j.rhisph.2018.01.002. DOI

Ek H., Sjögren M., Arnebrant K., Söderström B. Extramatrical Mycelial Growth, Biomass Allocation and Nitrogen Uptake in Ectomycorrhizal Systems in Response to Collembolan Grazing. Appl. Soil Ecol. 1994;1:155–169. doi: 10.1016/0929-1393(94)90035-3. DOI

Innocenti G., Sabatini M.A. Collembola and Plant Pathogenic, Antagonistic and Arbuscular Mycorrhizal Fungi: A Review. Bull. Insectol. 2018;71:71–76.

Melidossian H.S., Seem R.C., English-Loeb G., Wilcox W.F., Gadoury D.M. Suppression of Grapevine Powdery Mildew by a Mycophagous Mite. Plant Dis. 2005;89:1331–1338. doi: 10.1094/PD-89-1331. PubMed DOI

Pozzebon A., Duso C. Grape Downy Mildew Plasmopara viticola, an Alternative Food for Generalist Predatory Mites Occurring in Vineyards. Biol. Control. 2008;45:441–449. doi: 10.1016/j.biocontrol.2008.02.001. DOI

Gruss I., Twardowski J., Matkowski K., Jurga M. Impact of Collembola on the Winter Wheat Growth in Soil Infected by Soil-Borne Pathogenic Fungi. Agronomy. 2022;12:1599. doi: 10.3390/agronomy12071599. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...