Magnetic 2D Transition-Metal-Based Nanomaterials in Biomedicine: Opportunities and Challenges in Cancer Therapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
101072462
European Union
LM2018129
Ministry of Education Youth and Sports
LX22NPO5102
Ministry of Education Youth and Sports
CZ.02.01.01/00/22_008/0004587
Ministry of Education Youth and Sports
CZ.02.01.01/00/22_008/0004644
Ministry of Education Youth and Sports
PubMed
40508567
PubMed Central
PMC12155818
DOI
10.3390/ma18112570
PII: ma18112570
Knihovny.cz E-zdroje
- Klíčová slova
- hyperthermia, magnetic nanoparticles, magnetic resonance imaging, metal–organic frameworks, photodynamic therapy, photothermal therapy, targeted drug delivery, transition metal carbides/nitrides, transition metal dichalcogenides, transition metal oxides,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Severe systemic toxicity and poor targeting efficiency remain major limitations of traditional chemotherapy, emphasising the need for smarter drug delivery systems. Magnetic 2D transition-metal-based nanomaterials offer a promising approach, as they can be designed to combine high drug loading, precise targeting, and controlled release. The key material classes-transition metal dichalcogenides, transition metal carbides/nitrides, transition metal oxides, and metal-organic frameworks-share important physicochemical properties. These include high surface-to-volume ratios, tuneable functionalities, and efficient intracellular uptake. Incorporating magnetic nanoparticles into these 2D structures broadens their potential beyond drug delivery, through enabling multimodal therapeutic strategies such as hyperthermia induction, real-time imaging, and photothermal or photodynamic therapy. This review outlines the potential of magnetic 2D transition-metal-based nanomaterials for biomedical applications by evaluating their therapeutic performance and biological response. In parallel, it offers a critical analysis of how differences in physicochemical properties influence their potential for specific cancer treatment applications, highlighting the most promising uses of each in bionanomedicine.
Zobrazit více v PubMed
Li J., Yang N., Yang M., Lu C., Xie M. Development of a Magnetic MoS2 System Camouflaged by Lipid for Chemo/Phototherapy of Cancer. Colloids Surf. B Biointerfaces. 2022;213:112389. doi: 10.1016/j.colsurfb.2022.112389. PubMed DOI
Jouybari M.H., Hosseini S., Mahboobnia K., Boloursaz L.A., Moradi M., Irani M. Simultaneous Controlled Release of 5-FU, DOX and PTX from Chitosan/PLA/5-FU/g-C3N4-DOX/g-C3N4-PTX Triaxial Nanofibers for Breast Cancer Treatment in Vitro. Colloids Surf. B Biointerfaces. 2019;179:495–504. doi: 10.1016/j.colsurfb.2019.04.026. PubMed DOI
Yan M., Wu S., Wang Y., Liang M., Wang M., Hu W., Yu G., Mao Z., Huang F., Zhou J. Recent Progress of Supramolecular Chemotherapy Based on Host–Guest Interactions. Adv. Mater. 2024;36:2304249. doi: 10.1002/adma.202304249. PubMed DOI
Li H., Fan R., Zou B., Yan J., Shi Q., Guo G. Roles of MXenes in Biomedical Applications: Recent Developments and Prospects. J. Nanobiotechnol. 2023;21:73. doi: 10.1186/s12951-023-01809-2. PubMed DOI PMC
Zhang W.-J., Li S., Vijayan V., Lee J.S., Park S.S., Cui X., Chung I., Lee J., Ahn S., Kim J.R., et al. ROS- and pH-Responsive Polydopamine Functionalized Ti3C2Tx MXene-Based Nanoparticles as Drug Delivery Nanocarriers with High Antibacterial Activity. Nanomaterials. 2022;12:4392. doi: 10.3390/nano12244392. PubMed DOI PMC
Mahmoud A.M., Deambrogi C. Advancements in Nanotechnology for Targeted and Controlled Drug Delivery in Hematologic Malignancies: Shaping the Future of Targeted Therapeutics. Appl. Biosci. 2025;4:16. doi: 10.3390/applbiosci4010016. DOI
Ge X., Mohapatra J., Silva E., He G., Gong L., Lyu T., Madhogaria R.P., Zhao X., Cheng Y., Al-Enizi A.M., et al. Metal–Organic Framework as a New Type of Magnetothermally-Triggered On-Demand Release Carrier. Small. 2024;20:2306940. doi: 10.1002/smll.202306940. PubMed DOI
Boppana S.H., Kutikuppala L.V.S., Sharma S., Madhavrao C., Rangari G., Misra A.K., Kandi V., Mishra S., Singh P.K., Rabaan A.A., et al. Current Approaches in Smart Nano-Inspired Drug Delivery: A Narrative Review. Health Sci. Rep. 2024;7:e2065. doi: 10.1002/hsr2.2065. PubMed DOI PMC
Akbar M.U., Badar M., Zaheer M. Programmable Drug Release from a Dual-Stimuli Responsive Magnetic Metal–Organic Framework. ACS Omega. 2022;7:32588–32598. doi: 10.1021/acsomega.2c04144. PubMed DOI PMC
Sun L., Liu H., Ye Y., Lei Y., Islam R., Tan S., Tong R., Miao Y.-B., Cai L. Smart Nanoparticles for Cancer Therapy. Signal Transduct. Target. Ther. 2023;8:418. doi: 10.1038/s41392-023-01642-x. PubMed DOI PMC
Dulińska-Litewka J., Łazarczyk A., Hałubiec P., Szafrański O., Karnas K., Karewicz A. Superparamagnetic Iron Oxide Nanoparticles—Current and Prospective Medical Applications. Materials. 2019;12:617. doi: 10.3390/ma12040617. PubMed DOI PMC
Shen L., Li B., Qiao Y. Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials. 2018;11:324. doi: 10.3390/ma11020324. PubMed DOI PMC
Avasthi A., Caro C., Pozo-Torres E., Leal M.P., García-Martín M.L. Magnetic Nanoparticles as MRI Contrast Agents. In: Puente-Santiago A.R., Rodríguez-Padrón D., editors. Surface-Modified Nanobiomaterials for Electrochemical and Biomedicine Applications. Springer International Publishing; Cham, Switzerland: 2020. pp. 49–91.
Kianfar E. Magnetic Nanoparticles in Targeted Drug Delivery: A Review. J. Supercond. Nov. Magn. 2021;34:1709–1735. doi: 10.1007/s10948-021-05932-9. DOI
Van de Walle A., Figuerola A., Espinosa A., Abou-Hassan A., Estrader M., Wilhelm C. Emergence of Magnetic Nanoparticles in Photothermal and Ferroptotic Therapies. Mater. Horiz. 2023;10:4757–4775. doi: 10.1039/D3MH00831B. PubMed DOI
Cheng H.-L., Guo H.-L., Xie A.-J., Shen Y.-H., Zhu M.-Z. 4-in-1 Fe3O4/g-C3N4@PPy-DOX Nanocomposites: Magnetic Targeting Guided Trimode Combinatorial Chemotherapy/PDT/PTT for Cancer. J. Inorg. Biochem. 2021;215:111329. doi: 10.1016/j.jinorgbio.2020.111329. PubMed DOI
Nikolovski D., Jeremic M., Paunovic J., Vucevic D., Radosavljevic T., Radojević-Škodrić S., Rakocevic R., Nesic D., Pantic I. Application of Iron Oxide Nanoparticles in Contemporary Experimental Physiology and Cell Biology Research. Rev. Adv. Mater. Sci. 2018;53:74–78. doi: 10.1515/rams-2018-0005. DOI
Wang X., Han X., Li C., Chen Z., Huang H., Chen J., Wu C., Fan T., Li T., Huang W., et al. 2D Materials for Bone Therapy. Adv. Drug Deliv. Rev. 2021;178:113970. doi: 10.1016/j.addr.2021.113970. PubMed DOI
Chang F., Davies G.-L. From 0D to 2D: Synthesis and Bio-Application of Anisotropic Magnetic Iron Oxide Nanomaterials. Prog. Mater. Sci. 2024;144:101267. doi: 10.1016/j.pmatsci.2024.101267. DOI
Davis R., Urbanowski R.A., Gaharwar A.K. 2D Layered Nanomaterials for Therapeutics Delivery. Curr. Opin. Biomed. Eng. 2021;20:100319. doi: 10.1016/j.cobme.2021.100319. PubMed DOI PMC
Anju S., Mohanan P.V. Biomedical Applications of Transition Metal Dichalcogenides (TMDCs) Synth. Met. 2021;271:116610. doi: 10.1016/j.synthmet.2020.116610. DOI
Chen L., Dai X., Feng W., Chen Y. Biomedical Applications of MXenes: From Nanomedicine to Biomaterials. Acc. Mater. Res. 2022;3:785–798. doi: 10.1021/accountsmr.2c00025. DOI
Hefayathullah M., Singh S., Ganesan V., Maduraiveeran G. Metal-Organic Frameworks for Biomedical Applications: A Review. Adv. Colloid Interface Sci. 2024;331:103210. doi: 10.1016/j.cis.2024.103210. PubMed DOI
Esfanddarani H.M., Panigrahi M. Phytosynthesis of Transition (Ni, Fe, Co, Cr, and Mn) Metals and Their Oxide Nanoparticles for Biomedical Applications: A Review. J. Mater. Sci. 2024;59:10677–10723. doi: 10.1007/s10853-024-09800-4. DOI
Saeed M., Uddin W., Saleemi A.S., Hafeez M., Kamil M., Mir I.A., Sunila, Ullah R., Rehman S.U., Ling Z. Optoelectronic Properties of MoS2-ReS2 and ReS2-MoS2 Heterostructures. Phys. B Condens. Matter. 2020;577:411809. doi: 10.1016/j.physb.2019.411809. DOI
Murali A., Lokhande G., Deo K.A., Brokesh A., Gaharwar A.K. Emerging 2D Nanomaterials for Biomedical Applications. Mater. Today. 2021;50:276–302. doi: 10.1016/j.mattod.2021.04.020. PubMed DOI PMC
Garg T., Dabra N., Hundal J.S. Ferroelectric Ceramic-Polymer Nanocomposites for Applications in Dielectric Energy Storage Capacitors. In: Haseeb A.S.M.A., editor. Encyclopedia of Materials: Electronics. Academic Press; Oxford, UK: 2023. pp. 463–498.
Tyagi A., Banerjee S., Cherusseri J., Kar K.K. Characteristics of Transition Metal Oxides. In: Kar K.K., editor. Handbook of Nanocomposite Supercapacitor Materials I Characteristics. Springer International Publishing; Cham, Switzerland: 2020. pp. 91–123. (Springer Series in Materials Science).
Zhao W., Li A., Zhang A., Zheng Y., Liu J. Recent Advances in Functional-Polymer-Decorated Transition-Metal Nanomaterials for Bioimaging and Cancer Therapy. ChemMedChem. 2018;13:2134–2149. doi: 10.1002/cmdc.201800462. PubMed DOI
Nikitin A.A., Ivanova A.V., Semkina A.S., Lazareva P.A., Abakumov M.A. Magneto-Mechanical Approach in Biomedicine: Benefits, Challenges, and Future Perspectives. Int. J. Mol. Sci. 2022;23:11134. doi: 10.3390/ijms231911134. PubMed DOI PMC
Sobolev K., Omelyanchik A., Shilov N., Gorshenkov M., Andreev N., Comite A., Slimani S., Peddis D., Ovchenkov Y., Vasiliev A., et al. Iron Oxide Nanoparticle-Assisted Delamination of Ti3C2Tx MXenes: A New Approach to Produce Magnetic MXene-Based Composites. Nanomaterials. 2024;14:97. doi: 10.3390/nano14010097. PubMed DOI PMC
Hojjati-Najafabadi A., Mansoorianfar M., Liang T., Shahin K., Wen Y., Bahrami A., Karaman C., Zare N., Karimi-Maleh H., Vasseghian Y. Magnetic-MXene-Based Nanocomposites for Water and Wastewater Treatment: A Review. J. Water Process Eng. 2022;47:102696. doi: 10.1016/j.jwpe.2022.102696. DOI
Rethinasabapathy M., Bhaskaran G., Park B., Shin J.-Y., Kim W.-S., Ryu J., Huh Y.S. Iron Oxide (Fe3O4)-Laden Titanium Carbide (Ti3C2Tx) MXene Stacks for the Efficient Sequestration of Cationic Dyes from Aqueous Solution. Chemosphere. 2022;286:131679. doi: 10.1016/j.chemosphere.2021.131679. PubMed DOI
Xu Z., Long Q., Deng Y., Liao L. In Situ Synthesis and Catalytic Application of Reduced Graphene Oxide Supported Cobalt Nanowires. Appl. Surf. Sci. 2018;441:955–964. doi: 10.1016/j.apsusc.2018.02.098. DOI
Liu X., Liang T., Zhang R., Ding Q., Wu S., Li C., Lin Y., Ye Y., Zhong Z., Zhou M. Iron-Based Metal–Organic Frameworks in Drug Delivery and Biomedicine. ACS Appl. Mater. Interfaces. 2021;13:9643–9655. doi: 10.1021/acsami.0c21486. PubMed DOI
Ensoylu M., Deliormanlı A.M., Atmaca H. Tungsten Disulfide Nanoparticle-Containing PCL and PLGA-Coated Bioactive Glass Composite Scaffolds for Bone Tissue Engineering Applications. J. Mater. Sci. 2021;56:18650–18667. doi: 10.1007/s10853-021-06494-w. DOI
Chen W., Ouyang J., Liu H., Chen M., Zeng K., Sheng J., Liu Z., Han Y., Wang L., Li J., et al. Black Phosphorus Nanosheet-Based Drug Delivery System for Synergistic Photodynamic/Photothermal/Chemotherapy of Cancer. Adv. Mater. Deerfield Beach Fla. 2017;29:1603864. doi: 10.1002/adma.201603864. PubMed DOI
Roy S., Bermel P. Electronic and Optical Properties of Ultra-Thin 2D Tungsten Disulfide for Photovoltaic Applications. Sol. Energy Mater. Sol. Cells. 2018;174:370–379. doi: 10.1016/j.solmat.2017.09.011. DOI
Ratwani C.R., Zhao S., Huang Y., Hadfield M., Kamali A.R., Abdelkader A.M. Surface Modification of Transition Metal Dichalcogenide Nanosheets for Intrinsically Self-Healing Hydrogels with Enhanced Mechanical Properties. Small. 2023;19:2207081. doi: 10.1002/smll.202207081. PubMed DOI
Qin B., Ma H., Hossain M., Zhong M., Xia Q., Li B., Duan X. Substrates in the Synthesis of Two-Dimensional Materials via Chemical Vapor Deposition. Chem. Mater. 2020;32:10321–10347. doi: 10.1021/acs.chemmater.0c03549. DOI
Yang A., Blancon J.-C., Jiang W., Zhang H., Wong J., Yan E., Lin Y.-R., Crochet J., Kanatzidis M.G., Jariwala D., et al. Giant Enhancement of Photoluminescence Emission in WS2-Two-Dimensional Perovskite Heterostructures. Nano Lett. 2019;19:4852–4860. doi: 10.1021/acs.nanolett.8b05105. PubMed DOI
Xu G., Li J., Zhang S., Cai J., Deng X., Wang Y., Pei P. Two-Dimensional Nano-Biomaterials in Regulating the Tumor Microenvironment for Immunotherapy. Nano TransMed. 2024;3:100045. doi: 10.1016/j.ntm.2024.100045. DOI
Kim J., Cho H., Lim D.-K., Joo M.K., Kim K. Perspectives for Improving the Tumor Targeting of Nanomedicine via the EPR Effect in Clinical Tumors. Int. J. Mol. Sci. 2023;24:10082. doi: 10.3390/ijms241210082. PubMed DOI PMC
Er E., Erk N. An Electrochemical Nanosensor Using a Screen-Printed Electrode Modified with 1T-MoS2/Nafion for Determination of Renin Inhibitor Aliskiren. J. Electrochem. Soc. 2021;168:017509. doi: 10.1149/1945-7111/abdcc7. DOI
Liu W., Lin Z., Tian S., Huang Y., Xue H., Zhu K., Gu C., Yang Y., Li J. Plasmonic Effect on the Magneto-Optical Property of Monolayer WS2 Studied by Polarized-Raman Spectroscopy. Appl. Sci. 2021;11:1599. doi: 10.3390/app11041599. DOI
Norden T., Zhao C., Zhang P., Sabirianov R., Petrou A., Zeng H. Giant Valley Splitting in Monolayer WS2 by Magnetic Proximity Effect. Nat. Commun. 2019;10:4163. doi: 10.1038/s41467-019-11966-4. PubMed DOI PMC
Ge Y., Yang Y., Zhu Y., Yuan M., Sun L., Jiang D., Liu X., Zhang Q., Zhang J., Wang Y. 2D TiS2-Nanosheet-Coated Concave Gold Arrays with Triple-Coupled Resonances as Sensitive SERS Substrates. Small. 2024;20:2302410. doi: 10.1002/smll.202302410. PubMed DOI
Li B.L., Li R., Zou H.L., Ariga K., Li N.B., Leong D.T. Engineered Functionalized 2D Nanoarchitectures for Stimuli-Responsive Drug Delivery. Mater. Horiz. 2020;7:455–469. doi: 10.1039/C9MH01300H. DOI
Liu Y., Liu J. Hybrid Nanomaterials of WS 2 or MoS 2 Nanosheets with Liposomes: Biointerfaces and Multiplexed Drug Delivery. Nanoscale. 2017;9:13187–13194. doi: 10.1039/C7NR04199C. PubMed DOI
Abareshi A., Salehi N. The Effect of Fe3O4 Nanoparticles on Structural, Optical, and Thermal Properties MoS2 Nanoflakes. J. Mater. Sci. Mater. Electron. 2022;33:25153–25162. doi: 10.1007/s10854-022-09220-7. DOI
Zhou Z., Li X., Hu T., Xue B., Chen H., Ma L., Liang R., Tan C. Molybdenum-Based Nanomaterials for Photothermal Cancer Therapy. Adv. NanoBiomed Res. 2022;2:2200065. doi: 10.1002/anbr.202200065. DOI
Wang Z.-Q., Pan Y.-W., Wu J., Qi H.-B., Zhu S., Gu Z.-J. A Bibliometric Analysis of Molybdenum-Based Nanomaterials in the Biomedical Field. Tungsten. 2024;6:17–47. doi: 10.1007/s42864-023-00225-1. DOI
Liu T., Shi S., Liang C., Shen S., Cheng L., Wang C., Song X., Goel S., Barnhart T.E., Cai W., et al. Iron Oxide Decorated MoS2 Nanosheets with Double PEGylation for Chelator-Free Radiolabeling and Multimodal Imaging Guided Photothermal Therapy. ACS Nano. 2015;9:950–960. doi: 10.1021/nn506757x. PubMed DOI PMC
Shariati B., Goodarzi M.T., Jalali A., Salehi N., Mozaffari M. Gold Nanorods Incorporated into a MoS2/Fe3O4 Nanocomposite for Photothermal Therapy and Drug Delivery. New J. Chem. 2023;47:20100–20108. doi: 10.1039/D3NJ02894A. DOI
Li J., Qi X., Ye P., Yang M., Xie M. Construction of WS2/Au-Lipid Drug Delivery System for Multiple Combined Therapy of Tumor. J. Drug Deliv. Sci. Technol. 2022;76:103747. doi: 10.1016/j.jddst.2022.103747. DOI
Hsiao P.F., Anbazhagan R., Tsai H.-C., Krishnamoorthi R., Lin S.-J., Lin S.-Y., Lee K.-Y., Kao C.-Y., Chen R.-S., Lai J.-Y. Fabrication of Electroactive Polypyrrole-Tungsten Disulfide Nanocomposite for Enhanced in Vivo Drug Release in Mice Skin. Mater. Sci. Eng. C. 2020;107:110330. doi: 10.1016/j.msec.2019.110330. PubMed DOI
Yang G., Gong H., Liu T., Sun X., Cheng L., Liu Z. Two-Dimensional Magnetic WS2@Fe3O4 Nanocomposite with Mesoporous Silica Coating for Drug Delivery and Imaging-Guided Therapy of Cancer. Biomaterials. 2015;60:62–71. doi: 10.1016/j.biomaterials.2015.04.053. PubMed DOI
Xie M., Ye P., Zhao R., Yang M. Magnetic WS2 Nanosheets Functionalized by Biomimetic Lipids with Enhanced Dispersibility for Combined Photothermal and Chemotherapy Therapy. J. Drug Deliv. Sci. Technol. 2023;86:104744. doi: 10.1016/j.jddst.2023.104744. DOI
Wang Y., Zhang F., Lin H., Qu F. Biodegradable Hollow MoSe2/Fe3O4 Nanospheres as the Photodynamic Therapy-Enhanced Agent for Multimode CT/MR/IR Imaging and Synergistic Antitumor Therapy. ACS Appl. Mater. Interfaces. 2019;11:43964–43975. doi: 10.1021/acsami.9b17237. PubMed DOI
Liu Z., Zhang S., Lin H., Zhao M., Yao H., Zhang L., Peng W., Chen Y. Theranostic 2D Ultrathin MnO2 Nanosheets with Fast Responsibility to Endogenous Tumor Microenvironment and Exogenous NIR Irradiation. Biomaterials. 2018;155:54–63. doi: 10.1016/j.biomaterials.2017.11.015. PubMed DOI
Lei Z., Zhu W., Xu S., Ding J., Wan J., Wu P. Hydrophilic MoSe2 Nanosheets as Effective Photothermal Therapy Agents and Their Application in Smart Devices. ACS Appl. Mater. Interfaces. 2016;8:20900–20908. doi: 10.1021/acsami.6b07326. PubMed DOI
Ha C.H., Hur W., Lee S.J., Lee H.B., Kim D.H., Seong G.H. Targeted Photothermal Cancer Therapy Using Surface-Modified Transition Metal Dichalcogenides. J. Photochem. Photobiol. Chem. 2025;459:116062. doi: 10.1016/j.jphotochem.2024.116062. DOI
Wang G., Chen X., Li B., Wu L. Near-Infrared Photothermal Conversion of Polyoxometalate-Modified Gold Nanorods for Plasmon-Enhanced Catalysis. Inorg. Chem. Front. 2023;10:1852–1862. doi: 10.1039/D2QI02765H. DOI
Kumar P.P.P., Lim D.-K. Photothermal Effect of Gold Nanoparticles as a Nanomedicine for Diagnosis and Therapeutics. Pharmaceutics. 2023;15:2349. doi: 10.3390/pharmaceutics15092349. PubMed DOI PMC
Mohammed M.H., Hanoon F.H. Bilayer MSe2 and MS2 (M = Mo, W) as a Novel Drug Delivery System for β-Lapachone Anticancer Drug: Quantum Chemical Study. Comput. Theor. Chem. 2020;1190:112999. doi: 10.1016/j.comptc.2020.112999. DOI
Jin W., Yang T., Jia J., Jia J., Zhou X. Enhanced Sensitivity of A549 Cells to Doxorubicin with WS2 and WSe2 Nanosheets via the Induction of Autophagy. Int. J. Mol. Sci. 2024;25:1164. doi: 10.3390/ijms25021164. PubMed DOI PMC
Bahri M., Yu D., Zhang C.Y., Chen Z., Yang C., Douadji L., Qin P. Unleashing the Potential of Tungsten Disulfide: Current Trends in Biosensing and Nanomedicine Applications. Heliyon. 2024;10:e24427. doi: 10.1016/j.heliyon.2024.e24427. PubMed DOI PMC
Mei X., Hu T., Wang Y., Weng X., Liang R., Wei M. Recent Advancements in Two-Dimensional Nanomaterials for Drug Delivery. WIREs Nanomed. Nanobiotechnol. 2020;12:e1596. doi: 10.1002/wnan.1596. PubMed DOI
Zhou A., Liu Y., Li S., Wang X., Ying G., Xia Q., Zhang P. From Structural Ceramics to 2D Materials with Multi-Applications: A Review on the Development from MAX Phases to MXenes. J. Adv. Ceram. 2021;10:1194–1242. doi: 10.1007/s40145-021-0535-5. DOI
Mohajer F., Ziarani G.M., Badiei A., Iravani S., Varma R.S. Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy. Micromachines. 2022;13:1773. doi: 10.3390/mi13101773. PubMed DOI PMC
Huang H., Dong C., Feng W., Wang Y., Huang B., Chen Y. Biomedical Engineering of Two-Dimensional MXenes. Adv. Drug Deliv. Rev. 2022;184:114178. doi: 10.1016/j.addr.2022.114178. PubMed DOI
Huang H., Feng W., Chen Y. Two-Dimensional Biomaterials: Material Science, Biological Effect and Biomedical Engineering Applications. Chem. Soc. Rev. 2021;50:11381–11485. doi: 10.1039/D0CS01138J. PubMed DOI
Hong W., Wyatt B.C., Nemani S.K., Anasori B. Double Transition-Metal MXenes: Atomistic Design of Two-Dimensional Carbides and Nitrides. MRS Bull. 2020;45:850–861. doi: 10.1557/mrs.2020.251. DOI
Kong F., He X., Liu Q., Qi X., Sun D., Zheng Y., Wang R., Bai Y. Further Surface Modification by Carbon Coating for in-Situ Growth of Fe3O4 Nanoparticles on MXene Ti3C2 Multilayers for Advanced Li-Ion Storage. Electrochim. Acta. 2018;289:228–237. doi: 10.1016/j.electacta.2018.09.007. DOI
Iravani S., Varma R.S. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater. Sci. Eng. 2021;7:1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI
Iravani S., Varma R.S. MXenes in Cancer Nanotheranostics. Nanomaterials. 2022;12:3360. doi: 10.3390/nano12193360. PubMed DOI PMC
Zhang Y.-Z., El-Demellawi J.K., Jiang Q., Ge G., Liang H., Lee K., Dong X., Alshareef H.N. MXene Hydrogels: Fundamentals and Applications. Chem. Soc. Rev. 2020;49:7229–7251. doi: 10.1039/D0CS00022A. PubMed DOI
Zhang Y., Cui Z., Sa B., Miao N., Zhou J., Sun Z. Computational Design of Double Transition Metal MXenes with Intrinsic Magnetic Properties. Nanoscale Horiz. 2022;7:276–287. doi: 10.1039/D1NH00621E. PubMed DOI
Li Y., Lai M., Hu M., Zhao S., Liu B., Kai J.-J. Insights into Electronic and Magnetic Properties of MXenes: From a Fundamental Perspective. Sustain. Mater. Technol. 2022;34:e00516. doi: 10.1016/j.susmat.2022.e00516. DOI
Khazaei M., Arai M., Sasaki T., Chung C.-Y., Venkataramanan N.S., Estili M., Sakka Y., Kawazoe Y. Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides. Adv. Funct. Mater. 2013;23:2185–2192. doi: 10.1002/adfm.201202502. DOI
Gao Q., Zhang H. Magnetic I-MXenes: A New Class of Multifunctional Two-Dimensional Materials. Nanoscale. 2020;12:5995–6001. doi: 10.1039/C9NR10181K. PubMed DOI
Li Z., Zhang H., Han J., Chen Y., Lin H., Yang T. Surface Nanopore Engineering of 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma. Adv. Mater. 2018;30:1706981. doi: 10.1002/adma.201706981. PubMed DOI
Dutta T., Alam P., Mishra S.K. MXenes and MXene-Based Composites for Biomedical Applications. J. Mater. Chem. B. 2025;13:4279–4312. doi: 10.1039/D4TB02834A. PubMed DOI
Liu G., Zou J., Tang Q., Yang X., Zhang Y., Zhang Q., Huang W., Chen P., Shao J., Dong X. Surface Modified Ti3C2 MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. ACS Appl. Mater. Interfaces. 2017;9:40077–40086. doi: 10.1021/acsami.7b13421. PubMed DOI
Ziranu P., Pretta A., Aimola V., Cau F., Mariani S., D’Agata A.P., Codipietro C., Rizzo D., Dell’Utri V., Sanna G., et al. CD44: A New Prognostic Marker in Colorectal Cancer? Cancers. 2024;16:1569. doi: 10.3390/cancers16081569. PubMed DOI PMC
Han X., Huang J., Lin H., Wang Z., Li P., Chen Y. 2D Ultrathin MXene-Based Drug-Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Adv. Healthc. Mater. 2018;7:1701394. doi: 10.1002/adhm.201701394. PubMed DOI
Darroudi M., Elnaz Nazari S., Karimzadeh M., Asgharzadeh F., Khalili-Tanha N., Asghari S.Z., Ranjbari S., Babaei F., Rezayi M., Khazaei M. Two-Dimensional-Ti3C2 Magnetic Nanocomposite for Targeted Cancer Chemotherapy. Front. Bioeng. Biotechnol. 2023;11:1097631. doi: 10.3389/fbioe.2023.1097631. PubMed DOI PMC
Alsafari I.A., Munir S., Zulfiqar S., Saif M.S., Warsi M.F., Shahid M. Synthesis, Characterization, Photocatalytic and Antibacterial Properties of Copper Ferrite/MXene (CuFe2O4/Ti3C2) Nanohybrids. Ceram. Int. 2021;47:28874–28883. doi: 10.1016/j.ceramint.2021.07.048. DOI
Liu Y., Han Q., Yang W., Gan X., Yang Y., Xie K., Xie L., Deng Y. Two-Dimensional MXene/Cobalt Nanowire Heterojunction for Controlled Drug Delivery and Chemo-Photothermal Therapy. Mater. Sci. Eng. C. 2020;116:111212. doi: 10.1016/j.msec.2020.111212. PubMed DOI
Rajan A., Chandunika R.K., Raju F., Joshi R., Sahu N.K., Ningthoujam R.S. Synthesis and Processing of Magnetic-Based Nanomaterials for Biomedical Applications. In: Tyagi A.K., Ningthoujam R.S., editors. Handbook on Synthesis Strategies for Advanced Materials: Volume-II: Processing and Functionalization of Materials. Springer Nature; Singapore: 2022. pp. 659–714.
Liu Z., Zhao M., Lin H., Dai C., Ren C., Zhang S., Peng W., Chen Y. 2D Magnetic Titanium Carbide MXene for Cancer Theranostics. J. Mater. Chem. B. 2018;6:3541–3548. doi: 10.1039/C8TB00754C. PubMed DOI
Lee I.-C., Li Y.-C.E., Thomas J.L., Lee M.-H., Lin H.-Y. Recent Advances Using MXenes in Biomedical Applications. Mater. Horiz. 2024;11:876–902. doi: 10.1039/D3MH01588B. PubMed DOI
Yang X., Zhang C., Deng D., Gu Y., Wang H., Zhong Q. Multiple Stimuli-Responsive MXene-Based Hydrogel as Intelligent Drug Delivery Carriers for Deep Chronic Wound Healing. Small. 2022;18:2104368. doi: 10.1002/smll.202104368. PubMed DOI
Guan M., Wang Q., Zhang X., Bao J., Gong X., Liu Y. Two-Dimensional Transition Metal Oxide and Hydroxide-Based Hierarchical Architectures for Advanced Supercapacitor Materials. Front. Chem. 2020;8:390. doi: 10.3389/fchem.2020.00390. PubMed DOI PMC
Stemmer S., Millis A.J. Quantum Confinement in Oxide Quantum Wells. MRS Bull. 2013;38:1032–1039. doi: 10.1557/mrs.2013.265. DOI
Zhang X., Rowberg A.J.E., Govindarajan N., He X. Hydrogen Bond Network at the H2O/Solid Interface. In: Wandelt K., Bussetti G., editors. Encyclopedia of Solid-Liquid Interfaces. 1st ed. Elsevier; Oxford, UK: 2024. pp. 92–113.
Yin W., Bao T., Zhang X., Gao Q., Yu J., Dong X., Yan L., Gu Z., Zhao Y. Biodegradable MoOx Nanoparticles with Efficient Near-Infrared Photothermal and Photodynamic Synergetic Cancer Therapy at the Second Biological Window. Nanoscale. 2018;10:1517–1531. doi: 10.1039/C7NR07927C. PubMed DOI
Zhou M., Liu Y., Su Y., Su Q. Plasmonic Oxygen Defects in MO3− (M = W or Mo) Nanomaterials: Synthesis, Modifications, and Biomedical Applications. Adv. Healthc. Mater. 2021;10:2101331. doi: 10.1002/adhm.202101331. PubMed DOI
Xing Y., Cai Y., Cheng J., Xu X. Applications of Molybdenum Oxide Nanomaterials in the Synergistic Diagnosis and Treatment of Tumor. Appl. Nanosci. 2020;10:2069–2083. doi: 10.1007/s13204-020-01389-9. DOI
Wahab R., Siddiqui M.A., Ahmad J., Saquib Q., Al-Khedhairy A.A. A Comparative Cytological Study of Silver and Molybdenum Oxide Nanostructures against Breast Cancer Cells. J. King Saud Univ. Sci. 2023;35:102843. doi: 10.1016/j.jksus.2023.102843. DOI
Pandey S., Sharma K.H., Sharma A.K., Nerthigan Y., Hang D.-R., Wu H.-F. Comparative Photothermal Performance among Various Sub-Stoichiometric 2D Oxygen-Deficient Molybdenum Oxide Nanoflakes and In Vivo Toxicity. Chem. Eur. J. 2018;24:7417–7427. doi: 10.1002/chem.201705734. PubMed DOI
Qiu N., Yang X., Zhang Y., Zhang J., Ji J., Zhang Y., Kong X., Xi Y., Liu D., Ye L., et al. A Molybdenum Oxide-Based Degradable Nanosheet for Combined Chemo-Photothermal Therapy to Improve Tumor Immunosuppression and Suppress Distant Tumors and Lung Metastases. J. Nanobiotechnol. 2021;19:428. doi: 10.1186/s12951-021-01162-2. PubMed DOI PMC
Zhou Z., Kong B., Yu C., Shi X., Wang M., Liu W., Sun Y., Zhang Y., Yang H., Yang S. Tungsten Oxide Nanorods: An Efficient Nanoplatform for Tumor CT Imaging and Photothermal Therapy. Sci. Rep. 2014;4:3653. doi: 10.1038/srep03653. PubMed DOI PMC
Zhao P., Ren S., Liu Y., Huang W., Zhang C., He J. PL–W18O49–TPZ Nanoparticles for Simultaneous Hypoxia-Activated Chemotherapy and Photothermal Therapy. ACS Appl. Mater. Interfaces. 2018;10:3405–3413. doi: 10.1021/acsami.7b17323. PubMed DOI
Zhang L., Zhao S., Ouyang J., Deng L., Liu Y.-N. Oxygen-Deficient Tungsten Oxide Perovskite Nanosheets-Based Photonic Nanomedicine for Cancer Theranostics. Chem. Eng. J. 2022;431:133273. doi: 10.1016/j.cej.2021.133273. DOI
Zhao Z., Yang S., Yang P., Lin J., Fan J., Zhang B. Study of Oxygen-Deficient W18O49-Based Drug Delivery System Readily Absorbed through Cellular Internalization Pathways in Tumor-Targeted Chemo-/Photothermal Therapy. Biomater. Adv. 2022;136:212772. doi: 10.1016/j.bioadv.2022.212772. PubMed DOI
Du W., Chen W., Wang J., Cheng L., Wang J., Zhang H., Song L., Hu Y., Ma X. Oxygen-Deficient Titanium Dioxide-Loaded Black Phosphorus Nanosheets for Synergistic Photothermal and Sonodynamic Cancer Therapy. Biomater. Adv. 2022;136:212794. doi: 10.1016/j.bioadv.2022.212794. PubMed DOI
Schneider M.G.M., Martín M.J., Otarola J., Vakarelska E., Simeonov V., Lassalle V., Nedyalkova M. Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives. Pharmaceutics. 2022;14:204. doi: 10.3390/pharmaceutics14010204. PubMed DOI PMC
Ansari K., Ahmad R., Tanweer M.S., Azam I. Magnetic Iron Oxide Nanoparticles as a Tool for the Advancement of Biomedical and Environmental Application: A Review. Biomed. Mater. Devices. 2024;2:139–157. doi: 10.1007/s44174-023-00091-y. DOI
Edvinsson T. Optical Quantum Confinement and Photocatalytic Properties in Two-, One- and Zero-Dimensional Nanostructures. R. Soc. Open Sci. 2018;5:180387. doi: 10.1098/rsos.180387. PubMed DOI PMC
Kasbe P.S., Yang M., Bosch J., Bu J., DellaCorte C., Xu W. Two-Dimensional Iron Oxide/Graphene-Based Nanocomposites as High-Performance Solid Lubricants. 2D Mater. 2024;11:045005. doi: 10.1088/2053-1583/ad5f3f. DOI
Amrillah T. All Shapes and Phases of Nanometer-Sized Iron Oxides Made from Natural Sources and Waste Material via Green Synthesis Approach: A Review. Cryst. Growth Des. 2022;22:4640–4660. doi: 10.1021/acs.cgd.2c00485. DOI
Zanganeh S., Hutter G., Spitler R., Lenkov O., Mahmoudi M., Shaw A., Pajarinen J.S., Nejadnik H., Goodman S., Moseley M., et al. Iron Oxide Nanoparticles Inhibit Tumour Growth by Inducing Pro-Inflammatory Macrophage Polarization in Tumour Tissues. Nat. Nanotechnol. 2016;11:986–994. doi: 10.1038/nnano.2016.168. PubMed DOI PMC
Dong J., Liu L., Tan C., Xu Q., Zhang J., Qiao Z., Chu D., Liu Y., Zhang Q., Jiang J., et al. Free-Standing Homochiral 2D Monolayers by Exfoliation of Molecular Crystals. Nature. 2022;602:606–611. doi: 10.1038/s41586-022-04407-8. PubMed DOI
Xia H.-Y., Li B.-Y., Zhao Y., Han Y.-H., Wang S.-B., Chen A.-Z., Kankala R.K. Nanoarchitectured Manganese Dioxide (MnO2)-Based Assemblies for Biomedicine. Coord. Chem. Rev. 2022;464:214540. doi: 10.1016/j.ccr.2022.214540. DOI
Wang L., Guan S., Weng Y., Xu S.-M., Lu H., Meng X., Zhou S. Highly Efficient Vacancy-Driven Photothermal Therapy Mediated by Ultrathin MnO2 Nanosheets. ACS Appl. Mater. Interfaces. 2019;11:6267–6275. doi: 10.1021/acsami.8b20639. PubMed DOI
Fan H., Yan G., Zhao Z., Hu X., Zhang W., Liu H., Fu X., Fu T., Zhang X.-B., Tan W. A Smart Photosensitizer–Manganese Dioxide Nanosystem for Enhanced Photodynamic Therapy by Reducing Glutathione Levels in Cancer Cells. Angew. Chem. Int. Ed. 2016;55:5477–5482. doi: 10.1002/anie.201510748. PubMed DOI PMC
Wu M., Hou P., Dong L., Cai L., Chen Z., Zhao M., Li J. Manganese Dioxide Nanosheets: From Preparation to Biomedical Applications. Int. J. Nanomed. 2019;14:4781–4800. doi: 10.2147/IJN.S207666. PubMed DOI PMC
Sun Y., Wang Y., Liu Y., Wang H., Yang C., Liu X., Wang F. Integration of Manganese Dioxide-Based Nanomaterials for Biomedical Applications. Adv. NanoBiomed Res. 2023;3:2200093. doi: 10.1002/anbr.202200093. DOI
Huang C.-C., Khu N.-H., Yeh C.-S. The Characteristics of Sub 10°Nm Manganese Oxide T1 Contrast Agents of Different Nanostructured Morphologies. Biomaterials. 2010;31:4073–4078. doi: 10.1016/j.biomaterials.2010.01.087. PubMed DOI
Hu D., Li D., Liu X., Zhou Z., Tang J., Shen Y. Vanadium-Based Nanomaterials for Cancer Diagnosis and Treatment. Biomed. Mater. 2020;16:014101. doi: 10.1088/1748-605X/abb523. PubMed DOI
Zhang Z., Guo Z., Ruan Z., Ge M., Cao S., Yuan J., Xu Z., Fan L., Zong M., Lin H., et al. Two-Dimensional Ultrathin Vanadium Oxide Nanosheets as Catalytic Bactericide. Sci. China Mater. 2024;67:2965–2976. doi: 10.1007/s40843-024-2932-3. DOI
Zhao R., Zhu Y., Feng L., Liu B., Hu Y., Zhu H., Zhao Z., Ding H., Gai S., Yang P. Architecture of Vanadium-Based MXene Dysregulating Tumor Redox Homeostasis for Amplified Nanozyme Catalytic/Photothermal Therapy. Adv. Mater. 2024;36:2307115. doi: 10.1002/adma.202307115. PubMed DOI
Osterrieth J.W.M., Fairen-Jimenez D. Metal–Organic Framework Composites for Theragnostics and Drug Delivery Applications. Biotechnol. J. 2021;16:2000005. doi: 10.1002/biot.202000005. PubMed DOI
Lawson H.D., Walton S.P., Chan C. Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Appl. Mater. Interfaces. 2021;13:7004–7020. doi: 10.1021/acsami.1c01089. PubMed DOI PMC
Raptopoulou C.P. Metal-Organic Frameworks: Synthetic Methods and Potential Applications. Materials. 2021;14:310. doi: 10.3390/ma14020310. PubMed DOI PMC
Mittal A., Roy I., Gandhi S., Mittal A., Roy I., Gandhi S. Drug Carriers. IntechOpen; London, UK: 2022. Drug Delivery Applications of Metal-Organic Frameworks (MOFs)
Saeb M.R., Rabiee N., Mozafari M., Mostafavi E. Metal-Organic Frameworks (MOFs)-Based Nanomaterials for Drug Delivery. Materials. 2021;14:3652. doi: 10.3390/ma14133652. PubMed DOI PMC
Pham H., Ramos K., Sua A., Acuna J., Slowinska K., Nguyen T., Bui A., Weber M.D.R., Tian F. Tuning Crystal Structures of Iron-Based Metal–Organic Frameworks for Drug Delivery Applications. ACS Omega. 2020;5:3418–3427. doi: 10.1021/acsomega.9b03696. PubMed DOI PMC
Lei B., Wang M., Jiang Z., Qi W., Su R., He Z. Constructing Redox-Responsive Metal–Organic Framework Nanocarriers for Anticancer Drug Delivery. ACS Appl. Mater. Interfaces. 2018;10:16698–16706. doi: 10.1021/acsami.7b19693. PubMed DOI
Yang X., Tang Q., Jiang Y., Zhang M., Wang M., Mao L. Nanoscale ATP-Responsive Zeolitic Imidazole Framework-90 as a General Platform for Cytosolic Protein Delivery and Genome Editing. J. Am. Chem. Soc. 2019;141:3782–3786. doi: 10.1021/jacs.8b11996. PubMed DOI
Chen W.-H., Karmi O., Willner B., Nechushtai R., Willner I. Thrombin Aptamer-Modified Metal–Organic Framework Nanoparticles: Functional Nanostructures for Sensing Thrombin and the Triggered Controlled Release of Anti-Blood Clotting Drugs. Sensors. 2019;19:5260. doi: 10.3390/s19235260. PubMed DOI PMC
Chen W.-H., Luo G.-F., Sohn Y.S., Nechushtai R., Willner I. Enzyme-Driven Release of Loads from Nucleic Acid–Capped Metal–Organic Framework Nanoparticles. Adv. Funct. Mater. 2019;29:1805341. doi: 10.1002/adfm.201805341. DOI
Liu H., Cai G., Yuan S., Zhou X., Gui R., Huang R. Platelet Membrane-Camouflaged Silver Metal–Organic Framework Biomimetic Nanoparticles for the Treatment of Triple-Negative Breast Cancer. Mol. Pharm. 2024;21:3577–3590. doi: 10.1021/acs.molpharmaceut.4c00307. PubMed DOI
Cui R., Zhao P., Yan Y., Bao G., Damirin A., Liu Z. Outstanding Drug-Loading/Release Capacity of Hollow Fe-Metal–Organic Framework-Based Microcapsules: A Potential Multifunctional Drug-Delivery Platform. Inorg. Chem. 2021;60:1664–1671. doi: 10.1021/acs.inorgchem.0c03156. PubMed DOI
Wen T., Quan G., Niu B., Zhou Y., Zhao Y., Lu C., Pan X., Wu C. Versatile Nanoscale Metal–Organic Frameworks (nMOFs): An Emerging 3D Nanoplatform for Drug Delivery and Therapeutic Applications. Small. 2021;17:2005064. doi: 10.1002/smll.202005064. PubMed DOI
Ke F., Yuan Y.-P., Qiu L.-G., Shen Y.-H., Xie A.-J., Zhu J.-F., Tian X.-Y., Zhang L.-D. Facile Fabrication of Magnetic Metal–Organic Framework Nanocomposites for Potential Targeted Drug Delivery. J. Mater. Chem. 2011;21:3843–3848. doi: 10.1039/c0jm01770a. DOI
Nejad A.K.H., Panahi H.A., Keshmirizadeh E., Fard N.T. Fabrication of a pH-Responsive Drug Delivery System Based on the Super-Paramagnetic Metal-Organic Framework for Targeted Delivery of Oxaliplatin. Int. J. Polym. Mater. Polym. Biomater. 2023;72:1083–1092. doi: 10.1080/00914037.2022.2082424. DOI
Abu-Dief A.M., Alrashedee F.M.M., Emran K.M., Al-Abdulkarim H.A. Development of Some Magnetic Metal–Organic Framework Nano Composites for Pharmaceutical Applications. Inorg. Chem. Commun. 2022;138:109251. doi: 10.1016/j.inoche.2022.109251. DOI
Dhawan U., Tseng C.-L., Wu P.-H., Liao M.-Y., Wang H.-Y., Wu K.C.-W., Chung R.-J. Theranostic Doxorubicin Encapsulated FeAu Alloy@metal-Organic Framework Nanostructures Enable Magnetic Hyperthermia and Medical Imaging in Oral Carcinoma. Nanomed. Nanotechnol. Biol. Med. 2023;48:102652. doi: 10.1016/j.nano.2023.102652. PubMed DOI
Li C., Ye J., Yang X., Liu S., Zhang Z., Wang J., Zhang K., Xu J., Fu Y., Yang P. Fe/Mn Bimetal-Doped ZIF-8-Coated Luminescent Nanoparticles with Up/Downconversion Dual-Mode Emission for Tumor Self-Enhanced NIR-II Imaging and Catalytic Therapy. ACS Nano. 2022;16:18143–18156. doi: 10.1021/acsnano.2c05152. PubMed DOI
Parsaei M., Akhbari K. Magnetic UiO-66-NH2 Core–Shell Nanohybrid as a Promising Carrier for Quercetin Targeted Delivery toward Human Breast Cancer Cells. ACS Omega. 2023;8:41321–41338. doi: 10.1021/acsomega.3c04863. PubMed DOI PMC
Attia M., Glickman R.D., Romero G., Chen B., Brenner A.J., Ye J.Y. Optimized Metal-Organic-Framework Based Magnetic Nanocomposites for Efficient Drug Delivery and Controlled Release. J. Drug Deliv. Sci. Technol. 2022;76:103770. doi: 10.1016/j.jddst.2022.103770. DOI
Chakraborty G., Park I.-H., Medishetty R., Vittal J.J. Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem. Rev. 2021;121:3751–3891. doi: 10.1021/acs.chemrev.0c01049. PubMed DOI
Li K., Ji Q., Liang H., Hua Z., Hang X., Zeng L., Han H. Biomedical Application of 2D Nanomaterials in Neuroscience. J. Nanobiotechnol. 2023;21:181. doi: 10.1186/s12951-023-01920-4. PubMed DOI PMC
Kumar S.A., Balasubramaniam B., Bhunia S., Jaiswal M.K., Verma K., Prateek, Khademhosseini A., Gupta R.K., Gaharwar A.K. Two-Dimensional Metal Organic Frameworks for Biomedical Applications. WIREs Nanomed. Nanobiotechnol. 2021;13:e1674. doi: 10.1002/wnan.1674. PubMed DOI
Li Y., Gao Z., Chen F., You C., Wu H., Sun K., An P., Cheng K., Sun C., Zhu X., et al. Decoration of Cisplatin on 2D Metal–Organic Frameworks for Enhanced Anticancer Effects through Highly Increased Reactive Oxygen Species Generation. ACS Appl. Mater. Interfaces. 2018;10:30930–30935. doi: 10.1021/acsami.8b12800. PubMed DOI
Feng J., Yu W., Xu Z., Hu J., Liu J., Wang F. Correction to “Multifunctional siRNA-Laden Hybrid Nanoplatform for Noninvasive PA/IR Dual-Modal Imaging-Guided Enhanced Photogenetherapy”. ACS Appl. Mater. Interfaces. 2024;16:63086–63087. doi: 10.1021/acsami.4c18256. PubMed DOI
He C., Liu D., Lin W. Nanomedicine Applications of Hybrid Nanomaterials Built from Metal–Ligand Coordination Bonds: Nanoscale Metal–Organic Frameworks and Nanoscale Coordination Polymers. Chem. Rev. 2015;115:11079–11108. doi: 10.1021/acs.chemrev.5b00125. PubMed DOI
Zhu W., Yang Y., Jin Q., Chao Y., Tian L., Liu J., Dong Z., Liu Z. Two-Dimensional Metal-Organic-Framework as a Unique Theranostic Nano-Platform for Nuclear Imaging and Chemo-Photodynamic Cancer Therapy. Nano Res. 2019;12:1307–1312. doi: 10.1007/s12274-018-2242-2. DOI
Rabiee N., Bagherzadeh M., Jouyandeh M., Zarrintaj P., Saeb M.R., Mozafari M., Shokouhimehr M., Varma R.S. Natural Polymers Decorated MOF-MXene Nanocarriers for Co-Delivery of Doxorubicin/pCRISPR. ACS Appl. Bio Mater. 2021;4:5106–5121. doi: 10.1021/acsabm.1c00332. PubMed DOI
Derakhshi M., Daemi S., Shahini P., Habibzadeh A., Mostafavi E., Ashkarran A.A. Two-Dimensional Nanomaterials beyond Graphene for Biomedical Applications. J. Funct. Biomater. 2022;13:27. doi: 10.3390/jfb13010027. PubMed DOI PMC
Huang K., Li Z., Lin J., Han G., Huang P. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes) for Biomedical Applications. Chem. Soc. Rev. 2018;47:5109–5124. doi: 10.1039/C7CS00838D. PubMed DOI
Liu W., Song X., Jiang Q., Guo W., Liu J., Chu X., Lei Z. Transition Metal Oxide Nanomaterials: New Weapons to Boost Anti-Tumor Immunity Cycle. Nanomaterials. 2024;14:1064. doi: 10.3390/nano14131064. PubMed DOI PMC
Pires L.S., Magalhães F.D., Pinto A.M. New Polymeric Composites Based on Two-Dimensional Nanomaterials for Biomedical Applications. Polymers. 2022;14:1464. doi: 10.3390/polym14071464. PubMed DOI PMC
Martín C., Kostarelos K., Prato M., Bianco A. Biocompatibility and Biodegradability of 2D Materials: Graphene and Beyond. Chem. Commun. 2019;55:5540–5546. doi: 10.1039/C9CC01205B. PubMed DOI
Wang Q., Pan X., Lin C., Gao H., Cao S., Ni Y., Ma X. Modified Ti3C2TX (MXene) Nanosheet-Catalyzed Self-Assembled, Anti-Aggregated, Ultra-Stretchable, Conductive Hydrogels for Wearable Bioelectronics. Chem. Eng. J. 2020;401:126129. doi: 10.1016/j.cej.2020.126129. DOI
Dagogo-Jack I., Shaw A.T. Tumour Heterogeneity and Resistance to Cancer Therapies. Nat. Rev. Clin. Oncol. 2018;15:81–94. doi: 10.1038/nrclinonc.2017.166. PubMed DOI
Xu X., Liu C., Wang Y., Koivisto O., Zhou J., Shu Y., Zhang H. Nanotechnology-Based Delivery of CRISPR/Cas9 for Cancer Treatment. Adv. Drug Deliv. Rev. 2021;176:113891. doi: 10.1016/j.addr.2021.113891. PubMed DOI
Chen S.H., Bell D.R., Luan B. Understanding Interactions between Biomolecules and Two-Dimensional Nanomaterials Using in Silico Microscopes. Adv. Drug Deliv. Rev. 2022;186:114336. doi: 10.1016/j.addr.2022.114336. PubMed DOI PMC
Patil S., Mishra V.S., Yadav N., Reddy P.C., Lochab B. Dendrimer-Functionalized Nanodiamonds as Safe and Efficient Drug Carriers for Cancer Therapy: Nucleus Penetrating Nanoparticles. ACS Appl. Bio Mater. 2022;5:3438–3451. doi: 10.1021/acsabm.2c00373. PubMed DOI
Nezhadali A., Shapouri M.R., Amoli-Diva M. Anti-Cancer Combination Therapy by Co-Delivery of Hydrophilic and Hydrophobic Using Dual Temperature and pH-Responsive Liposomes. Micro Nano Lett. 2020;15:1065–1070. doi: 10.1049/mnl.2020.0389. DOI
Moghimipour E., Rezaei M., Ramezani Z., Kouchak M., Amini M., Angali K.A., Dorkoosh F.A., Handali S. Transferrin Targeted Liposomal 5-Fluorouracil Induced Apoptosis via Mitochondria Signaling Pathway in Cancer Cells. Life Sci. 2018;194:104–110. doi: 10.1016/j.lfs.2017.12.026. PubMed DOI
Wang W.-Y., Cao Y.-X., Zhou X., Wei B. Delivery of Folic Acid-Modified Liposomal Curcumin for Targeted Cervical Carcinoma Therapy. Drug Des. Devel. Ther. 2019;13:2205–2213. doi: 10.2147/DDDT.S205787. PubMed DOI PMC
Hardiansyah A., Huang L.-Y., Yang M.-C., Liu T.-Y., Tsai S.-C., Yang C.-Y., Kuo C.-Y., Chan T.-Y., Zou H.-M., Lian W.-N., et al. Magnetic Liposomes for Colorectal Cancer Cells Therapy by High-Frequency Magnetic Field Treatment. Nanoscale Res. Lett. 2014;9:497. doi: 10.1186/1556-276X-9-497. PubMed DOI PMC
Sonali, Singh R.P., Singh N., Sharma G., Vijayakumar M.R., Koch B., Singh S., Singh U., Dash D., Pandey B.L., et al. Transferrin Liposomes of Docetaxel for Brain-Targeted Cancer Applications: Formulation and Brain Theranostics. Drug Deliv. 2016;23:1261–1271. doi: 10.3109/10717544.2016.1162878. PubMed DOI
Zhang Y., Zhan X., Xiong J., Peng S., Huang W., Joshi R., Cai Y., Liu Y., Li R., Yuan K., et al. Temperature-Dependent Cell Death Patterns Induced by Functionalized Gold Nanoparticle Photothermal Therapy in Melanoma Cells. Sci. Rep. 2018;8:8720. doi: 10.1038/s41598-018-26978-1. PubMed DOI PMC
Beik J., Alamzadeh Z., Mirrahimi M., Sarikhani A., Ardakani T.S., Asadi M., Irajirad R., Mirrahimi M., Mahabadi V.P., Eslahi N., et al. Multifunctional Theranostic Graphene Oxide Nanoflakes as MR Imaging Agents with Enhanced Photothermal and Radiosensitizing Properties. ACS Appl. Bio Mater. 2021;4:4280–4291. doi: 10.1021/acsabm.1c00104. PubMed DOI
Naief M.F., Khalaf Y.H., Mohammed A.M. Novel Photothermal Therapy Using Multi-Walled Carbon Nanotubes and Platinum Nanocomposite for Human Prostate Cancer PC3 Cell Line. J. Organomet. Chem. 2022;975:122422. doi: 10.1016/j.jorganchem.2022.122422. DOI