Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy

. 2022 Oct 19 ; 13 (10) : . [epub] 20221019

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36296126

MXenes with unique mechanical, optical, electronic, and thermal properties along with a specific large surface area for surface functionalization/modification, high electrical conductivity, magnetic properties, biocompatibility, and low toxicity have been explored as attractive candidates for the targeted delivery of drugs in cancer therapy. These two-dimensional materials have garnered much attention in the field of cancer therapy since they have shown suitable photothermal effects, biocompatibility, and luminescence properties. However, outstanding challenging issues regarding their pharmacokinetics, biosafety, targeting properties, optimized functionalization, synthesis/reaction conditions, and clinical translational studies still need to be addressed. Herein, recent advances and upcoming challenges in the design of advanced targeted drug delivery micro- and nanosystems in cancer therapy using MXenes have been discussed to motivate researchers to further investigate this field of science.

Zobrazit více v PubMed

Barry N.P.E., Sadler P.J. Challenges for Metals in Medicine: How Nanotechnology May Help To Shape the Future. ACS Nano. 2013;7:5654–5659. doi: 10.1021/nn403220e. PubMed DOI

Iravani S., Soufi G.J. Nanoparticles in Medicine. Springer; Berlin/Heidelberg, Germany: 2020. Gold Nanostructures in Medicine and Biology; pp. 175–183.

Iravani S., Varma R.S. Greener synthesis of lignin nanoparticles and their applications. Green Chem. 2020;22:612–636. doi: 10.1039/C9GC02835H. DOI

Iravani S., Varma R.S. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A Review. Environ. Chem. Lett. 2020;18:703–727. doi: 10.1007/s10311-020-00984-0. PubMed DOI PMC

Mohammadi Ziarani G., Mofatehnia P., Mohajer F., Badiei A. Rational design of yolk–shell nanostructures for drug delivery. RSC Adv. 2020;10:30094–30109. doi: 10.1039/D0RA03611K. PubMed DOI PMC

Mohajer F., Mohammadi Ziarani G., Badiei A. New advances on Au–magnetic organic hybrid core–shells in MRI, CT imaging, and drug delivery. RSC Adv. 2021;11:6517–6525. doi: 10.1039/D1RA00415H. PubMed DOI PMC

Soufi G.J., Iravani S. Eco-friendly and sustainable synthesis of biocompatible nanomaterials for diagnostic imaging: Current challenges and future perspectives. Green Chem. 2020;22:2662–2687. doi: 10.1039/D0GC00734J. DOI

Alavi M., Varma R.S. Phytosynthesis and modification of metal and metal oxide nanoparticles/nanocomposites for antibacterial and anticancer activities: Recent advances. Sustain. Chem. Pharm. 2021;21:100412. doi: 10.1016/j.scp.2021.100412. DOI

Shafiee A., Iravani S., Varma R.S. Graphene and graphene oxide with anticancer applications: Challenges and future perspectives. MedComm. 2022;3:e118. doi: 10.1002/mco2.118. PubMed DOI PMC

Delfi M., Sartorius R., Ashrafizadeh M., Sharifi E., Zhang Y., De Berardinis P., Zarrabi A., Varma R.S., Tay F.R., Smith B.R., et al. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today. 2021;38:101119. doi: 10.1016/j.nantod.2021.101119. PubMed DOI PMC

Rabiee N., Bagherzadeh M., Ghadiri A.M., Fatahi Y., Aldhaher A., Makvandi P., Dinarvand R., Jouyandeh M., Saeb M.R., Mozafari M., et al. Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR. ACS Appl. Bio Mater. 2021;4:5336–5351. doi: 10.1021/acsabm.1c00447. PubMed DOI

Rabiee N., Bagherzadeh M., Jouyandeh M., Zarrintaj P., Saeb M.R., Mozafari M., Shokouhimehr M., Varma R.S. Natural Polymers Decorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS Appl. Bio Mater. 2021;4:5106–5121. doi: 10.1021/acsabm.1c00332. PubMed DOI

Yan J., Yao Y., Yan S., Gao R., Lu W., He W. Chiral Protein Supraparticles for Tumor Suppression and Synergistic Immunotherapy: An Enabling Strategy for Bioactive Supramolecular Chirality Construction. Nano Lett. 2020;20:5844–5852. doi: 10.1021/acs.nanolett.0c01757. PubMed DOI

Kim H., Beack S., Han S., Shin M., Lee T., Park Y., Kim K.S., Yetisen A.K., Yun S.H., Kwon W., et al. Multifunctional Photonic Nanomaterials for Diagnostic, Therapeutic, and Theranostic Applications. Adv. Mater. 2018;30:1701460. doi: 10.1002/adma.201701460. PubMed DOI

Song S., Shen H., Wang Y., Chu X., Xie J., Zhou N., Shen J. Biomedical application of graphene: From drug delivery, tumor therapy, to theranostics. Colloids Surf. B. 2020;185:110596. doi: 10.1016/j.colsurfb.2019.110596. PubMed DOI

Qian X., Gu Z., Chen Y. Two-dimensional black phosphorus nanosheets for theranostic nanomedicine. Mater. Horiz. 2017;4:800–816. doi: 10.1039/C7MH00305F. DOI

Angizi S., Alem S.A.A., Azar M.H., Shayeganfar F., Manning M.I., Hatamie A., Pakdel A., Simchi A. A comprehensive review on planar boron nitride nanomaterials: From 2D nanosheets towards 0D quantum dots. Prog. Mater. Sci. 2022;124:100884. doi: 10.1016/j.pmatsci.2021.100884. DOI

Chen Y., Wang L., Shi J. Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. Nano Today. 2016;11:292–308. doi: 10.1016/j.nantod.2016.05.009. DOI

Gong L., Yan L., Zhou R., Xie J., Wu W., Gu Z. Two-dimensional transition metal dichalcogenide nanomaterials for combination cancer therapy. J. Mater. Chem. B. 2017;5:1873–1895. doi: 10.1039/C7TB00195A. PubMed DOI

Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. doi: 10.1126/science.1102896. PubMed DOI

Qian X., Shen S., Liu T., Cheng L., Liu Z. Two-dimensional TiS2 nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy. Nanoscale. 2015;7:6380–6387. doi: 10.1039/C5NR00893J. PubMed DOI

Wang J., Sui L., Huang J., Miao L., Nie Y., Wang K., Yang Z., Huang Q., Gong X., Nan Y., et al. MoS2-based nanocomposites for cancer diagnosis and therapy. Bioact. Mater. 2021;6:4209–4242. doi: 10.1016/j.bioactmat.2021.04.021. PubMed DOI PMC

Manisekaran R., García-Contreras R., Rasu Chettiar A.-D., Serrano-Díaz P., Lopez-Ayuso C.A., Arenas-Arrocena M.C., Hernández-Padrón G., López-Marín L.M., Acosta-Torres L.S. 2D Nanosheets—A New Class of Therapeutic Formulations against Cancer. Pharmaceutics. 2021;13:1803. doi: 10.3390/pharmaceutics13111803. PubMed DOI PMC

Liu H., Mei Y., Zhao Q., Zhang A., Tang L., Gao H., Wang W. Black Phosphorus, an Emerging Versatile Nanoplatform for Cancer Immunotherapy. Pharmaceutics. 2021;13:1344. doi: 10.3390/pharmaceutics13091344. PubMed DOI PMC

Wen J., Yang K., Huang J., Sun S. Recent advances in LDH-based nanosystems for cancer therapy. Mater. Des. 2021;198:109298. doi: 10.1016/j.matdes.2020.109298. DOI

Liu C., Qin H., Kang L., Chen Z., Wang H., Qiu H., Ren J., Qu X. Graphitic carbon nitride nanosheets as a multifunctional nanoplatform for photochemical internalization-enhanced photodynamic therapy. J. Mater. Chem. B. 2018;6:7908–7915. doi: 10.1039/C8TB02535E. PubMed DOI

Ciofani M.E., Şen Ö., Çulha M. Hexagonal Boron Nitride Nanoparticles for Prostate Cancer Treatment. ACS Appl. Nano Mater. 2020;3:2364–2372. doi: 10.1021/acsanm.9b02486. DOI

Saeb M.R., Rabiee N., Mozafari M., Verpoort F., Voskressensky L.G., Luque R. Metal–Organic Frameworks (MOFs) for Cancer Therapy. Materials. 2021;14:7277. doi: 10.3390/ma14237277. PubMed DOI PMC

Pandey N., Dhiman S., Srivastava T., Majumder S. Transition metal oxide nanoparticles are effective in inhibiting lung cancer cell survival in the hypoxic tumor microenvironment. Chem. Biol. Interact. 2016;254:221–230. doi: 10.1016/j.cbi.2016.06.006. PubMed DOI

Pogorielov M., Smyrnova K., Kyrylenko S., Gogotsi O., Zahorodna V., Pogrebnjak A. MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications. Nanomaterials. 2021;11:3412. doi: 10.3390/nano11123412. PubMed DOI PMC

Dai C., Chen Y., Jing X., Xiang L., Yang D., Lin H., Liu Z., Han X., Wu R. Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided Photothermal Tumor Ablation. ACS Nano. 2017;11:12696–12712. doi: 10.1021/acsnano.7b07241. PubMed DOI

Han X., Huang J., Lin H., Wang Z., Li P., Chen Y. 2D Ultrathin MXene-Based Drug-Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Adv. Healthc. Mater. 2018;7:e1701394. doi: 10.1002/adhm.201701394. PubMed DOI

Korupalli C., You K.-L., Getachew G., Rasal A.S., Dirersa W.B., Zakki Fahmi M., Chang J.-Y. Engineering the Surface of Ti3C2 MXene Nanosheets for High Stability and Multimodal Anticancer Therapy. Pharmaceutics. 2022;14:304. doi: 10.3390/pharmaceutics14020304. PubMed DOI PMC

Karthikeyan P., Elanchezhiyan S.S., Preethi J., Talukdar K., Meenakshi S., Park C.M. Two-dimensional (2D) Ti3C2Tx MXene nanosheets with superior adsorption behavior for phosphate and nitrate ions from the aqueous environment. Ceram. Int. 2020;47:732–739. doi: 10.1016/j.ceramint.2020.08.183. DOI

Iravani S., Varma R.S. MXenes in cancer nanotheranostics. Nanomaterials. 2022;12:3360. doi: 10.3390/nano12193360. PubMed DOI PMC

Zhang Y.-Z., El-Demellawi J.K., Jiang Q., Ge G., Liang H., Lee K., Dong X., Alshareef H.N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020;49:7229–7251. doi: 10.1039/D0CS00022A. PubMed DOI

Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. PubMed DOI

Jamalipour Soufi G., Iravani P., Hekmatnia A., Mostafavi E., Khatami M., Iravani S. MXenes and MXene-based Materials with Cancer Diagnostic Applications: Challenges and Opportunities. Comments Inorg. Chem. 2021;42:174–207. doi: 10.1080/02603594.2021.1990890. DOI

Nguyen T.P., Nguyen D.M.T., Le H.K., Vo D.-V.N., Lam S.S., Varma R.S., Shokouhimehr M., Nguyen C.C., Van Le Q. MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction. Mol. Catal. 2020;486:110850. doi: 10.1016/j.mcat.2020.110850. DOI

Malaki M., Maleki A., Varma R.S. MXenes and ultrasonication. J. Mater. Chem. A. 2019;7:10843–10857. doi: 10.1039/C9TA01850F. DOI

Eid K., Lu Q., Abdel-Azeim S., Soliman A., Abdullah A.M., Abdelgwad A.M., Forbes R.P., Ozoemena K.I., Varma R.S., Shibl M.F. Highly exfoliated Ti3C2Tx MXene nanosheets atomically doped with Cu for efficient electrochemical CO2 reduction: An experimental and theoretical study. J. Mater. Chem. A. 2022 doi: 10.1039/D1TA09471H. DOI

Ma L., Ting L.R.L., Molinari V., Giordano C., Yeo B.S. Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A. 2015;3:8361–8368. doi: 10.1039/C5TA00139K. DOI

Xu C., Wang L., Liu Z., Chen L., Guo J., Kang N., Ma X.-L., Cheng H.-M., Ren W. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015;14:1135–1141. doi: 10.1038/nmat4374. PubMed DOI

Urbankowski P., Anasori B., Makaryan T., Er D., Kota S., Walsh P.L., Zhao M., Shenoy V.B., Barsoum M.W., Gogotsi Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene) Nanoscale. 2016;8:11385–11391. doi: 10.1039/C6NR02253G. PubMed DOI

Li T., Yao L., Liu Q., Gu J., Luo R., Li J., Yan X., Wang W., Liu P., Chen B. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem. Int. Ed. 2018;57:6115–6119. doi: 10.1002/anie.201800887. PubMed DOI

Sun W., Shah S., Chen Y., Tan Z., Gao H., Habib T., Radovic M., Green M. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A. 2017;5:21663–21668. doi: 10.1039/C7TA05574A. DOI

Iravani S., Varma R.S. MXenes in photomedicine: Advances and prospects. ChemComm. 2022;58:7336–7350. doi: 10.1039/D2CC01694J. PubMed DOI

Iravani S., Varma R.S. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater. Sci. Eng. 2021;7:1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI

Kuang P., Low J., Cheng B., Yu J., Fan J. MXene-based photocatalysts. J. Mater. Sci. Technol. 2020;56:18–44. doi: 10.1016/j.jmst.2020.02.037. DOI

Wang C., Wang Y., Jiang X., Xu J., Huang W., Zhang F., Liu J., Yang F., Song Y., Ge Y., et al. MXene Ti3C2Tx: A Promising Photothermal Conversion Material and Application in All-Optical Modulation and All-Optical Information Loading. Adv. Opt. Mater. 2019;7:1900060. doi: 10.1002/adom.201900060. DOI

Hendijani F. Human mesenchymal stromal cell therapy for prevention and recovery of chemo/radiotherapy adverse reactions. Cytotherapy. 2015;17:509–525. doi: 10.1016/j.jcyt.2014.10.015. PubMed DOI

Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012;12:252–264. doi: 10.1038/nrc3239. PubMed DOI PMC

Chari R.V.J. Targeted Cancer Therapy: Conferring Specificity to Cytotoxic Drugs. Acc. Chem. Res. 2007;41:98–107. doi: 10.1021/ar700108g. PubMed DOI

Murugan C., Sharma V., Murugan R.K., Malaimegu G., Sundaramurthy A. Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy. J. Control. Release. 2019;299:1–20. doi: 10.1016/j.jconrel.2019.02.015. PubMed DOI

Shi Z., Zhou Y., Fan T., Lin Y., Zhang H., Mei L. Inorganic nano-carriers based smart drug delivery systems for tumor therapy. Smart Mater. Med. 2020;1:32–47. doi: 10.1016/j.smaim.2020.05.002. DOI

Jain V., Jain S., Mahajan S. Nanomedicines Based Drug Delivery Systems for Anti-Cancer Targeting and Treatment. Curr. Drug Deliv. 2015;12:177–191. doi: 10.2174/1567201811666140822112516. PubMed DOI

Iravani P., Iravani S., Varma R.S. MXene-chitosan composites and their biomedical potentials. Micromachines. 2022;13:1383. doi: 10.3390/mi13091383. PubMed DOI PMC

Lin H., Chen Y., Shi J. Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Adv. Sci. 2018;5:1800518. doi: 10.1002/advs.201800518. PubMed DOI PMC

George S.M., Kandasubramanian B. Advancements in MXene-Polymer composites for various biomedical applications. Ceram. Int. 2019;46:8522–8535. doi: 10.1016/j.ceramint.2019.12.257. DOI

Alhussain H., Augustine R., Hussein E.A., Gupta I., Hasan A., Al Moustafa A.-E., Elzatahry A. MXene Nanosheets May Induce Toxic Effect on the Early Stage of Embryogenesis. J. Biomed. Nanotechnol. 2020;16:364–372. doi: 10.1166/jbn.2020.2894. PubMed DOI

Iravani S., Varma R.S. Bioinspired and biomimetic MXene-based structures with fascinating properties: Recent advances. Mater. Adv. 2022;3:4783–4796. doi: 10.1039/D2MA00151A. DOI

Huang H., Dong C., Feng W., Wang Y., Huang B., Chen Y. Biomedical engineering of two-dimensional MXenes. Adv. Drug Deliv. Rev. 2022;184:114178. doi: 10.1016/j.addr.2022.114178. PubMed DOI

Zamhuri A., Lim G.P., Ma N.L., Tee K.S., Soon C.F. MXene in the lens of biomedical engineering: Synthesis, applications and future outlook. Biomed. Eng. Online. 2021;20:33. doi: 10.1186/s12938-021-00873-9. PubMed DOI PMC

Shukla V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv. 2019;1:1640–1671. doi: 10.1039/C9NA00108E. PubMed DOI PMC

Zhan X., Si C., Zhou J., Sun Z. MXene and MXene-based composites: Synthesis, properties and environment-related applications. Nanoscale Horiz. 2019;5:235–258. doi: 10.1039/C9NH00571D. DOI

Verger L., Xu C., Natu V., Cheng H.-M., Ren W., Barsoum M.W. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 2019;23:149–163. doi: 10.1016/j.cossms.2019.02.001. DOI

Rozmysłowska-Wojciechowska A., Mitrzak J., Szuplewska A., Chudy M., Woźniak J., Petrus M., Wojciechowski T., Vasilchenko A.S., Jastrzębska A.M. Engineering of 2D Ti3C2 MXene Surface Charge and its Influence on Biological Properties. Materials. 2020;13:2347. doi: 10.3390/ma13102347. PubMed DOI PMC

Xing C., Chen S., Liang X., Liu Q., Qu M., Zou Q., Li J., Tan H., Liu L., Fan D., et al. Two-Dimensional MXene (Ti3C2)-Integrated Cellulose Hydrogels: Toward Smart Three-Dimensional Network Nanoplatforms Exhibiting Light-Induced Swelling and Bimodal Photothermal/Chemotherapy Anticancer Activity. ACS Appl. Mater. Interfaces. 2018;10:27631–27643. doi: 10.1021/acsami.8b08314. PubMed DOI

Xie Y., Naguib M., Mochalin V.N., Barsoum M.W., Gogotsi Y., Yu X., Nam K.-W., Yang X.-Q., Kolesnikov A.I., Kent P.R. Role of Surface Structure on Li-Ion Energy Storage Capacity of Two-Dimensional Transition-Metal Carbides. J. Am. Chem. Soc. 2014;136:6385–6394. doi: 10.1021/ja501520b. PubMed DOI

Xie Y., Dall’Agnese Y., Naguib M., Gogotsi Y., Barsoum M.W., Zhuang H.L., Kent P.R.C. Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries. ACS Nano. 2014;8:9606–9615. doi: 10.1021/nn503921j. PubMed DOI

Hu T., Wang J., Zhang H., Li Z., Hu M., Wang X. Vibrational properties of Ti3C2and Ti3C2T2(T = O, F, OH) monosheets by first-principles calculations: A comparative study. Phys. Chem. Chem. Phys. 2015;17:9997–10003. doi: 10.1039/C4CP05666C. PubMed DOI

Tang Q., Zhou Z., Shen P. Are MXenes Promising Anode Materials for Li Ion Batteries? Computational Studies on Electronic Properties and Li Storage Capability of Ti3C2 and Ti3C2X2 (X = F, OH) Monolayer. J. Am. Chem. Soc. 2012;134:16909–16916. PubMed

Khazaei M., Arai M., Sasaki T., Chung C.-Y., Venkataramanan N.S., Estili M., Sakka Y., Kawazoe Y. Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides. Adv. Funct. Mater. 2012;23:2185–2192. doi: 10.1002/adfm.201202502. DOI

Wang X., Shen X., Gao Y., Wang Z., Yu R., Chen L. Atomic-Scale Recognition of Surface Structure and Intercalation Mechanism of Ti3C2X. J. Am. Chem. Soc. 2015;137:2715–2721. doi: 10.1021/ja512820k. PubMed DOI

Enyashin A.N., Ivanovskii A.L. Two-dimensional titanium carbonitrides and their hydroxylated derivatives: Structural, electronic properties and stability of MXenes Ti3C2−xNx(OH)2 from DFTB calculations. J. Solid State Chem. 2013;207:42–48. doi: 10.1016/j.jssc.2013.09.010. DOI

Mauchamp V., Bugnet M., Bellido E.P., Botton G.A., Moreau P., Magne D., Naguib M., Cabioc’h T., Barsoum M.W. Enhanced and tunable surface plasmons in two-dimensional Ti3C2 stacks: Electronic structure versus boundary effects. Phys. Rev. B. 2014;89:235428. doi: 10.1103/PhysRevB.89.235428. DOI

Shein I.R., Ivanovskii A.L. Planar nano-block structures Tin+1Al0.5Cn and Tin+1Cn (n = 1, and 2) from MAX phases: Structural, electronic properties and relative stability from first principles calculations. Superlattices Microstruct. 2012;52:147–157. doi: 10.1016/j.spmi.2012.04.014. DOI

Shein I.R., Ivanovskii A.L. Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability. Comput. Mater. Sci. 2012;65:104–114. doi: 10.1016/j.commatsci.2012.07.011. DOI

Xie Y., Kent P.R.C. Hybrid density functional study of structural and electronic properties of functionalized Tin+1Xn (X = C, N) monolayers. Phys. Rev. B. 2013;87:235441. doi: 10.1103/PhysRevB.87.235441. DOI

Zhao S., Kang W., Xue J. Manipulation of electronic and magnetic properties of M2C (M = Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains. Appl. Phys. Lett. 2014;104:133106. doi: 10.1063/1.4870515. DOI

Wang S., Li J.-X., Du Y.-L., Cui C. First-principles study on structural, electronic and elastic properties of graphene-like hexagonal Ti2C monolayer. Comput. Mater. Sci. 2014;83:290–293. doi: 10.1016/j.commatsci.2013.11.025. DOI

Khazaei M., Arai M., Sasaki T., Estili M., Sakka Y. Two-dimensional molybdenum carbides: Potential thermoelectric materials of the MXene family. Phys. Chem. Chem. Phys. 2014;16:7841–7849. doi: 10.1039/C4CP00467A. PubMed DOI

Lashgari H., Abolhassani M.R., Boochani A., Elahi S.M., Khodadadi J. Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations. Solid State Commun. 2014;195:61–69. doi: 10.1016/j.ssc.2014.06.008. DOI

Enyashin A.N., Ivanovskii A.L. Structural and Electronic Properties and Stability of MXenes Ti2C and Ti3C2 Functionalized by Methoxy Groups. J. Phys. Chem. C. 2013;117:13637–13643. doi: 10.1021/jp401820b. DOI

Naguib M., Mashtalir O., Lukatskaya M.R., Dyatkin B., Zhang C., Presser V., Gogotsi Y., Barsoum M.W. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem. Commun. 2014;50:7420–7423. doi: 10.1039/C4CC01646G. PubMed DOI

Johnson K.K., Koshy P., Yang J.L., Sorrell C.C. Preclinical Cancer Theranostics—From Nanomaterials to Clinic: The Missing Link. Adv. Funct. Mater. 2021;31:2104199. doi: 10.1002/adfm.202104199. DOI

Ghidiu M., Lukatskaya M.R., Zhao M.-Q., Gogotsi Y., Barsoum M.W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014;516:78–81. doi: 10.1038/nature13970. PubMed DOI

Shahzad F., Alhabeb M., Hatter C.B., Anasori B., Man Hong S., Koo C.M., Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes) Science. 2016;353:1137–1140. doi: 10.1126/science.aag2421. PubMed DOI

Montazeri K., Currie M., Verger L., Dianat P., Barsoum M.W., Nabet B. Beyond Gold: Spin-Coated Ti3C2-Based MXene Photodetectors. Adv. Mater. 2019;31:1903271. doi: 10.1002/adma.201903271. PubMed DOI

Naguib M., Mochalin V.N., Barsoum M.W., Gogotsi Y. Two-dimensional materials: 25th anniversary article: MXenes: A new family of two-dimensional materials (Adv. Mater. 7/2014) Adv. Mater. 2014;26:982. doi: 10.1002/adma.201470041. PubMed DOI

Dillon A.D., Ghidiu M.J., Krick A.L., Griggs J., May S.J., Gogotsi Y., Barsoum M.W., Fafarman A.T. Highly Conductive Optical Quality Solution-Processed Films of 2D Titanium Carbide. Adv. Funct. Mater. 2016;26:4162–4168. doi: 10.1002/adfm.201600357. DOI

Dai C., Lin H., Xu G., Liu Z., Wu R., Chen Y. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem. Mater. 2017;29:8637–8652. doi: 10.1021/acs.chemmater.7b02441. DOI

Loo T.W., Clarke D. Recent Progress in Understanding the Mechanism of P-Glycoprotein-mediated Drug Efflux. J. Membr. Biol. 2005;206:173–185. doi: 10.1007/s00232-005-0792-1. PubMed DOI

Hao Z., Li Y., Liu X., Jiang T., He Y., Zhang X., Cong C., Wang D., Liu Z., Gao D. Enhancing biocatalysis of a MXene-based biomimetic plasmonic assembly for targeted cancer treatments in NIR-II biowindow. Chem. Eng. J. 2021;425:130639. doi: 10.1016/j.cej.2021.130639. DOI

Xu Y., Wang Y., An J., Sedgwick A.C., Li M., Xie J., Hu W., Kang J., Sen S., Steinbrueck A., et al. 2D-ultrathin MXene/DOXjade platform for iron chelation chemo-photothermal therapy. Bioact. Mater. 2021;14:76–85. doi: 10.1016/j.bioactmat.2021.12.011. PubMed DOI PMC

Lin H., Wang X., Yu L., Chen Y., Shi J. Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. Nano Lett. 2017;17:384–391. doi: 10.1021/acs.nanolett.6b04339. PubMed DOI

Li M., Shao Y., Kim J.H., Pu Z., Zhao X., Huang H., Xiong T., Kang Y., Li G., Shao K., et al. Unimolecular Photodynamic O2-Economizer To Overcome Hypoxia Resistance in Phototherapeutics. J. Am. Chem. Soc. 2020;142:5380–5388. doi: 10.1021/jacs.0c00734. PubMed DOI

Li M., Xiong T., Du J., Tian R., Xiao M., Guo L., Long S., Fan J., Sun W., Shao K., et al. Superoxide Radical Photogenerator with Amplification Effect: Surmounting the Achilles’ Heels of Photodynamic Oncotherapy. J. Am. Chem. Soc. 2019;141:2695–2702. doi: 10.1021/jacs.8b13141. PubMed DOI

Gupta P., Jat K., Solanki V.S., Shrivastava R. Synthesis and Antimicrobial Activity of some New N′-Arylidene-4-(3, 5-Bis (2-Hydroxyphenyl)-1H-1, 2, 4-Triazole-1-yl) Benzohydrazides. Indian J. Heterocycl. Chem. 2017;27:151–156.

Zhang X., Cheng L., Lu Y., Tang J., Lv Q., Chen X., Chen Y., Liu J. A MXene-Based Bionic Cascaded-Enzyme Nanoreactor for Tumor Phototherapy/Enzyme Dynamic Therapy and Hypoxia-Activated Chemotherapy. Nano-Micro Lett. 2021;14:22. doi: 10.1007/s40820-021-00761-w. PubMed DOI PMC

Sun K.-Y., Wu Y., Xu J., Xiong W., Xu W., Li J., Sun Z., Lv Z., Wu X.S., Jiang Q., et al. Niobium carbide (MXene) reduces UHMWPE particle-induced osteolysis. Bioact. Mater. 2022;8:435–448. doi: 10.1016/j.bioactmat.2021.06.016. PubMed DOI PMC

Feng X., Li M., Wang J., Zou X., Wang H., Wang D., Zhou H., Yang L., Gao W., Liang C. MXene Quantum Dot/Zeolitic Imidazolate Framework Nanocarriers for Dual Stimulus Triggered Tumor Chemo-Phototherapy. Materials. 2022;15:4543. doi: 10.3390/ma15134543. PubMed DOI PMC

Liu J., Qiao S.Z., Chen J.S., Lou X.W.D., Xing X., Lu G.Q.M. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 2011;47:12578–12591. doi: 10.1039/c1cc13658e. PubMed DOI

Lu B., Hu S., Wu D., Wu C., Zhu Z., Hu L., Zhang J. Ionic liquid exfoliated Ti3C2Tx MXene nanosheets for photoacoustic imaging and synergistic photothermal/chemotherapy of cancer. J. Mater. Chem. B. 2022;10:1226–1235. doi: 10.1039/D1TB01938D. PubMed DOI

Hanušová V., Boušová I., Skálová L. Possibilities to increase the effectiveness of doxorubicin in cancer cells killing. Drug Metab. Rev. 2011;43:540–557. doi: 10.3109/03602532.2011.609174. PubMed DOI

Liu A., Liu Y., Liu G., Zhang A., Cheng Y., Li Y., Zhang L., Wang L., Zhou H., Liu J., et al. Engineering of surface modified Ti3C2Tx MXene based dually controlled drug release system for synergistic multitherapies of cancer. Biochem. Eng. J. 2022;448:137691. doi: 10.1016/j.cej.2022.137691. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...