MXene-Carbon Nanotube Composites: Properties and Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36678099
PubMed Central
PMC9867311
DOI
10.3390/nano13020345
PII: nano13020345
Knihovny.cz E-zdroje
- Klíčová slova
- MXenes, carbon nanotubes, catalysis, electromagnetic interference shielding, sensing,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Today, MXenes and their composites have shown attractive capabilities in numerous fields of electronics, co-catalysis/photocatalysis, sensing/imaging, batteries/supercapacitors, electromagnetic interference (EMI) shielding, tissue engineering/regenerative medicine, drug delivery, cancer theranostics, and soft robotics. In this aspect, MXene-carbon nanotube (CNT) composites have been widely constructed with improved environmental stability, excellent electrical conductivity, and robust mechanical properties, providing great opportunities for designing modern and intelligent systems with diagnostic/therapeutic, electronic, and environmental applications. MXenes with unique architectures, large specific surface areas, ease of functionalization, and high electrical conductivity have been employed for hybridization with CNTs with superb heat conductivity, electrical conductivity, and fascinating mechanical features. However, most of the studies have centered around their electronic, EMI shielding, catalytic, and sensing applications; thus, the need for research on biomedical and diagnostic/therapeutic applications of these materials ought to be given more attention. The photothermal conversion efficiency, selectivity/sensitivity, environmental stability/recyclability, biocompatibility/toxicity, long-term biosafety, stimuli-responsiveness features, and clinical translation studies are among the most crucial research aspects that still need to be comprehensively investigated. Although limited explorations have focused on MXene-CNT composites, future studies should be planned on the optimization of reaction/synthesis conditions, surface functionalization, and toxicological evaluations. Herein, most recent advancements pertaining to the applications of MXene-CNT composites in sensing, catalysis, supercapacitors/batteries, EMI shielding, water treatment/pollutants removal are highlighted, focusing on current trends, challenges, and future outlooks.
Department of Organic Chemistry Faculty of Chemistry Alzahra University Tehran 19938 93973 Iran
School of Chemistry College of Science University of Tehran Tehran 14179 35840 Iran
Zobrazit více v PubMed
Zhan X., Si C., Zhou J., Sun Z. MXene and MXene-based composites: Synthesis, properties and environment-related applications. Nanoscale Horiz. 2020;5:235–258. doi: 10.1039/C9NH00571D. DOI
Zhang B., Luo C., Zhou G., Pan Z.-Z., Ma J., Nishihara H., He Y.-B., Kang F., Lv W., Yang Q.-H. Lamellar MXene Composite Aerogels with Sandwiched Carbon Nanotubes Enable Stable Lithium–Sulfur Batteries with a High Sulfur Loading. Adv. Funct. Mater. 2021;31:2100793. doi: 10.1002/adfm.202100793. DOI
Zhang Y., Gong M., Wan P. MXene hydrogel for wearable electronics. Matter. 2021;4:2655–2658. doi: 10.1016/j.matt.2021.06.041. DOI
Zhang Y.-Z., El-Demellawi J.K., Jiang Q., Ge G., Liang H., Lee K., Dong X., Alshareef H.N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020;49:7229–7251. doi: 10.1039/D0CS00022A. PubMed DOI
Zheng Y., Yan Y., Lin L., He Q., Hu H., Luo R., Xian D., Wu J., Shi Y., Zeng F., et al. Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection. Acta Biomaterialia. 2022;142:113–123. doi: 10.1016/j.actbio.2022.02.019. PubMed DOI
Zhong Q., Li Y., Zhang G. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chem. Eng. J. 2021;409:128099. doi: 10.1016/j.cej.2020.128099. DOI
Iqbal A., Kwon J., Kim M.-K., Koo C.M. MXenes for electromagnetic interference shielding: Experimental and theoretical perspectives. Mater. Adv. 2021;9:100124. doi: 10.1016/j.mtadv.2020.100124. DOI
Ahsan Saeed M., Kim T.H., Ahn H., Park N.W., Park J.H., Choi H., Shahzad A., Shim J.W. 2D MXene Additive-Induced Treatment Enabling High-Efficiency Indoor Organic Photovoltaics. Adv. Opt. Mater. 2022;11:2202135. doi: 10.1002/adom.202202135. DOI
Ahsan Saeed M., Shahzad A., Rasool K., Mateen F., Oh J.-M., Shim J.W. 2D MXene: A Potential Candidate for Photovoltaic Cells? A Critical Review. Adv. Sci. 2022;9:2104743. doi: 10.1002/advs.202104743. PubMed DOI PMC
Urbankowski P., Anasori B., Makaryan T., Er D., Kota S., Walsh P.L., Zhao M., Shenoy V.B., Barsoum M.W., Gogotsi Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene) Nanoscale. 2016;8:11385. doi: 10.1039/C6NR02253G. PubMed DOI
Zhang X., Shao B., Guo A., Gao Z., Qin Y., Zhang C., Cui F., Yang X. Improved electrochemical performance of CoOx-NiO/Ti3C2Tx MXene nanocomposites by atomic layer deposition towards high capacitance supercapacitors. J. Alloys Compd. 2021;862:158546. doi: 10.1016/j.jallcom.2020.158546. DOI
Sun W., Shah S., Chen Y., Tan Z., Gao H., Habib T., Radovic M., Green M. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A. 2017;5:21663–21668. doi: 10.1039/C7TA05574A. DOI
Ma L., Ting L.R.L., Molinari V., Giordano C., Yeo B.S. Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A. 2015;3:8361–8368. doi: 10.1039/C5TA00139K. DOI
Liu M., Bai Y., He Y., Zhou J., Ge Y., Zhou J., Song G. Facile microwave-assisted synthesis of Ti3C2 MXene quantum dots for ratiometric fluorescence detection of hypochlorite. Microchim. Acta. 2021;15:188. doi: 10.1007/s00604-020-04668-y. PubMed DOI
Xu C., Wang L., Liu Z., Chen L., Guo J., Kang N., Ma X.-L., Cheng H.-M., Ren W. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015;14:1135–1141. doi: 10.1038/nmat4374. PubMed DOI
Li T., Yao L., Liu Q., Gu J., Luo R., Li J., Yan X., Wang W., Liu P., Chen B. Fluorine—Free Synthesis of High—Purity Ti3C2Tx (T=OH, O) via Alkali Treatment. Angew. Chem. Int. Ed. 2018;57:6115–6119. doi: 10.1002/anie.201800887. PubMed DOI
Malaki M., Maleki A., Varma R.S. MXenes and ultrasonication. J. Mater. Chem. A. 2019;7:10843–10857. doi: 10.1039/C9TA01850F. DOI
Yan L., Luo X., Yang R.Z., Dai F., Zhu D.D., Bai J.N., Zhang L., Lei H. Highly Thermoelectric ZnO@MXene (Ti3C2Tx) Composite Films Grown by Atomic Layer Deposition. ACS Appl. Mater. Interfaces. 2022;14:34562–34570. doi: 10.1021/acsami.2c05003. PubMed DOI
Chen Z., Zhang A., Wang X., Zhu J., Fan Y., Yu H., Yang Z. The Advances of Carbon Nanotubes in Cancer Diagnostics and Therapeutics. J. Nanomater. 2017;2017:3418932. doi: 10.1155/2017/3418932. DOI
Mostafavi E., Iravani S., Varma R.S., Khatami M., Rahbarizadeh F. Eco-friendly synthesis of carbon nanotubes and their cancer theranostic applications. Mater. Adv. 2022;3:4765–4782. PubMed PMC
Utreja P., Jain S., Tiwary A.K. Novel drug delivery systems for sustained and targeted delivery of anti-cancer drugs: Current status and future prospects. Curr. Drug Deliv. 2010;7:152–161. doi: 10.2174/156720110791011783. PubMed DOI
Singh R., Torti S.V. Carbon nanotubes in hyperthermia therapy. Adv. Drug Deliv. Rev. 2013;65:2045–2060. doi: 10.1016/j.addr.2013.08.001. PubMed DOI PMC
Iravani S. MXenes and MXene-based (nano)structures: A perspective on greener synthesis and biomedical prospects. Ceram. Int. 2022;48:24144–24156. doi: 10.1016/j.ceramint.2022.05.137. DOI
Iravani S., Varma R.S. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances. Mater. Adv. 2021;2:2906–2917. doi: 10.1039/D1MA00189B. DOI
Iravani S., Varma R.S. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater. Sci. Eng. 2021;7:1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI
Iravani S., Varma R.S. MXenes in photomedicine: Advances and prospects Chem. Commun. 2022;58:7336–7350. doi: 10.1039/D2CC01694J. PubMed DOI
Iravani S., Varma R.S. Bioinspired and biomimetic MXene-based structures with fascinating properties: Recent advances. Mater. Adv. 2022;3:4783–4796. doi: 10.1039/D2MA00151A. DOI
Iravani S., Varma R.S. MXenes in Cancer Nanotheranostics. Nanomaterials. 2022;12:3360. doi: 10.3390/nano12193360. PubMed DOI PMC
Iravani P., Iravani S., Varma R.S. MXene-Chitosan Composites and Their Biomedical Potentials. Micromachines. 2022;13:1383. doi: 10.3390/mi13091383. PubMed DOI PMC
Khatami M., Iravani P., Jamalipour Soufi G., Iravani S. MXenes for antimicrobial and antiviral applications: Recent advances. Mater. Technol. Adv. Perform. Mater. 2022;37:1890–1905. doi: 10.1080/10667857.2021.2002587. DOI
Khatami M., Iravani S. MXenes and MXene-based Materials for the Removal of Water Pollutants: Challenges and Opportunities. Comments Inorg. Chem. 2021;41:213–248. doi: 10.1080/02603594.2021.1922396. DOI
Cui Y., Wu F., Wang J., Wang Y., Shah T., Liu P., Zhang Q., Zhang B. Three dimensional porous MXene/CNTs microspheres: Preparation, characterization and microwave absorbing properties. Compos. Part A Appl. Sci. Manuf. 2021;145:106378. doi: 10.1016/j.compositesa.2021.106378. DOI
Yu L.P., Zhou X.H., Lu L., Xu L., Wang F.J. MXene/Carbon Nanotube Hybrids: Synthesis, Structures, Properties, and Applications. Chem. Sus. Chem. 2021;14:5079–5111. doi: 10.1002/cssc.202101614. PubMed DOI
Liang W., Zhitomirsky I. MXene–carbon nanotube composite electrodes for high active mass asymmetric supercapacitors. J. Mater. Chem. A. 2021;9:10335–10344. doi: 10.1039/D0TA12485K. DOI
Nguyen V.-T., Nguyen Q.-D., Min B.K., Yi Y., Cho C.-G. Ti3C2Tx MXene/carbon nanotubes/waterborne polyurethane based composite ink for electromagnetic interference shielding and sheet heater applications. Chem. Eng. J. 2022;430:133171. doi: 10.1016/j.cej.2021.133171. DOI
Xu C., Fan C., Zhang X., Chen H., Liu X., Fu Z., Wang R., Hong T., Cheng J. MXene (Ti3C2Tx) and Carbon Nanotube Hybrid-Supported Platinum Catalysts for the High-Performance Oxygen Reduction Reaction in PEMFC. ACS Appl. Mater. Interfaces. 2020;12:19539–19546. doi: 10.1021/acsami.0c02446. PubMed DOI
Dong G.-H., Mao Y.-Q., Li Y.-Q., Huang P., Fu S.-Y. MXene-carbon nanotubes-Cellulose-LiFePO4 based self-supporting cathode with ultrahigh-area-capacity for lithium-ion batteries. Electrochim. Acta. 2022;420:140464. doi: 10.1016/j.electacta.2022.140464. DOI
Qian K., Wu H., Fang J., Yang Y., Miao M., Cao S., Shi L., Feng X. Yarn-ball-shaped CNF/MWCNT microspheres intercalating Ti3C2Tx MXene for electromagnetic interference shielding films. Carbohydr. Polym. 2021;254:117325. doi: 10.1016/j.carbpol.2020.117325. PubMed DOI
Qian Y., Zhong J., Ou J. Superdurable fiber-reinforced composite enabled by synergistic bridging effects of MXene and carbon nanotubes. Carbon. 2022;190:104–114. doi: 10.1016/j.carbon.2022.01.009. DOI
Shao D.-D., Zhang Q., Wang L., Wang Z.-Y., Jing Y.-X., Cao X.-L., Zhang F., Sun S.-P. Enhancing interfacial adhesion of MXene nanofiltration membranes via pillaring carbon nanotubes for pressure and solvent stable molecular sieving. J. Membr. Sci. 2021;623:119033. doi: 10.1016/j.memsci.2020.119033. DOI
Li L., Wang F., Zhu J., Wua W. The facile synthesis of layered Ti2C MXene/carbon nanotube composite paper with enhanced electrochemical properties. Dalton Trans. 2017;46:14880–14887. doi: 10.1039/C7DT02688A. PubMed DOI
Mohajer F., Mohammadi Ziarani G., Badiei A., Iravani S., Varma R.S. Advanced MXene-Based Micro- and Nanosystems for Targeted Drug Delivery in Cancer Therapy. Micromachines. 2022;13:1773. doi: 10.3390/mi13101773. PubMed DOI PMC
Iravani S., Varma R.S. MXene-based composites as nanozymes in biomedicine: A perspective. Nano-Micro Lett. 2022;14:213. doi: 10.1007/s40820-022-00958-7. PubMed DOI PMC
Huang K., Li Z., Lin J., Han G., Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018;47:5109–5124. doi: 10.1039/C7CS00838D. PubMed DOI
Zhou Z., Panatdasirisuk W., Mathis T.S., Anasori B., Lu C., Zhang X., Liao Z., Gogotsi Y., Yang S. Layer-by-layer assembly of MXene and carbon nanotubes on electrospun polymer films for flexible energy storage. Nanoscale. 2018;10:6005–6013. doi: 10.1039/C8NR00313K. PubMed DOI
Gao X., Du X., Mathis T.S., Zhang M., Wang X., Shui J., Gogotsi Y., Xu M. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 2020;11:6160. doi: 10.1038/s41467-020-19992-3. PubMed DOI PMC
Byeon A., Glushenkov A.M., Anasori B., Urbankowski P., Li J., Byles B.W., Blake B., Van Aken K.L., Kota S., Pomerantseva E., et al. Lithium-ion capacitors with 2D Nb2CTx (MXene)—carbon nanotube electrodes. J. Power Sources. 2016;326:686–694. doi: 10.1016/j.jpowsour.2016.03.066. DOI
Xie X., Zhao M.-Q., Anasori B., Maleski K., Ren C.E., Li J., Byles B.W., Pomerantseva E., Wang G., Gogotsi Y. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy. 2016;26:513–523. doi: 10.1016/j.nanoen.2016.06.005. DOI
Yang B., Liu B., Chen J., Ding Y., Sun Y., Tang Y., Yan X. Realizing high-performance lithium ion hybrid capacitor with a 3D MXene-carbon nanotube composite anode. Chem. Eng. J. 2022;429:132392. doi: 10.1016/j.cej.2021.132392. DOI
Li N., Cao W., Liu Y., Ye H., Han K. Impeding polysulfide shuttling with a three-dimensional conductive carbon nanotubes/MXene framework modified separator for highly efficient lithium-sulfur batteries. Colloids Surf. A Physicochem. Eng. Asp. 2019;573:128–136. doi: 10.1016/j.colsurfa.2019.04.054. DOI
Gu Q., Lu M., Chen J., Qi Y., Zhang B. Three-dimensional architectures based on carbon nanotube bridged Ti2C MXene nanosheets for Li–S batteries. Particuology. 2021;57:139–145. doi: 10.1016/j.partic.2021.01.003. DOI
He X., Jin S., Miao L., Cai Y., Hou Y., Li H., Zhang K., Yan Z., Chen J. A 3D Hydroxylated MXene/Carbon Nanotubes Composite as a Scaffold for Dendrite-Free Sodium-Metal Electrodes. Angew. Chem. 2020;59:16705–16711. doi: 10.1002/anie.202006783. PubMed DOI
Zhang W., Jin H., Chen G., Zhang J. Sandwich-like N-doped carbon nanotube@Nb2C MXene composite for high performance alkali ion batteries. Ceram. Int. 2021;47:20610–20616. doi: 10.1016/j.ceramint.2021.04.070. DOI
Yu P., Cao G., Yi S., Zhang X., Li C., Sun X., Wang K., Ma Y. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale. 2018;10:5906–5913. doi: 10.1039/C8NR00380G. PubMed DOI
Lian S., Li G., Song F., Liu Z., Hu J., Tang K., Xie X., Wu Z., Zhang N. Surfactant-free self-assembled MXene/carbon nanotubes hybrids for high-rate sodium- and potassium-ion storage. J. Alloys Compd. 2022;901:163426. doi: 10.1016/j.jallcom.2021.163426. DOI
Wang R., Luo S., Xiao C., Chen Z., Li H., Asif M., Chan V., Liao K., Sun Y. MXene-carbon nanotubes layer-by-layer assembly based on-chip micro-supercapacitor with improved capacitive performance. Electrochim. Acta. 2021;386:138420. doi: 10.1016/j.electacta.2021.138420. DOI
Hu M., Cui C., Shi C., Wu Z.-S., Yang J., Cheng R., Guang T., Wang H., Lu H., Wang X. High-Energy-Density Hydrogen-Ion-Rocking-Chair Hybrid Supercapacitors Based on Ti3C2Tx MXene and Carbon Nanotubes Mediated by Redox Active Molecule. ACS Nano. 2019;13:6899–6905. doi: 10.1021/acsnano.9b01762. PubMed DOI
Huang Y.-L., Bian S.-W. Vacuum-filtration assisted layer-by-layer strategy to design MXene/carbon nanotube@MnO2 all-in-one supercapacitors. J. Mater. Chem. A. 2021;9:21347–21356. doi: 10.1039/D1TA06089A. DOI
Li K., Zhang P., Soomro R.A., Xu B. Alkali-Induced Porous MXene/Carbon Nanotube-Based Film Electrodes for Supercapacitors. ACS Appl. Nano Mater. 2022;5:4180–4186. doi: 10.1021/acsanm.2c00109. DOI
Guo Z., Li Y., Lu Z., Chao Y., Liu W. High-performance MnO2@MXene/carbon nanotube fiber electrodes with internal and external construction for supercapacitors. J. Mater. Sci. 2022;57:3613–3628. doi: 10.1007/s10853-021-06840-y. DOI
Liang W., Zhitomirsky I. Composite Fe3O4-MXene-Carbon Nanotube Electrodes for Supercapacitors Prepared Using the New Colloidal Method. Materials. 2021;14:2930. doi: 10.3390/ma14112930. PubMed DOI PMC
Aakyiir M., Oh J.-A., Araby S., Zheng Q., Naeem M., Ma J., Adu P., Zhang L., Mai Y.-W. Combining hydrophilic MXene nanosheets and hydrophobic carbon nanotubes for mechanically resilient and electrically conductive elastomer nanocomposites. Compos. Sci. Technol. 2021;214:108997. doi: 10.1016/j.compscitech.2021.108997. DOI
Miao J., Lang Z., Zhang X., Kong W., Peng O., Yang Y., Wang S., Cheng J., He T., Amini A., et al. Polyoxometalate-Derived Hexagonal Molybdenum Nitrides (MXenes) Supported by Boron, Nitrogen Codoped Carbon Nanotubes for Efficient Electrochemical Hydrogen Evolution from Seawater. Adv. Funct. Mater. 2019;29:1805893. doi: 10.1002/adfm.201970046. DOI
Zhang C., Dong H., Chen B., Jin T., Nie J., Ma G. 3D MXene anchored carbon nanotube as bifunctional and durable oxygen catalysts for Zn–air batteries. Carbon. 2021;185:17–26. doi: 10.1016/j.carbon.2021.09.004. DOI
Dall’Agnese Y., Rozier P., Taberna P.-L., Gogotsi Y., Simon P. Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes. J. Power Sources. 2016;306:510–515. doi: 10.1016/j.jpowsour.2015.12.036. DOI
Xu B., Ye F., Chen R., Luo X., Chang G., Li R. A wide sensing range and high sensitivity flexible strain sensor based on carbon nanotubes and MXene. Ceram. Int. 2022;48:10220–10226. doi: 10.1016/j.ceramint.2021.12.235. DOI
Wang Q., Liu J., Tian G., Zhang D. Co@N-CNT/MXenes in situ grown on carbon nanotube film for multifunctional sensors and flexible supercapacitors. Nanoscale. 2021;13:14460–14468. doi: 10.1039/D1NR03641F. PubMed DOI
Gu Q., Chen X., Lu C., Ye C., Li W., Chu J., Zhang W., Wang Z., Xu B. Electrochemical determination of capsaicinoids content in soy sauce and pot-roast meat products by glassy carbon electrode modified with MXene/PDDA-carbon nanotubes/β-cyclodextrin. Food Control. 2022;138:109022. doi: 10.1016/j.foodcont.2022.109022. PubMed DOI PMC
Huang H., Wang D., Zhou Y., Wu D., Liao X., Xiong W., Du J., Hong Y. Multiwalled carbon nanotubes modified two dimensional MXene with high antifouling property for sensitive detection of ochratoxin A. Nanotechnology. 2021;32:455501. doi: 10.1088/1361-6528/ac1a42. PubMed DOI
Cheng J., Liu B., Wang Y., Zhao H., Wang Y. Growing CoNi nanoalloy@N-doped carbon nanotubes on MXene sheets for excellent microwave absorption. J. Mater. Sci. Technol. 2022;130:157–165. doi: 10.1016/j.jmst.2022.05.013. DOI
Cao W., Ma C., Tan S., Ma M., Wan P., Chen F. Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper for Electromagnetic Interference Shielding. Nano-Micro Lett. 2019;11:72. doi: 10.1007/s40820-019-0304-y. PubMed DOI PMC
Hou T., Jia Z., Dong Y., Liu X., Wu G. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 2022;431:133919. doi: 10.1016/j.cej.2021.133919. DOI
Yue Y., Wang Y., Xu X., Wang C., Yao Z., Liu D. In-situ growth of bamboo-shaped carbon nanotubes and helical carbon nanofibers on Ti3C2Tx MXene at ultra-low temperature for enhanced electromagnetic wave absorption properties. Ceram. Int. 2022;48:6338–6346. doi: 10.1016/j.ceramint.2021.11.176. DOI
Zhang C., Wu Z., Xu C., Yang B., Wang L., You W., Che R. Hierarchical Ti3C2Tx MXene/Carbon Nanotubes Hollow Microsphere with Confined Magnetic Nanospheres for Broadband Microwave Absorption. Small. 2022;18:2104380. doi: 10.1002/smll.202104380. PubMed DOI
Li X., Yin X., Han M., Song C., Xu H., Hou Z., Zhang L., Cheng L. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C. 2017;5:4068–4074. doi: 10.1039/C6TC05226F. DOI
Xing C., Chen S., Liang X., Liu Q., Qu M., Zou Q., Li J., Tan H., Liu L., Fan D., et al. Two-Dimensional MXene (Ti3C2)-Integrated Cellulose Hydrogels: Toward Smart Three-Dimensional Network Nanoplatforms Exhibiting Light-Induced Swelling and Bimodal Photothermal/Chemotherapy Anticancer Activity. ACS Appl. Mater. Interfaces. 2018;10:27631–27643. doi: 10.1021/acsami.8b08314. PubMed DOI
Yang J., Bao W., Jaumaux P., Zhang S., Wang C., Wang G. MXene—Based composites: Synthesis and applications in rechargeable batteries and supercapacitors. Adv. Mater. Interfaces. 2019;6:1802004. doi: 10.1002/admi.201802004. DOI
Yin L., Li Y., Yao X., Wang Y., Jia L., Liu Q., Li J., Li Y., He D. MXenes for Solar Cells. Nano-Micro Lett. 2021;13:78. doi: 10.1007/s40820-021-00604-8. PubMed DOI PMC
Zhang S., Bilal M., Adeel M., Barceló D., Iqbal H.M.N. MXene-based designer nanomaterials and their exploitation to mitigate hazardous pollutants from environmental matrices. Chemosphere. 2021;283:131293. doi: 10.1016/j.chemosphere.2021.131293. PubMed DOI
Xia Y., Li J., Zhu G., Yi Y. Innovative strategy based on novel Ti3C2Tx MXenes nanoribbons/carbon nanotubes hybrids for anodic stripping voltammetry sensing of mercury ion. Sens. Actuators B Chem. 2022;355:131247. doi: 10.1016/j.snb.2021.131247. DOI
Ma X., Tu X., Gao F., Xie Y., Huang X., Fernandez C., Qu F., Liu G., Lu L., Yu Y. Hierarchical porous MXene/amino carbon nanotubes-based molecular imprinting sensor for highly sensitive and selective sensing of fisetin. Sens. Actuators B Chem. 2020;309:127815. doi: 10.1016/j.snb.2020.127815. DOI
Özcan N., Medetalibeyoglu H., Akyıldırım O., Atar N., Yola M.L. Electrochemical detection of amyloid-β protein by delaminated titanium carbide MXene/multi-walled carbon nanotubes composite with molecularly imprinted polymer. Mater. Today Commun. 2020;23:101097. doi: 10.1016/j.mtcomm.2020.101097. DOI
Ni M., Chen J., Wang C., Wang Y., Huang L., Xiong W., Zhao P., Xie Y., Fei J. A high-sensitive dopamine electrochemical sensor based on multilayer Ti3C2 MXene, graphitized multi-walled carbon nanotubes and ZnO nanospheres. Microchem. J. 2022;178:107410. doi: 10.1016/j.microc.2022.107410. DOI
Xia Y., Hu X., Liu Y., Zhao F., Zeng B. Molecularly imprinted ratiometric electrochemical sensor based on carbon nanotubes/cuprous oxide nanoparticles/titanium carbide MXene composite for diethylstilbestrol detection. Microchim. Acta. 2022;189:137. doi: 10.1007/s00604-022-05249-x. PubMed DOI
Wang H., Zhou R., Li D., Zhang L., Ren G., Wang L., Liu J., Wang D., Tang Z., Lu G., et al. High-Performance Foam-Shaped Strain Sensor Based on Carbon Nanotubes and Ti3C2Tx MXene for the Monitoring of Human Activities. ACS Nano. 2021;15:9690–9700. doi: 10.1021/acsnano.1c00259. PubMed DOI
Xu X., Chen Y., He P., Wang S., Ling K., Liu L., Lei P., Huang X., Zhao H., Cao J., et al. Wearable CNT/Ti3C2Tx MXene/PDMS composite strain sensor with enhanced stability for real-time human healthcare monitoring. Nano Res. 2021;14:2875–2883. doi: 10.1007/s12274-021-3536-3. DOI
Cai Y., Shen J., Ge G., Zhang Y., Jin W., Huang W., Shao J., Yang J., Dong X. Stretchable Ti3C2Tx MXene/Carbon Nanotube Composite Based Strain Sensor with Ultrahigh Sensitivity and Tunable Sensing Range. ACS Nano. 2018;12:56–62. doi: 10.1021/acsnano.7b06251. PubMed DOI
Zhang L., Lu Y., Lu S., Zhang H., Zhao Z., Ma C., Ma K., Wang X. Lifetime health monitoring of fiber reinforced composites using highly flexible and sensitive MXene/CNT film sensor. Sens. Actuators A Phys. 2021;332:113148. doi: 10.1016/j.sna.2021.113148. DOI
Wen L., Nie M., Wang C., Zhao Y.-n., Yin K., Sun L. Multifunctional, Light-Weight Wearable Sensor Based on 3D Porous Polyurethane Sponge Coated with MXene and Carbon Nanotubes Composites. Adv. Mater. Interfaces. 2022;9:2101592. doi: 10.1002/admi.202101592. DOI
Yang Z., Li H., Zhang S., Lai X., Zeng X. Superhydrophobic MXene@carboxylated carbon nanotubes/carboxymethyl chitosan aerogel for piezoresistive pressure sensor. Chem. Eng. J. 2021;425:130462. doi: 10.1016/j.cej.2021.130462. DOI
Chen M., Hu X., Li K., Sun J., Liu Z., An B., Zhou X., Liu Z. Self-assembly of dendritic-lamellar MXene/Carbon nanotube conductive films for wearable tactile sensors and artificial skin. Carbon. 2020;164:111–120. doi: 10.1016/j.carbon.2020.03.042. DOI
Sun P.-F., Yang Z., Song X., Lee J.H., Tang C.Y., Park H.-D. Interlayered Forward Osmosis Membranes with Ti3C2Tx MXene and Carbon Nanotubes for Enhanced Municipal Wastewater Concentration. Environ. Sci. Technol. 2021;55:13219–13230. doi: 10.1021/acs.est.1c01968. PubMed DOI
Wang C., Cheng R., Hou P.-X., Ma Y., Majeed A., Wang X., Liu C. MXene-Carbon Nanotube Hybrid Membrane for Robust Recovery of Au from Trace-Level Solution. ACS Appl. Mater. Interfaces. 2020;12:43032–43041. doi: 10.1021/acsami.0c09310. PubMed DOI
Wang Y., Qi Q., Fan J., Wang W., Yu D. Simple and robust MXene/carbon nanotubes/cotton fabrics for textile wastewater purification via solar-driven interfacial water evaporation. Sep. Purif. Technol. 2021;254:117615. doi: 10.1016/j.seppur.2020.117615. DOI
Ding M., Xu H., Chen W., Kong Q., Lin T., Tao H., Zhang K., Liu Q., Zhang K., Xie Z. Construction of a hierarchical carbon nanotube/MXene membrane with distinct fusiform channels for efficient molecular separation. J. Mater. Chem. A. 2020;8:22666–22673. doi: 10.1039/D0TA07354G. DOI
Sun Y., Xu D., Li S., Cui L., Zhuang Y., Xing W., Jing W. Assembly of multidimensional MXene-carbon nanotube ultrathin membranes with an enhanced anti-swelling property for water purification. J. Membr. Sci. 2021;623:119075. doi: 10.1016/j.memsci.2021.119075. DOI
Thirumal V., Yuvakkumar R., Kumar P.S., Ravi G., Keerthana S.P., Velauthapillai D. Facile single-step synthesis of MXene@CNTs hybrid nanocomposite by CVD method to remove hazardous pollutants. Chemosphere. 2022;286:131733. doi: 10.1016/j.chemosphere.2021.131733. PubMed DOI
Zhang M., Ruan J., Wang L., Zhao Z., Shao W., Li J., Chen Z., Gu C., Qiao W. MXene-like carbon sheet/carbon nanotubes derived from metal-organic frameworks for efficient removal of tetracycline by non-radical dominated advanced oxidation processes. Sep. Purif. Technol. 2022;300:121851. doi: 10.1016/j.seppur.2022.121851. DOI
Deng Z., Tang P., Wu X., Zhang H.-B., Yu Z.-Z. Superelastic, Ultralight, and Conductive Ti3C2Tx MXene/Acidified Carbon Nanotube Anisotropic Aerogels for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2021;13:20539–20547. doi: 10.1021/acsami.1c02059. PubMed DOI
Weng G.-M., Li J., Alhabeb M., Karpovich C., Wang H., Lipton J., Maleski K., Kong J., Shaulsky E., Elimelech M., et al. Layer-by-Layer Assembly of Cross-Functional Semi-transparent MXene-Carbon Nanotubes Composite Films for Next-Generation Electromagnetic Interference Shielding. Adv. Funct. Mater. 2018;28:1803360. doi: 10.1002/adfm.201803360. DOI
Zheng X., Hu Q., Wang Z., Nie W., Wang P., Li C. Roll-to-roll layer-by-layer assembly bark-shaped carbon nanotube/Ti3C2Tx MXene textiles for wearable electronics. J. Colloid Interface Sci. 2021;602:680–688. doi: 10.1016/j.jcis.2021.06.043. PubMed DOI
Raagulan K., Braveenth R., Lee L.R., Lee J., Kim B.M., Moon J.J., Lee S.B., Chai K.Y. Fabrication of Flexible, Lightweight, Magnetic Mushroom Gills and Coral-Like MXene–Carbon Nanotube Nanocomposites for EMI Shielding Application. Nanomaterials. 2019;9:519. doi: 10.3390/nano9040519. PubMed DOI PMC
Sambyal P., Iqbal A., Hong J., Kim H., Kim M.-K., Hong S.M., Han M., Gogotsi Y., Koo C.M. Ultralight and Mechanically Robust Ti3C2Tx Hybrid Aerogel Reinforced by Carbon Nanotubes for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2019;11:38046–38054. doi: 10.1021/acsami.9b12550. PubMed DOI
Zhou B., Li Y., Li Z., Ma J., Zhou K., Liu C., Shen C., Feng Y. Fire/heat-resistant, anti-corrosion and folding Ti2C3Tx MXene/single-walled carbon nanotube films for extreme-environmental EMI shielding and solar-thermal conversion applications. J. Mater. Chem. C. 2021;9:10425–10434. doi: 10.1039/D1TC00289A. DOI
Chen W., Wu B., Yao Q., Dong G., Zuo C., Zhang Y., Zhou Y., Liu Y., Zhang Z. A MXene-based multiple catalyst for highly efficient photocatalytic removal of nitrate. Environ. Sci. Pollut. Res. 2022;29:58149–58160. doi: 10.1007/s11356-022-19616-x. PubMed DOI
Kuang P., Low J., Cheng B., Yu J., Fan J. MXene-based photocatalysts. J. Mater. Sci. Technol. 2020;56:18–44. doi: 10.1016/j.jmst.2020.02.037. DOI
Sun Y., Meng X., Dall’Agnese Y., Dall’Agnese C., Duan S., Gao Y., Chen G., Wang X.-F. 2D MXenes as co-catalysts in photocatalysis: Synthetic methods. Nano-Micro Lett. 2019;11:1–22. doi: 10.1007/s40820-019-0309-6. PubMed DOI PMC
Wu Z., Liang Y., Yuan X., Zou D., Fang J., Jiang L., Zhang J., Yang H., Xiao Z. MXene Ti3C2 derived Z–scheme photocatalyst of graphene layers anchored TiO2/g–C3N4 for visible light photocatalytic degradation of refractory organic pollutants. Chem. Eng. J. 2020;394:124921. doi: 10.1016/j.cej.2020.124921. DOI
Cui C., Cheng R., Zhang H., Zhang C., Ma Y., Shi C., Fan B., Wang H., Wang X. Ultrastable MXene@Pt/SWCNTs’ Nanocatalysts for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2020;30:2000693. doi: 10.1002/adfm.202000693. DOI
Hu Z., Xie Y., Yu D., Liu Q., Zhou L., Zhang K., Li P., Hu F., Li L., Chou S., et al. Hierarchical Ti3C2Tx MXene/Carbon Nanotubes for Low Overpotential and Long-Life Li-CO2 Batteries. ACS Nano. 2021;15:8407–8417. doi: 10.1021/acsnano.0c10558. PubMed DOI
Chen J., Yuan X., Lyu F., Zhong Q., Hu H., Pan Q., Zhang Q. Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction. J. Mater. Chem. A. 2019;7:1281–1286. doi: 10.1039/C8TA10574J. DOI
Zhang Y., Jiang H., Lin Y., Liu H., He Q., Wu C., Duan T., Song L. In Situ Growth of Cobalt Nanoparticles Encapsulated Nitrogen-Doped Carbon Nanotubes among Ti3C2Tx (MXene) Matrix for Oxygen Reduction and Evolution. Adv. Mater. Interfaces. 2018;5:1800392. doi: 10.1002/admi.201800392. DOI
Yang X., Jia Q., Duan F., Hu B., Wang M., He L., Song Y., Zhang Z. Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: Non–Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution. Appl. Surf. Sci. 2019;464:78–87. doi: 10.1016/j.apsusc.2018.09.069. DOI
Faraji M., Arianpouya N. NiCoFe-layered double hydroxides/MXene/N-doped carbon nanotube composite as a high performance bifunctional catalyst for oxygen electrocatalytic reactions in metal-air batteries. J. Electroanal. Chem. 2021;901:115797. doi: 10.1016/j.jelechem.2021.115797. DOI
Chen H., Yu L., Lin Z., Zhu Q., Zhang P., Qiao N., Xu B. Carbon nanotubes enhance flexible MXene films for high-rate supercapacitors. J. Mater. Sci. 2020;55:1148–1156. doi: 10.1007/s10853-019-04003-8. DOI
Yang K., Luo M., Zhang D., Liu C., Li Z., Wang L., Chen W., Zhou X. Ti3C2Tx/carbon nanotube/porous carbon film for flexible supercapacitor. Chem. Eng. J. 2022;427:132002. doi: 10.1016/j.cej.2021.132002. DOI
Cai Y.-Z., Fang Y.-S., Cao W.-Q., He P., Cao M.-S. MXene-CNT/PANI ternary material with excellent supercapacitive performance driven by synergy. J. Alloys Compd. 2021;868:159159. doi: 10.1016/j.jallcom.2021.159159. DOI
Li D.-D., Yuan Q., Huang L.-Z., Zhang W., Guo W.-Y., Ma M.-G. Preparation of Flexible N-Doped Carbon Nanotube/MXene/PAN Nanocomposite Films with Improved Electrochemical Properties. Ind. Eng. Chem. Res. 2021;60:15352–15363. doi: 10.1021/acs.iecr.1c03182. DOI
Yu C., Gong Y., Chen R., Zhang M., Zhou J., An J., Lv F., Guo S., Sun G. A Solid-State Fibriform Supercapacitor Boosted by Host–Guest Hybridization between the Carbon Nanotube Scaffold and MXene Nanosheets. Small. 2018;14:1801203. doi: 10.1002/smll.201801203. PubMed DOI
Yang L., Zheng W., Zhang P., Chen J., Tian W.B., Zhang Y.M., Sun Z.M. MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. J. Electroanal. Chem. 2018;830–831:1–6. doi: 10.1016/j.jelechem.2018.10.024. DOI
Lv L.-P., Guo C.-F., Sun W., Wang Y. Strong Surface-Bound Sulfur in Carbon Nanotube Bridged Hierarchical Mo2C-Based MXene Nanosheets for Lithium–Sulfur Batteries. Small. 2019;15:1804338. PubMed