• This record comes from PubMed

MXene-Based Composites as Nanozymes in Biomedicine: A Perspective

. 2022 Nov 04 ; 14 (1) : 213. [epub] 20221104

Status PubMed-not-MEDLINE Language English Country Germany Media electronic

Document type Journal Article

Links

PubMed 36333561
PubMed Central PMC9636363
DOI 10.1007/s40820-022-00958-7
PII: 10.1007/s40820-022-00958-7
Knihovny.cz E-resources

MXene-based nanozymes have garnered considerable attention because of their potential environmental and biomedical applications. These materials encompass alluring and manageable catalytic performances and physicochemical features, which make them suitable as (bio)sensors with high selectivity/sensitivity and efficiency. MXene-based structures with suitable electrical conductivity, biocompatibility, large surface area, optical/magnetic properties, and thermal/mechanical features can be applied in designing innovative nanozymes with area-dependent electrocatalytic performances. Despite the advances made, there is still a long way to deploy MXene-based nanozymes, especially in medical and healthcare applications; limitations pertaining the peroxidase-like activity and sensitivity/selectivity may restrict further practical applications of pristine MXenes. Thus, developing an efficient surface engineering tactic is still required to fabricate multifunctional MXene-based nanozymes with excellent activity. To obtain MXene-based nanozymes with unique physicochemical features and high stability, some crucial steps such as hybridization and modification ought to be performed. Notably, (nano)toxicological and long-term biosafety analyses along with clinical translation studies still need to be comprehensively addressed. Although very limited reports exist pertaining to the biomedical potentials of MXene-based nanozymes, the future explorations should transition toward the extensive research and detailed analyses to realize additional potentials of these structures in biomedicine with a focus on clinical and industrial aspects. In this perspective, therapeutic, diagnostic, and theranostic applications of MXene-based nanozymes are deliberated with a focus on future perspectives toward more successful clinical translational studies. The current state-of-the-art biomedical advances in the use of MXene-based nanozymes, as well as their developmental challenges and future prospects are also highlighted. In view of the fascinating properties of MXene-based nanozymes, these materials can open significant new opportunities in the future of bio- and nanomedicine.

See more in PubMed

Das B, Franco JL, Logan N, Balasubramanian P, Kim MI, et al. Nanozymes in point-of-care diagnosis: an emerging futuristic approach for biosensing. Nano-Micro Lett. 2021;13:193. doi: 10.1007/s40820-40021-00717-40820. PubMed DOI PMC

Zhao R, Liu H, Li Y, Guo M, Zhang XD. Catalytic nanozyme for radiation protection. Bioconj. Chem. 2021;32:411–429. doi: 10.1021/acs.bioconjchem.0c00648. PubMed DOI

Yanling Y, Zhongmin T, Han L, Jianlin S. Emerging two-dimensional material nanozymes for theranostic nanomedicine. Biophys. Rep. 2021;7:159–172. doi: 10.52601/bpr.2021.210011. PubMed DOI PMC

Stasyuk N, Smutok O, Demkiv O, Prokopiv T, Gayda G, et al. Synthesis, catalytic properties and application in biosensorics of nanozymes and electronanocatalysts: a review. Sensors. 2020;20:4509. doi: 10.3390/s20164509. PubMed DOI PMC

Yang Y, Zhu D, Liu Y, Jiang B, Jiang W, et al. Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy. Nanoscale. 2020;12:13548–13557. doi: 10.1039/D0NR02800B. PubMed DOI

Zhang X, Wu D, Zhou X, Yu Y, Liu J, et al. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends Anal. Chem. 2019;121:115668. doi: 10.1016/j.trac.2019.115668. DOI

Hong C, Meng X, He J, Fan K, Yan X. Nanozyme: a promising tool from clinical diagnosis and environmental monitoring to wastewater treatment. Particuology. 2022;71:90–107. doi: 10.1016/j.partic.2022.02.001. DOI

Zhang X, Chen X, Zhao Y. Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 2022;14:95. doi: 10.1007/s40820-40022-00828-40822. PubMed DOI PMC

Jiang Y, Zhao X, Huang J, Li J, Upputuri PK, et al. Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat. Commun. 2020;11:1857. doi: 10.1038/s41467-020-15730-x. PubMed DOI PMC

Feng L, Liu B, Xie R, Wang D, Qian C, et al. An ultrasmall SnFe2O4 nanozyme with endogenous oxygen generation and glutathione depletion for synergistic cancer therapy. Adv. Funct. Mater. 2021;31(5):2006216. doi: 10.1002/adfm.202006216. DOI

Zhu D, Zheng Z, Luo G, Suo M, Li X, et al. Single injection and multiple treatments: an injectable nanozyme hydrogel as AIEgen reservoir and release controller for efficient tumor therapy. NanoToday. 2021;37:101091. doi: 10.1016/j.nantod.2021.101091. DOI

Iqbal A, Kwon J, Kim MK, Koo CM. MXenes for electromagnetic interference shielding: experimental and theoretical perspectives. Mater. Today Adv. 2021;9:100124. doi: 10.1016/j.mtadv.2020.100124. DOI

Iravani S, Varma RS. MXenes and MXene-based materials for tissue engineering and regenerative medicine: recent advances. Mater. Adv. 2021;2(9):2906–2917. doi: 10.1039/D1MA00189B. DOI

Iravani S, Varma RS. MXenes for cancer therapy and diagnosis: recent advances and current challenges. ACS Biomater. Sci. Eng. 2021;7(6):1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI

Yuan H, Yu S, Jang D, Kim M, Hong H, et al. Palladium nanoparticles decorated MXene for plasmon-enhanced photocatalysis. J. Ind. Eng. Chem. 2022;108:501–507. doi: 10.1016/j.jiec.2022.01.030. DOI

Zhang H, Li M, Zhu C, Tang Q, Kang P, et al. Preparation of magnetic α-Fe2O3/ZnFe2O4@Ti3C2 MXene with excellent photocatalytic performance. Ceram. Int. 2020;46:81–88. doi: 10.1016/j.ceramint.2019.08.236. DOI

Hantanasirisakul K, Gogotsi Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes) Adv. Mater. 2018;30(52):1804779. doi: 10.1002/adma.201804779. PubMed DOI

Yin J, Pan S, Guo X, Gao Y, Zhu D, et al. Nb2C MXene-functionalized scafolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects. Nano-Micro Lett. 2021;13:30. doi: 10.1007/s40820-40020-00547-40826. PubMed DOI PMC

Zang X, Wang J, Qin Y, Wang T, He C, et al. Enhancing capacitance performance of Ti3C2Tx MXene as electrode materials of supercapacitor: from controlled preparation to composite structure construction. Nano-Micro Lett. 2020;12:77. doi: 10.1007/s40820-40020-40415-40825. PubMed DOI PMC

Cao W, Wang Z, Liu X, Zhou Z, Zhang Y, et al. Bioinspired MXene-based user-interactive electronic skin for digital and visual dual-channel sensing. Nano-Micro Lett. 2022;14:119. doi: 10.1007/s40820-022-00838-0. PubMed DOI PMC

Huang M, Gu Z, Zhang J, Zhang D, Zhang H, et al. MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: progress and perspectives. J. Mater. Chem. B. 2021;9:5195–5220. doi: 10.1039/D1TB00410G. PubMed DOI

Wu X, Ma P, Sun Y, Du F, Song D, et al. Application of MXene in electrochemical sensors: a review. Electroanalysis. 2021;33:1827–1851. doi: 10.1002/elan.202100192. DOI

Bhardwaj SK, Singh H, Khatri M, Kim KH, Bhardwaj N. Advances in MXenes-based optical biosensors: a review. Biosens. Bioelectron. 2022;202:113995. doi: 10.1016/j.bios.2022.113995. PubMed DOI

Li K, Liang M, Wang H, Wang X, Huang Y, et al. 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 2020;30(47):2000842. doi: 10.1002/adfm.202000842. DOI

Hu M, Zhang H, Hu T, Fan B, Wang X, et al. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 2020;49(18):6666–6693. doi: 10.1039/D0CS00175A. PubMed DOI

Ihsanullah I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: progress, challenges and prospects. Chem. Eng. J. 2020;388:124340. doi: 10.1016/j.cej.2020.124340. DOI

Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Green-synthesized nanocatalysts and nanomaterials for water treatment: current challenges and future perspectives. J. Hazard. Mater. 2021;401:123401. doi: 10.1016/j.jhazmat.2020.123401. PubMed DOI PMC

Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Carbon-based sustainable nanomaterials for water treatment: state-of-art and future perspectives. Chemosphere. 2021;263:128005. doi: 10.1016/j.chemosphere.2020.128005. PubMed DOI PMC

Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: a review. Carbohyd. Polym. 2021;251:116986. doi: 10.1016/j.carbpol.2020.116986. PubMed DOI PMC

Liu Z, Zhao M, Lin H, Dai C, Ren C, et al. 2D magnetic titanium carbide MXene for cancer theranostics. J. Mater. Chem. B. 2018;6(21):3541–3548. doi: 10.1039/C8TB00754C. PubMed DOI

Kwon O, Choi Y, Kang J, Kim JH, Choi E, et al. A comprehensive review of MXene-based water-treatment membranes and technologies: recent progress and perspectives. Desalination. 2022;522:115448. doi: 10.1016/j.desal.2021.115448. DOI

Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano. 2019;13(8):8491–8494. doi: 10.1021/acsnano.9b06394. PubMed DOI

Soufi GJ, Iravani P, Hekmatnia A, Mostafavi E, Khatami M, et al. MXenes and MXene-based materials with cancer diagnostic applications: challenges and opportunities. Comments Inorg. Chem. 2022;42:174–207. doi: 10.1080/02603594.2021.1990890. DOI

Li K, Chang TH, Li Z, Yang H, Fu F, et al. Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 2019;9(34):1901687. doi: 10.1002/aenm.201901687. DOI

Zhu X, Lin L, Wu R, Zhu Y, Sheng Y, et al. Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosens. Bioelectron. 2021;179:113062. doi: 10.1016/j.bios.2021.113062. PubMed DOI

Liu B, Wang Y, Chen Y, Guo L, Wei G. Biomimetic two-dimensional nanozymes: synthesis, hybridization, functional tailoring, and biosensor applications. J. Mater. Chem. B. 2020;8(44):10065–10086. doi: 10.1039/D0TB02051F. PubMed DOI

Madhavan A, Sindhu R, Binod P, Sukumaran RK, Pandey A. Strategies for design of improved biocatalysts for industrial applications. Bioresour. Technol. 2017;245:1304–1313. doi: 10.1016/j.biortech.2017.05.031. PubMed DOI

Rigoldi F, Donini S, Redaelli A, Parisini E, Gautieri A. Review: engineering of thermostable enzymes for industrial applications. APL Bioeng. 2018;2:0115010. doi: 10.1063/1.4997367. PubMed DOI PMC

Lechner H, Ferruz N, Hocker B. Strategies for designing non-natural enzymes and binders. Curr. Opin. Chem. Biol. 2018;47:67–76. doi: 10.1016/j.cbpa.2018.07.022. PubMed DOI

Huang YY, Ren JS, Qu XG. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019;119(6):4357–4412. doi: 10.1021/acs.chemrev.8b00672. PubMed DOI

Wei H, Wang EK. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 2013;42(14):6060–6093. doi: 10.1039/C3CS35486E. PubMed DOI

Wu J, Wang X, Wang Q, Lou Z, Li S, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes(II) Chem. Soc. Rev. 2019;48(4):1004–1076. doi: 10.1039/C8CS00457A. PubMed DOI

Yu L, Chang J, Zhuang X, Li H, Hou T, et al. Two-dimensional cobalt-doped Ti3C2 MXene nanozyme-mediated homogeneous electrochemical strategy for pesticides assay based on in situ generation of electroactive substances. Anal. Chem. 2022;94:3669–3676. doi: 10.1021/acs.analchem.1c05300. PubMed DOI

Shi Y, Liu Z, Liu R, Wu R, Zhang J. DNA-encoded MXene-Pt nanozyme for enhanced colorimetric sensing of mercury ions. Chem. Eng. J. 2022;442:136072. doi: 10.1016/j.cej.2022.136072. DOI

Rhouati A, Berkani M, Vasseghian Y, Golzadeh N. MXene-based electrochemical sensors for detection of environmental pollutants: a comprehensive review. Chemosphere. 2022;291:132921. doi: 10.1016/j.chemosphere.2021.132921. PubMed DOI

Ballesteros CAS, Mercante LA, Alvarenga AD, Facure MHM, Schneider R, et al. Recent trends in nanozymes design: from materials and structures to environmental applications. Mater. Chem. Front. 2021;5:7419–7451. doi: 10.1039/D1QM00947H. DOI

Xu C, Wang L, Liu Z, Chen L, Guo J, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015;14:1135–1141. doi: 10.1038/nmat4374. PubMed DOI

Li T, Yao L, Liu Q, Gu J, Luo R, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem. Int. Ed. 2018;57(21):6115–6119. doi: 10.1002/anie.201800887. PubMed DOI

Sun W, Shah S, Chen Y, Tan Z, Gao H, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A. 2017;5(41):21663–21668. doi: 10.1039/C7TA05574A. DOI

Liu J, Jiang X, Zhang R, Zhang Y, Wu L, et al. MXene-enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood. Adv. Funct. Mater. 2019;29(6):1807326. doi: 10.1002/adfm.201807326. DOI

Salim O, Mahmoud KA, Pant KK, Joshi RK. Introduction to MXenes: synthesis and characteristics. Mater. Today Chem. 2019;14:100191. doi: 10.1016/j.mtchem.2019.08.010. PubMed DOI

Urbankowski P, Anasori B, Makaryan T, Er D, Kota S, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene) Nanoscale. 2016;8:11385. doi: 10.1039/C6NR02253G. PubMed DOI

Ma L, Ting LRL, Molinari V, Giordano C, Yeo BS. Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A. 2015;3(16):8361–8368. doi: 10.1039/C5TA00139K. DOI

Sun N, Guan Z, Zhu Q, Anasori B, Gogotsi Y, et al. Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett. 2020;12:89. doi: 10.1007/s40820-40020-00426-40820. PubMed DOI PMC

Liu Y, Zhang W, Zheng W. Quantum dots compete at the acme of MXene family for the optimal catalysis. Nano-Micro Lett. 2022;14:158. doi: 10.1007/s40820-022-00908-3. PubMed DOI PMC

Rasool K, Mahmoud KA, Johnson DJ, Helal M, Berdiyorov GR, et al. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 2017;7:1598. doi: 10.1038/s41598-017-01714-3. PubMed DOI PMC

Yin W, Yu J, Lv F, Yan L, Zheng LR, et al. Functionalized Nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano. 2016;10(12):11000–11011. doi: 10.1021/acsnano.6b05810. PubMed DOI

Shafiei N, Nasrollahzadeh M, Iravani S. Green synthesis of silica and silicon nanoparticles and their biomedical and catalytic applications. Comments Inorg. Chem. 2021;41:317–372. doi: 10.1080/02603594.2021.1904912. DOI

Lin H, Chen Y, Shi J. Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv. Sci. 2018;5(10):1800518. doi: 10.1002/advs.201800518. PubMed DOI PMC

Lin H, Gao S, Dai C, Chen Y, Shi J. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017;139(45):16235–16247. doi: 10.1021/jacs.7b07818. PubMed DOI

Lin H, Wang X, Yu L, Chen Y, Shi J. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 2017;17(1):384–391. doi: 10.1021/acs.nanolett.6b04339. PubMed DOI

Lin H, Wang Y, Gao S, Chen Y, Shi J. Theranostic 2D tantalum carbide (MXene) Adv. Mater. 2018;30(4):1703284. doi: 10.1002/adma.201703284. PubMed DOI

Shi J, Shu R, Shi X, Li Y, Li J, et al. Multi-activity cobalt ferrite/MXene nanoenzymes for drug-free phototherapy in bacterial infection treatment. RSC Adv. 2022;12:11090–11099. doi: 10.1039/D2RA01133F. PubMed DOI PMC

Hao S, Han H, Yang Z, Chen M, Jiang Y, et al. Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano-Micro Lett. 2022;14:178. doi: 10.1007/s40820-022-00901-w. PubMed DOI PMC

Yu R, Xue J, Wang Y, Qiu J, Huang X, et al. Novel Ti3C2Tx MXene nanozyme with manageable catalytic activity and application to electrochemical biosensor. J. Nanobiotechnol. 2022;20:119. doi: 10.1186/s12951-022-01317-9. PubMed DOI PMC

Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-Micro Lett. 2021;13:154. doi: 10.1007/s40820-021-00674-8. PubMed DOI PMC

Tao Y, Yi K, Wang H, Kim HW, Li K, et al. CRISPR-Cas12a-regulated DNA adsorption and metallization on MXenes as enhanced enzyme mimics for sensitive colorimetric detection of hepatitis B virus DNA. J. Colloid Interface Sci. 2022;613:406–414. doi: 10.1016/j.jcis.2022.01.038. PubMed DOI

Li J, Cai X, Zhang Y, Li K, Guan L, et al. MnO2 Nanozyme-loaded MXene for cancer synergistic photothermal-chemodynamic therapy. ChemistrySelect. 2022;7:e202201127. doi: 10.1002/slct.202201127. DOI

Zhu Y, Wang Z, Zhao R, Zhou Y, Feng L, et al. Pt decorated Ti3C2Tx MXene with NIR-II light amplified nanozyme catalytic activity for efficient phototheranostics. ACS Nano. 2022;16(2):3105–3118. doi: 10.1021/acsnano.1c10732. PubMed DOI

Hao Z, Li Y, Liu X, Jiang T, He Y, et al. Enhancing biocatalysis of a MXene-based biomimetic plasmonic assembly for targeted cancer treatments in NIR-II biowindow. Chem. Eng. J. 2021;425:130639. doi: 10.1016/j.cej.2021.130639. DOI

Tang M, Shi Y, Lu L, Li J, Zhang Z, et al. Dual active nanozyme-loaded MXene enables hyperthermia-enhanced tumor nanocatalytic therapy. Chem. Eng. J. 2022;449:137847. doi: 10.1016/j.cej.2022.137847. DOI

Hu H, Huang H, Xia L, Qian X, Feng W, et al. Engineering vanadium carbide MXene as multienzyme mimetics for efficient in vivo ischemic stroke treatment. Chem. Eng. J. 2022;440:135810. doi: 10.1016/j.cej.2022.135810. DOI

Feng W, Han X, Hu H, Chang M, Ding L, et al. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 2021;12:2203. doi: 10.1038/s41467-021-22278-x. PubMed DOI PMC

Zhang X, Cheng L, Lu Y, Tang J, Lv Q, et al. A MXene-based bionic cascaded-enzyme nanoreactor for tumor phototherapy/enzyme dynamic therapy and hypoxia-activated chemotherapy. Nano-Micro Lett. 2022;14:22. doi: 10.1007/s40820-021-00761-w. PubMed DOI PMC

Liu C, Yang W, Min X, Zhang D, Fu X, et al. An enzyme-free electrochemical immunosensor based on quaternary metallic/nonmetallic PdPtBP alloy mesoporous nanoparticles/MXene and conductive CuCl2 nanowires for ultrasensitive assay of kidney injury molecule-1. Sens. Actuat. B Chem. 2021;334:129585. doi: 10.1016/j.snb.2021.129585. DOI

Xi X, Wang J, Wang Y, Xiong H, Chen M, et al. Preparation of Au/Pt/Ti3C2Cl2 nanoflakes with self-reducing method for colorimetric detection of glutathione and intracellular sensing of hydrogen peroxide. Carbon. 2022;197:476–484. doi: 10.1016/j.carbon.2022.06.068. DOI

Jin Z, Xu G, Niu Y, Ding X, Han Y, et al. Ti3C2Tx MXene-derived TiO2/C-QDs as oxidase mimics for the efficient diagnosis of glutathione in human serum. J. Mater. Chem. B. 2020;8(16):3513–3518. doi: 10.1039/C9TB02478F. PubMed DOI

Li M, Peng X, Han Y, Fan L, Liu Z, et al. Ti3C2 MXenes with intrinsic peroxidase-like activity for label-free and colorimetric sensing of proteins. Microchem. J. 2021;166:106238. doi: 10.1016/j.microc.2021.106238. DOI

Chen D, Shao S, Zhang W, Zhao J, Lian M. Nitrogen and sulfur co-doping strategy to trigger the peroxidase-like and electrochemical activity of Ti3C2 nanosheets for sensitive uric acid detection. Anal. Chim. Acta. 2022;1197:339520. doi: 10.1016/j.aca.2022.339520. PubMed DOI

Ouyang H, Xian J, Luo S, Zhang L, Wang W, et al. Emitter–quencher pair of single atomic Co sites and monolayer titanium carbide MXenes for luminol chemiluminescent reactions. ACS Appl. Mater. Interfaces. 2021;13(51):60945–60954. doi: 10.1021/acsami.1c20489. PubMed DOI

Nasrallah GK, Al-Asmakh M, Rasool K, Mahmoud KA. Ecotoxicological assessment of Ti3C2Tx (MXene) using a Zebrafish embryo model. Environ. Sci. Nano. 2018;5:1002–1011. doi: 10.1039/C7EN01239J. DOI

Dwivedi N, Dhand C, Kumar P, Srivastava AK. Emergent 2D materials for combating infectious diseases: the potential of MXenes and MXene–graphene composites to fight against pandemics. Mater. Adv. 2021;2(9):2892–2905. doi: 10.1039/D1MA00003A. DOI

Jiang X, Kuklin AV, Baev A, Ge Y, Ågren H, et al. Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020;848:1–58. doi: 10.1016/j.physrep.2019.12.006. DOI

Hwang SK, Kang SM, Rethinasabapathy M, Roh C, Huh YS. MXene: an emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J. 2020;397:125428. doi: 10.1016/j.cej.2020.125428. DOI

Li S, Dong L, Wei Z, Sheng G, Du K, et al. Adsorption and mechanistic study of the invasive plant-derived biochar functionalized with CaAl-LDH for Eu(III) in water. J. Environ. Sci. 2020;96:127–137. doi: 10.1016/j.jes.2020.05.001. PubMed DOI

Champagne A, Charlier JC. Physical properties of 2D MXenes: from a theoretical perspective. J. Phys. Mater. 2021;3:032006. doi: 10.1088/2515-7639/ab97ee. DOI

Mostafavi E, Iravani S. MXene-graphene composites: a perspective on biomedical potentials. Nano-Micro Lett. 2022;14:130. doi: 10.1007/s40820-022-00880-y. PubMed DOI PMC

Tabish TA, Pranjol MZI, Jabeen F, Abdullah T, Latif A, et al. Investigation into the toxic effects of graphene nanopores on lung cancer cells and biological tissues. Appl. Mater. Today. 2018;12:389–401. doi: 10.1016/j.apmt.2018.07.005. DOI

Han X, Huang J, Lin H, Wang Z, Li P, et al. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 2018;7(9):1701394. doi: 10.1002/adhm.201701394. PubMed DOI

Han X, Jing X, Yang D, Lin H, Wang Z, et al. Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics. 2018;8:4491–4508. doi: 10.7150/thno.26291. PubMed DOI PMC

Alhussain H, Augustine R, Hussein EA, Gupta I, Hasan A, et al. MXene nanosheets may induce toxic effect on the early stage of embryogenesis. J. Biomed. Nanotechnol. 2020;16:364–372. doi: 10.1166/jbn.2020.2894. PubMed DOI

Dai C, Lin H, Xu G, Liu Z, Wu R, et al. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem. Mater. 2017;29:8637–8652. doi: 10.1021/acs.chemmater.7b02441. DOI

Gao L, Li C, Huang W, Mei S, Lin H, et al. MXene/polymer membranes: synthesis, properties, and emerging applications. Chem. Mater. 2020;32:1703–1747. doi: 10.1021/acs.chemmater.9b04408. DOI

Ihsanullah I. Potential of MXenes in water desalination: current status and perspectives. Nano-Micro Lett. 2020;12:72. doi: 10.1007/s40820-020-0411-9. PubMed DOI PMC

Huang H, Jiang R, Feng Y, Ouyang H, Zhou N, et al. Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale. 2020;12:1325–1338. doi: 10.1039/C9NR07616F. PubMed DOI

Zavabeti A, Jannat A, Zhong L, Haidry AA, Yao Z, et al. Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett. 2020;12:66. doi: 10.1007/s40820-020-0402-x. PubMed DOI PMC

Wang L, Hu P, Long Y, Liu Z, He X. Recent advances in ternary two-dimensional materials: synthesis, properties and applications. J. Mater. Chem. A. 2017;5(44):22855–22876. doi: 10.1039/C7TA06971E. DOI

Zha XJ, Zhao X, Pu JH, Tang LS, Ke K, et al. Flexible anti-biofouling mxene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces. 2019;11(40):36589–36597. doi: 10.1021/acsami.9b10606. PubMed DOI

Shang T, Lin Z, Qi C, Liu X, Li P, et al. 3D Macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 2019;29(33):1903960. doi: 10.1002/adfm.201903960. DOI

Li X, Ran F, Yang F, Long J, Shao L. Advances in MXene films: synthesis, assembly, and applications. Trans. Tianjin Uni. 2021;27:217–247. doi: 10.1007/s12209-021-00282-y. DOI

Parihar A, Singhal A, Kumar N, Khan R, Khan MA, et al. Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics. Nano-Micro Lett. 2022;14:100. doi: 10.1007/s40820-40022-00845-40821. PubMed DOI PMC

Iqbal A, Hong J, Ko TY, Koo CM. Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 2021;8:9. doi: 10.1186/s40580-021-00259-6. PubMed DOI PMC

Ding L, Wei Y, Wang Y, Chen H, Caro J, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 2017;56(7):1825–1829. doi: 10.1002/anie.201609306. PubMed DOI

Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011;23(37):4248–4253. doi: 10.1002/adma.201102306. PubMed DOI

Rasool K, Helal M, Ali A, Ren CE, Gogotsi Y, et al. Antibacterial activity of Ti3C2Tx MXene. ACS Nano. 2016;10(3):3674–3684. doi: 10.1021/acsnano.6b00181. PubMed DOI

Huang K, Li Z, Lin J, Han G, Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018;47(14):5109–5124. doi: 10.1039/C7CS00838D. PubMed DOI

Xu Z, Liu G, Ye H, Jin W, Cui Z. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. J. Membrane Sci. 2018;563:625–632. doi: 10.1016/j.memsci.2018.05.044. DOI

Mozafari M, Soroush M. Surface functionalization of MXenes. Mater. Adv. 2021;2(22):7277–7307. doi: 10.1039/D1MA00625H. DOI

Li Z, Zhang H, Han J, Chen Y, Lin H, et al. Surface nanopore engineering of 2D MXenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Adv. Mater. 2018;30(25):1706981. doi: 10.1002/adma.201706981. PubMed DOI

Liu G, Zou J, Tang Q, Yang X, Zhang YW, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces. 2017;9(46):40077–40086. doi: 10.1021/acsami.7b13421. PubMed DOI

Driscoll N, Richardson AG, Maleski K, Anasori B, Adewole O, et al. Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano. 2018;12(10):10419–10429. doi: 10.1021/acsnano.8b06014. PubMed DOI PMC

Wang WY, Hood ZD, Zhang XY, Ivanov IN, Bao ZH, et al. Construction of 2D BiVO4-CdS-Ti3C2Tx heterostructures for enhanced photo-redox activities. ChemCatChem. 2020;12:3496–3503. doi: 10.1002/cctc.202000448. DOI

Zhong Q, Li Y, Zhang G. Two-dimensional MXene-based and MXene-derived photocatalysts: recent developments and perspectives. Chem. Eng. J. 2021;409:128099. doi: 10.1016/j.cej.2020.128099. DOI

Chen W, Han B, Xie Y, Liang S, Deng H, et al. Ultrathin Co–Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chem. Eng. J. 2020;391:123519. doi: 10.1016/j.cej.2019.123519. DOI

Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017;2:16098. doi: 10.1038/natrevmats.2016.98. DOI

Nan J, Guo X, Xiao J, Li X, Chen W, et al. Nanoengineering of 2D MXene-based materials for energy storage applications. Small. 2021;17(9):1902085. doi: 10.1002/smll.201902085. PubMed DOI

Sharma SK, Kumar A, Sharma G, Vo DVN, García-Peñas A, et al. MXenes based nano-heterojunctions and composites for advanced photocatalytic environmental detoxification and energy conversion: a review. Chemosphere. 2022;291:132923. doi: 10.1016/j.chemosphere.2021.132923. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Wetting of MXenes and Beyond

. 2023 Apr 30 ; 15 (1) : 116. [epub] 20230430

MXene-Carbon Nanotube Composites: Properties and Applications

. 2023 Jan 14 ; 13 (2) : . [epub] 20230114

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...