MXene-Based Composites as Nanozymes in Biomedicine: A Perspective
Status PubMed-not-MEDLINE Language English Country Germany Media electronic
Document type Journal Article
PubMed
36333561
PubMed Central
PMC9636363
DOI
10.1007/s40820-022-00958-7
PII: 10.1007/s40820-022-00958-7
Knihovny.cz E-resources
- Keywords
- Diagnostics, MXene-based nanozymes, MXenes, Theranostics, Therapeutics,
- Publication type
- Journal Article MeSH
MXene-based nanozymes have garnered considerable attention because of their potential environmental and biomedical applications. These materials encompass alluring and manageable catalytic performances and physicochemical features, which make them suitable as (bio)sensors with high selectivity/sensitivity and efficiency. MXene-based structures with suitable electrical conductivity, biocompatibility, large surface area, optical/magnetic properties, and thermal/mechanical features can be applied in designing innovative nanozymes with area-dependent electrocatalytic performances. Despite the advances made, there is still a long way to deploy MXene-based nanozymes, especially in medical and healthcare applications; limitations pertaining the peroxidase-like activity and sensitivity/selectivity may restrict further practical applications of pristine MXenes. Thus, developing an efficient surface engineering tactic is still required to fabricate multifunctional MXene-based nanozymes with excellent activity. To obtain MXene-based nanozymes with unique physicochemical features and high stability, some crucial steps such as hybridization and modification ought to be performed. Notably, (nano)toxicological and long-term biosafety analyses along with clinical translation studies still need to be comprehensively addressed. Although very limited reports exist pertaining to the biomedical potentials of MXene-based nanozymes, the future explorations should transition toward the extensive research and detailed analyses to realize additional potentials of these structures in biomedicine with a focus on clinical and industrial aspects. In this perspective, therapeutic, diagnostic, and theranostic applications of MXene-based nanozymes are deliberated with a focus on future perspectives toward more successful clinical translational studies. The current state-of-the-art biomedical advances in the use of MXene-based nanozymes, as well as their developmental challenges and future prospects are also highlighted. In view of the fascinating properties of MXene-based nanozymes, these materials can open significant new opportunities in the future of bio- and nanomedicine.
See more in PubMed
Das B, Franco JL, Logan N, Balasubramanian P, Kim MI, et al. Nanozymes in point-of-care diagnosis: an emerging futuristic approach for biosensing. Nano-Micro Lett. 2021;13:193. doi: 10.1007/s40820-40021-00717-40820. PubMed DOI PMC
Zhao R, Liu H, Li Y, Guo M, Zhang XD. Catalytic nanozyme for radiation protection. Bioconj. Chem. 2021;32:411–429. doi: 10.1021/acs.bioconjchem.0c00648. PubMed DOI
Yanling Y, Zhongmin T, Han L, Jianlin S. Emerging two-dimensional material nanozymes for theranostic nanomedicine. Biophys. Rep. 2021;7:159–172. doi: 10.52601/bpr.2021.210011. PubMed DOI PMC
Stasyuk N, Smutok O, Demkiv O, Prokopiv T, Gayda G, et al. Synthesis, catalytic properties and application in biosensorics of nanozymes and electronanocatalysts: a review. Sensors. 2020;20:4509. doi: 10.3390/s20164509. PubMed DOI PMC
Yang Y, Zhu D, Liu Y, Jiang B, Jiang W, et al. Platinum-carbon-integrated nanozymes for enhanced tumor photodynamic and photothermal therapy. Nanoscale. 2020;12:13548–13557. doi: 10.1039/D0NR02800B. PubMed DOI
Zhang X, Wu D, Zhou X, Yu Y, Liu J, et al. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends Anal. Chem. 2019;121:115668. doi: 10.1016/j.trac.2019.115668. DOI
Hong C, Meng X, He J, Fan K, Yan X. Nanozyme: a promising tool from clinical diagnosis and environmental monitoring to wastewater treatment. Particuology. 2022;71:90–107. doi: 10.1016/j.partic.2022.02.001. DOI
Zhang X, Chen X, Zhao Y. Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 2022;14:95. doi: 10.1007/s40820-40022-00828-40822. PubMed DOI PMC
Jiang Y, Zhao X, Huang J, Li J, Upputuri PK, et al. Transformable hybrid semiconducting polymer nanozyme for second near-infrared photothermal ferrotherapy. Nat. Commun. 2020;11:1857. doi: 10.1038/s41467-020-15730-x. PubMed DOI PMC
Feng L, Liu B, Xie R, Wang D, Qian C, et al. An ultrasmall SnFe2O4 nanozyme with endogenous oxygen generation and glutathione depletion for synergistic cancer therapy. Adv. Funct. Mater. 2021;31(5):2006216. doi: 10.1002/adfm.202006216. DOI
Zhu D, Zheng Z, Luo G, Suo M, Li X, et al. Single injection and multiple treatments: an injectable nanozyme hydrogel as AIEgen reservoir and release controller for efficient tumor therapy. NanoToday. 2021;37:101091. doi: 10.1016/j.nantod.2021.101091. DOI
Iqbal A, Kwon J, Kim MK, Koo CM. MXenes for electromagnetic interference shielding: experimental and theoretical perspectives. Mater. Today Adv. 2021;9:100124. doi: 10.1016/j.mtadv.2020.100124. DOI
Iravani S, Varma RS. MXenes and MXene-based materials for tissue engineering and regenerative medicine: recent advances. Mater. Adv. 2021;2(9):2906–2917. doi: 10.1039/D1MA00189B. DOI
Iravani S, Varma RS. MXenes for cancer therapy and diagnosis: recent advances and current challenges. ACS Biomater. Sci. Eng. 2021;7(6):1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI
Yuan H, Yu S, Jang D, Kim M, Hong H, et al. Palladium nanoparticles decorated MXene for plasmon-enhanced photocatalysis. J. Ind. Eng. Chem. 2022;108:501–507. doi: 10.1016/j.jiec.2022.01.030. DOI
Zhang H, Li M, Zhu C, Tang Q, Kang P, et al. Preparation of magnetic α-Fe2O3/ZnFe2O4@Ti3C2 MXene with excellent photocatalytic performance. Ceram. Int. 2020;46:81–88. doi: 10.1016/j.ceramint.2019.08.236. DOI
Hantanasirisakul K, Gogotsi Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes) Adv. Mater. 2018;30(52):1804779. doi: 10.1002/adma.201804779. PubMed DOI
Yin J, Pan S, Guo X, Gao Y, Zhu D, et al. Nb2C MXene-functionalized scafolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects. Nano-Micro Lett. 2021;13:30. doi: 10.1007/s40820-40020-00547-40826. PubMed DOI PMC
Zang X, Wang J, Qin Y, Wang T, He C, et al. Enhancing capacitance performance of Ti3C2Tx MXene as electrode materials of supercapacitor: from controlled preparation to composite structure construction. Nano-Micro Lett. 2020;12:77. doi: 10.1007/s40820-40020-40415-40825. PubMed DOI PMC
Cao W, Wang Z, Liu X, Zhou Z, Zhang Y, et al. Bioinspired MXene-based user-interactive electronic skin for digital and visual dual-channel sensing. Nano-Micro Lett. 2022;14:119. doi: 10.1007/s40820-022-00838-0. PubMed DOI PMC
Huang M, Gu Z, Zhang J, Zhang D, Zhang H, et al. MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: progress and perspectives. J. Mater. Chem. B. 2021;9:5195–5220. doi: 10.1039/D1TB00410G. PubMed DOI
Wu X, Ma P, Sun Y, Du F, Song D, et al. Application of MXene in electrochemical sensors: a review. Electroanalysis. 2021;33:1827–1851. doi: 10.1002/elan.202100192. DOI
Bhardwaj SK, Singh H, Khatri M, Kim KH, Bhardwaj N. Advances in MXenes-based optical biosensors: a review. Biosens. Bioelectron. 2022;202:113995. doi: 10.1016/j.bios.2022.113995. PubMed DOI
Li K, Liang M, Wang H, Wang X, Huang Y, et al. 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 2020;30(47):2000842. doi: 10.1002/adfm.202000842. DOI
Hu M, Zhang H, Hu T, Fan B, Wang X, et al. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem. Soc. Rev. 2020;49(18):6666–6693. doi: 10.1039/D0CS00175A. PubMed DOI
Ihsanullah I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: progress, challenges and prospects. Chem. Eng. J. 2020;388:124340. doi: 10.1016/j.cej.2020.124340. DOI
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Green-synthesized nanocatalysts and nanomaterials for water treatment: current challenges and future perspectives. J. Hazard. Mater. 2021;401:123401. doi: 10.1016/j.jhazmat.2020.123401. PubMed DOI PMC
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Carbon-based sustainable nanomaterials for water treatment: state-of-art and future perspectives. Chemosphere. 2021;263:128005. doi: 10.1016/j.chemosphere.2020.128005. PubMed DOI PMC
Nasrollahzadeh M, Sajjadi M, Iravani S, Varma RS. Starch, cellulose, pectin, gum, alginate, chitin and chitosan derived (nano) materials for sustainable water treatment: a review. Carbohyd. Polym. 2021;251:116986. doi: 10.1016/j.carbpol.2020.116986. PubMed DOI PMC
Liu Z, Zhao M, Lin H, Dai C, Ren C, et al. 2D magnetic titanium carbide MXene for cancer theranostics. J. Mater. Chem. B. 2018;6(21):3541–3548. doi: 10.1039/C8TB00754C. PubMed DOI
Kwon O, Choi Y, Kang J, Kim JH, Choi E, et al. A comprehensive review of MXene-based water-treatment membranes and technologies: recent progress and perspectives. Desalination. 2022;522:115448. doi: 10.1016/j.desal.2021.115448. DOI
Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano. 2019;13(8):8491–8494. doi: 10.1021/acsnano.9b06394. PubMed DOI
Soufi GJ, Iravani P, Hekmatnia A, Mostafavi E, Khatami M, et al. MXenes and MXene-based materials with cancer diagnostic applications: challenges and opportunities. Comments Inorg. Chem. 2022;42:174–207. doi: 10.1080/02603594.2021.1990890. DOI
Li K, Chang TH, Li Z, Yang H, Fu F, et al. Biomimetic MXene textures with enhanced light-to-heat conversion for solar steam generation and wearable thermal management. Adv. Energy Mater. 2019;9(34):1901687. doi: 10.1002/aenm.201901687. DOI
Zhu X, Lin L, Wu R, Zhu Y, Sheng Y, et al. Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosens. Bioelectron. 2021;179:113062. doi: 10.1016/j.bios.2021.113062. PubMed DOI
Liu B, Wang Y, Chen Y, Guo L, Wei G. Biomimetic two-dimensional nanozymes: synthesis, hybridization, functional tailoring, and biosensor applications. J. Mater. Chem. B. 2020;8(44):10065–10086. doi: 10.1039/D0TB02051F. PubMed DOI
Madhavan A, Sindhu R, Binod P, Sukumaran RK, Pandey A. Strategies for design of improved biocatalysts for industrial applications. Bioresour. Technol. 2017;245:1304–1313. doi: 10.1016/j.biortech.2017.05.031. PubMed DOI
Rigoldi F, Donini S, Redaelli A, Parisini E, Gautieri A. Review: engineering of thermostable enzymes for industrial applications. APL Bioeng. 2018;2:0115010. doi: 10.1063/1.4997367. PubMed DOI PMC
Lechner H, Ferruz N, Hocker B. Strategies for designing non-natural enzymes and binders. Curr. Opin. Chem. Biol. 2018;47:67–76. doi: 10.1016/j.cbpa.2018.07.022. PubMed DOI
Huang YY, Ren JS, Qu XG. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019;119(6):4357–4412. doi: 10.1021/acs.chemrev.8b00672. PubMed DOI
Wei H, Wang EK. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev. 2013;42(14):6060–6093. doi: 10.1039/C3CS35486E. PubMed DOI
Wu J, Wang X, Wang Q, Lou Z, Li S, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes(II) Chem. Soc. Rev. 2019;48(4):1004–1076. doi: 10.1039/C8CS00457A. PubMed DOI
Yu L, Chang J, Zhuang X, Li H, Hou T, et al. Two-dimensional cobalt-doped Ti3C2 MXene nanozyme-mediated homogeneous electrochemical strategy for pesticides assay based on in situ generation of electroactive substances. Anal. Chem. 2022;94:3669–3676. doi: 10.1021/acs.analchem.1c05300. PubMed DOI
Shi Y, Liu Z, Liu R, Wu R, Zhang J. DNA-encoded MXene-Pt nanozyme for enhanced colorimetric sensing of mercury ions. Chem. Eng. J. 2022;442:136072. doi: 10.1016/j.cej.2022.136072. DOI
Rhouati A, Berkani M, Vasseghian Y, Golzadeh N. MXene-based electrochemical sensors for detection of environmental pollutants: a comprehensive review. Chemosphere. 2022;291:132921. doi: 10.1016/j.chemosphere.2021.132921. PubMed DOI
Ballesteros CAS, Mercante LA, Alvarenga AD, Facure MHM, Schneider R, et al. Recent trends in nanozymes design: from materials and structures to environmental applications. Mater. Chem. Front. 2021;5:7419–7451. doi: 10.1039/D1QM00947H. DOI
Xu C, Wang L, Liu Z, Chen L, Guo J, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015;14:1135–1141. doi: 10.1038/nmat4374. PubMed DOI
Li T, Yao L, Liu Q, Gu J, Luo R, et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem. Int. Ed. 2018;57(21):6115–6119. doi: 10.1002/anie.201800887. PubMed DOI
Sun W, Shah S, Chen Y, Tan Z, Gao H, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A. 2017;5(41):21663–21668. doi: 10.1039/C7TA05574A. DOI
Liu J, Jiang X, Zhang R, Zhang Y, Wu L, et al. MXene-enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood. Adv. Funct. Mater. 2019;29(6):1807326. doi: 10.1002/adfm.201807326. DOI
Salim O, Mahmoud KA, Pant KK, Joshi RK. Introduction to MXenes: synthesis and characteristics. Mater. Today Chem. 2019;14:100191. doi: 10.1016/j.mtchem.2019.08.010. PubMed DOI
Urbankowski P, Anasori B, Makaryan T, Er D, Kota S, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene) Nanoscale. 2016;8:11385. doi: 10.1039/C6NR02253G. PubMed DOI
Ma L, Ting LRL, Molinari V, Giordano C, Yeo BS. Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route. J. Mater. Chem. A. 2015;3(16):8361–8368. doi: 10.1039/C5TA00139K. DOI
Sun N, Guan Z, Zhu Q, Anasori B, Gogotsi Y, et al. Enhanced ionic accessibility of flexible MXene electrodes produced by natural sedimentation. Nano-Micro Lett. 2020;12:89. doi: 10.1007/s40820-40020-00426-40820. PubMed DOI PMC
Liu Y, Zhang W, Zheng W. Quantum dots compete at the acme of MXene family for the optimal catalysis. Nano-Micro Lett. 2022;14:158. doi: 10.1007/s40820-022-00908-3. PubMed DOI PMC
Rasool K, Mahmoud KA, Johnson DJ, Helal M, Berdiyorov GR, et al. Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep. 2017;7:1598. doi: 10.1038/s41598-017-01714-3. PubMed DOI PMC
Yin W, Yu J, Lv F, Yan L, Zheng LR, et al. Functionalized Nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano. 2016;10(12):11000–11011. doi: 10.1021/acsnano.6b05810. PubMed DOI
Shafiei N, Nasrollahzadeh M, Iravani S. Green synthesis of silica and silicon nanoparticles and their biomedical and catalytic applications. Comments Inorg. Chem. 2021;41:317–372. doi: 10.1080/02603594.2021.1904912. DOI
Lin H, Chen Y, Shi J. Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv. Sci. 2018;5(10):1800518. doi: 10.1002/advs.201800518. PubMed DOI PMC
Lin H, Gao S, Dai C, Chen Y, Shi J. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017;139(45):16235–16247. doi: 10.1021/jacs.7b07818. PubMed DOI
Lin H, Wang X, Yu L, Chen Y, Shi J. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett. 2017;17(1):384–391. doi: 10.1021/acs.nanolett.6b04339. PubMed DOI
Lin H, Wang Y, Gao S, Chen Y, Shi J. Theranostic 2D tantalum carbide (MXene) Adv. Mater. 2018;30(4):1703284. doi: 10.1002/adma.201703284. PubMed DOI
Shi J, Shu R, Shi X, Li Y, Li J, et al. Multi-activity cobalt ferrite/MXene nanoenzymes for drug-free phototherapy in bacterial infection treatment. RSC Adv. 2022;12:11090–11099. doi: 10.1039/D2RA01133F. PubMed DOI PMC
Hao S, Han H, Yang Z, Chen M, Jiang Y, et al. Recent advancements on photothermal conversion and antibacterial applications over MXenes-based materials. Nano-Micro Lett. 2022;14:178. doi: 10.1007/s40820-022-00901-w. PubMed DOI PMC
Yu R, Xue J, Wang Y, Qiu J, Huang X, et al. Novel Ti3C2Tx MXene nanozyme with manageable catalytic activity and application to electrochemical biosensor. J. Nanobiotechnol. 2022;20:119. doi: 10.1186/s12951-022-01317-9. PubMed DOI PMC
Liu Q, Zhang A, Wang R, Zhang Q, Cui D. A review on metal- and metal oxide-based nanozymes: properties, mechanisms, and applications. Nano-Micro Lett. 2021;13:154. doi: 10.1007/s40820-021-00674-8. PubMed DOI PMC
Tao Y, Yi K, Wang H, Kim HW, Li K, et al. CRISPR-Cas12a-regulated DNA adsorption and metallization on MXenes as enhanced enzyme mimics for sensitive colorimetric detection of hepatitis B virus DNA. J. Colloid Interface Sci. 2022;613:406–414. doi: 10.1016/j.jcis.2022.01.038. PubMed DOI
Li J, Cai X, Zhang Y, Li K, Guan L, et al. MnO2 Nanozyme-loaded MXene for cancer synergistic photothermal-chemodynamic therapy. ChemistrySelect. 2022;7:e202201127. doi: 10.1002/slct.202201127. DOI
Zhu Y, Wang Z, Zhao R, Zhou Y, Feng L, et al. Pt decorated Ti3C2Tx MXene with NIR-II light amplified nanozyme catalytic activity for efficient phototheranostics. ACS Nano. 2022;16(2):3105–3118. doi: 10.1021/acsnano.1c10732. PubMed DOI
Hao Z, Li Y, Liu X, Jiang T, He Y, et al. Enhancing biocatalysis of a MXene-based biomimetic plasmonic assembly for targeted cancer treatments in NIR-II biowindow. Chem. Eng. J. 2021;425:130639. doi: 10.1016/j.cej.2021.130639. DOI
Tang M, Shi Y, Lu L, Li J, Zhang Z, et al. Dual active nanozyme-loaded MXene enables hyperthermia-enhanced tumor nanocatalytic therapy. Chem. Eng. J. 2022;449:137847. doi: 10.1016/j.cej.2022.137847. DOI
Hu H, Huang H, Xia L, Qian X, Feng W, et al. Engineering vanadium carbide MXene as multienzyme mimetics for efficient in vivo ischemic stroke treatment. Chem. Eng. J. 2022;440:135810. doi: 10.1016/j.cej.2022.135810. DOI
Feng W, Han X, Hu H, Chang M, Ding L, et al. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat. Commun. 2021;12:2203. doi: 10.1038/s41467-021-22278-x. PubMed DOI PMC
Zhang X, Cheng L, Lu Y, Tang J, Lv Q, et al. A MXene-based bionic cascaded-enzyme nanoreactor for tumor phototherapy/enzyme dynamic therapy and hypoxia-activated chemotherapy. Nano-Micro Lett. 2022;14:22. doi: 10.1007/s40820-021-00761-w. PubMed DOI PMC
Liu C, Yang W, Min X, Zhang D, Fu X, et al. An enzyme-free electrochemical immunosensor based on quaternary metallic/nonmetallic PdPtBP alloy mesoporous nanoparticles/MXene and conductive CuCl2 nanowires for ultrasensitive assay of kidney injury molecule-1. Sens. Actuat. B Chem. 2021;334:129585. doi: 10.1016/j.snb.2021.129585. DOI
Xi X, Wang J, Wang Y, Xiong H, Chen M, et al. Preparation of Au/Pt/Ti3C2Cl2 nanoflakes with self-reducing method for colorimetric detection of glutathione and intracellular sensing of hydrogen peroxide. Carbon. 2022;197:476–484. doi: 10.1016/j.carbon.2022.06.068. DOI
Jin Z, Xu G, Niu Y, Ding X, Han Y, et al. Ti3C2Tx MXene-derived TiO2/C-QDs as oxidase mimics for the efficient diagnosis of glutathione in human serum. J. Mater. Chem. B. 2020;8(16):3513–3518. doi: 10.1039/C9TB02478F. PubMed DOI
Li M, Peng X, Han Y, Fan L, Liu Z, et al. Ti3C2 MXenes with intrinsic peroxidase-like activity for label-free and colorimetric sensing of proteins. Microchem. J. 2021;166:106238. doi: 10.1016/j.microc.2021.106238. DOI
Chen D, Shao S, Zhang W, Zhao J, Lian M. Nitrogen and sulfur co-doping strategy to trigger the peroxidase-like and electrochemical activity of Ti3C2 nanosheets for sensitive uric acid detection. Anal. Chim. Acta. 2022;1197:339520. doi: 10.1016/j.aca.2022.339520. PubMed DOI
Ouyang H, Xian J, Luo S, Zhang L, Wang W, et al. Emitter–quencher pair of single atomic Co sites and monolayer titanium carbide MXenes for luminol chemiluminescent reactions. ACS Appl. Mater. Interfaces. 2021;13(51):60945–60954. doi: 10.1021/acsami.1c20489. PubMed DOI
Nasrallah GK, Al-Asmakh M, Rasool K, Mahmoud KA. Ecotoxicological assessment of Ti3C2Tx (MXene) using a Zebrafish embryo model. Environ. Sci. Nano. 2018;5:1002–1011. doi: 10.1039/C7EN01239J. DOI
Dwivedi N, Dhand C, Kumar P, Srivastava AK. Emergent 2D materials for combating infectious diseases: the potential of MXenes and MXene–graphene composites to fight against pandemics. Mater. Adv. 2021;2(9):2892–2905. doi: 10.1039/D1MA00003A. DOI
Jiang X, Kuklin AV, Baev A, Ge Y, Ågren H, et al. Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020;848:1–58. doi: 10.1016/j.physrep.2019.12.006. DOI
Hwang SK, Kang SM, Rethinasabapathy M, Roh C, Huh YS. MXene: an emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J. 2020;397:125428. doi: 10.1016/j.cej.2020.125428. DOI
Li S, Dong L, Wei Z, Sheng G, Du K, et al. Adsorption and mechanistic study of the invasive plant-derived biochar functionalized with CaAl-LDH for Eu(III) in water. J. Environ. Sci. 2020;96:127–137. doi: 10.1016/j.jes.2020.05.001. PubMed DOI
Champagne A, Charlier JC. Physical properties of 2D MXenes: from a theoretical perspective. J. Phys. Mater. 2021;3:032006. doi: 10.1088/2515-7639/ab97ee. DOI
Mostafavi E, Iravani S. MXene-graphene composites: a perspective on biomedical potentials. Nano-Micro Lett. 2022;14:130. doi: 10.1007/s40820-022-00880-y. PubMed DOI PMC
Tabish TA, Pranjol MZI, Jabeen F, Abdullah T, Latif A, et al. Investigation into the toxic effects of graphene nanopores on lung cancer cells and biological tissues. Appl. Mater. Today. 2018;12:389–401. doi: 10.1016/j.apmt.2018.07.005. DOI
Han X, Huang J, Lin H, Wang Z, Li P, et al. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 2018;7(9):1701394. doi: 10.1002/adhm.201701394. PubMed DOI
Han X, Jing X, Yang D, Lin H, Wang Z, et al. Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics. 2018;8:4491–4508. doi: 10.7150/thno.26291. PubMed DOI PMC
Alhussain H, Augustine R, Hussein EA, Gupta I, Hasan A, et al. MXene nanosheets may induce toxic effect on the early stage of embryogenesis. J. Biomed. Nanotechnol. 2020;16:364–372. doi: 10.1166/jbn.2020.2894. PubMed DOI
Dai C, Lin H, Xu G, Liu Z, Wu R, et al. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem. Mater. 2017;29:8637–8652. doi: 10.1021/acs.chemmater.7b02441. DOI
Gao L, Li C, Huang W, Mei S, Lin H, et al. MXene/polymer membranes: synthesis, properties, and emerging applications. Chem. Mater. 2020;32:1703–1747. doi: 10.1021/acs.chemmater.9b04408. DOI
Ihsanullah I. Potential of MXenes in water desalination: current status and perspectives. Nano-Micro Lett. 2020;12:72. doi: 10.1007/s40820-020-0411-9. PubMed DOI PMC
Huang H, Jiang R, Feng Y, Ouyang H, Zhou N, et al. Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale. 2020;12:1325–1338. doi: 10.1039/C9NR07616F. PubMed DOI
Zavabeti A, Jannat A, Zhong L, Haidry AA, Yao Z, et al. Two-dimensional materials in large-areas: synthesis, properties and applications. Nano-Micro Lett. 2020;12:66. doi: 10.1007/s40820-020-0402-x. PubMed DOI PMC
Wang L, Hu P, Long Y, Liu Z, He X. Recent advances in ternary two-dimensional materials: synthesis, properties and applications. J. Mater. Chem. A. 2017;5(44):22855–22876. doi: 10.1039/C7TA06971E. DOI
Zha XJ, Zhao X, Pu JH, Tang LS, Ke K, et al. Flexible anti-biofouling mxene/cellulose fibrous membrane for sustainable solar-driven water purification. ACS Appl. Mater. Interfaces. 2019;11(40):36589–36597. doi: 10.1021/acsami.9b10606. PubMed DOI
Shang T, Lin Z, Qi C, Liu X, Li P, et al. 3D Macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 2019;29(33):1903960. doi: 10.1002/adfm.201903960. DOI
Li X, Ran F, Yang F, Long J, Shao L. Advances in MXene films: synthesis, assembly, and applications. Trans. Tianjin Uni. 2021;27:217–247. doi: 10.1007/s12209-021-00282-y. DOI
Parihar A, Singhal A, Kumar N, Khan R, Khan MA, et al. Next-generation intelligent MXene-based electrochemical aptasensors for point-of-care cancer diagnostics. Nano-Micro Lett. 2022;14:100. doi: 10.1007/s40820-40022-00845-40821. PubMed DOI PMC
Iqbal A, Hong J, Ko TY, Koo CM. Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 2021;8:9. doi: 10.1186/s40580-021-00259-6. PubMed DOI PMC
Ding L, Wei Y, Wang Y, Chen H, Caro J, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 2017;56(7):1825–1829. doi: 10.1002/anie.201609306. PubMed DOI
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011;23(37):4248–4253. doi: 10.1002/adma.201102306. PubMed DOI
Rasool K, Helal M, Ali A, Ren CE, Gogotsi Y, et al. Antibacterial activity of Ti3C2Tx MXene. ACS Nano. 2016;10(3):3674–3684. doi: 10.1021/acsnano.6b00181. PubMed DOI
Huang K, Li Z, Lin J, Han G, Huang P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018;47(14):5109–5124. doi: 10.1039/C7CS00838D. PubMed DOI
Xu Z, Liu G, Ye H, Jin W, Cui Z. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration. J. Membrane Sci. 2018;563:625–632. doi: 10.1016/j.memsci.2018.05.044. DOI
Mozafari M, Soroush M. Surface functionalization of MXenes. Mater. Adv. 2021;2(22):7277–7307. doi: 10.1039/D1MA00625H. DOI
Li Z, Zhang H, Han J, Chen Y, Lin H, et al. Surface nanopore engineering of 2D MXenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Adv. Mater. 2018;30(25):1706981. doi: 10.1002/adma.201706981. PubMed DOI
Liu G, Zou J, Tang Q, Yang X, Zhang YW, et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces. 2017;9(46):40077–40086. doi: 10.1021/acsami.7b13421. PubMed DOI
Driscoll N, Richardson AG, Maleski K, Anasori B, Adewole O, et al. Two-dimensional Ti3C2 MXene for high-resolution neural interfaces. ACS Nano. 2018;12(10):10419–10429. doi: 10.1021/acsnano.8b06014. PubMed DOI PMC
Wang WY, Hood ZD, Zhang XY, Ivanov IN, Bao ZH, et al. Construction of 2D BiVO4-CdS-Ti3C2Tx heterostructures for enhanced photo-redox activities. ChemCatChem. 2020;12:3496–3503. doi: 10.1002/cctc.202000448. DOI
Zhong Q, Li Y, Zhang G. Two-dimensional MXene-based and MXene-derived photocatalysts: recent developments and perspectives. Chem. Eng. J. 2021;409:128099. doi: 10.1016/j.cej.2020.128099. DOI
Chen W, Han B, Xie Y, Liang S, Deng H, et al. Ultrathin Co–Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chem. Eng. J. 2020;391:123519. doi: 10.1016/j.cej.2019.123519. DOI
Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017;2:16098. doi: 10.1038/natrevmats.2016.98. DOI
Nan J, Guo X, Xiao J, Li X, Chen W, et al. Nanoengineering of 2D MXene-based materials for energy storage applications. Small. 2021;17(9):1902085. doi: 10.1002/smll.201902085. PubMed DOI
Sharma SK, Kumar A, Sharma G, Vo DVN, García-Peñas A, et al. MXenes based nano-heterojunctions and composites for advanced photocatalytic environmental detoxification and energy conversion: a review. Chemosphere. 2022;291:132923. doi: 10.1016/j.chemosphere.2021.132923. PubMed DOI
MXene-Carbon Nanotube Composites: Properties and Applications