Elastic, not plastic species: frozen plasticity theory and the origin of adaptive evolution in sexually reproducing organisms
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
20067646
PubMed Central
PMC2823622
DOI
10.1186/1745-6150-5-2
PII: 1745-6150-5-2
Knihovny.cz E-resources
- MeSH
- Biological Evolution * MeSH
- Models, Biological * MeSH
- Adaptation, Physiological * MeSH
- Reproduction physiology MeSH
- Selection, Genetic MeSH
- Sexual Behavior, Animal physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Darwin's evolutionary theory could easily explain the evolution of adaptive traits (organs and behavioral patterns) in asexual but not in sexual organisms. Two models, the selfish gene theory and frozen plasticity theory were suggested to explain evolution of adaptive traits in sexual organisms in past 30 years. RESULTS: The frozen plasticity theory suggests that sexual species can evolve new adaptations only when their members are genetically uniform, i.e. only after a portion of the population of the original species had split off, balanced on the edge of extinction for several generations, and then undergone rapid expansion. After a short period of time, estimated on the basis of paleontological data to correspond to 1-2% of the duration of the species, polymorphism accumulates in the gene pool due to frequency-dependent selection; and thus, in each generation, new mutations occur in the presence of different alleles and therefore change their selection coefficients from generation to generation. The species ceases to behave in an evolutionarily plastic manner and becomes evolutionarily elastic on a microevolutionary time-scale and evolutionarily frozen on a macroevolutionary time-scale. It then exists in this state until such changes accumulate in the environment that the species becomes extinct. CONCLUSION: Frozen plasticity theory, which includes the Darwinian model of evolution as a special case--the evolution of species in a plastic state, not only offers plenty of new predictions to be tested, but also provides explanations for a much broader spectrum of known biological phenomena than classic evolutionary theories. REVIEWERS: This article was reviewed by Rob Knight, Fyodor Kondrashov and Massimo Di Giulio (nominated by David H. Ardell).
See more in PubMed
Darwin C. On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. 5. London: Murray; 1860. PubMed PMC
Hull DL. Darwin and his critics. The reception of Darwin's theory of evolution by the scientific community. Chicago: The University of Chicago Press; 1983.
Fisher RA. The genetical theory of natural selection. 2. New York: Dover Publications; 1958.
Mayr E. The growth of biological thought. Cambridge: The Belknap Press of Harvard University Press; 1982.
Dawkins R. The selfish gene. Oxford: Oxford University Press; 1976.
Williams GC. Adaptation and natural selection. Princeton: Princeton University Press; 1966.
Hamilton WD. The genetical evolution of social behaviour. I. J Theor Biol. 1964;7:1–16. doi: 10.1016/0022-5193(64)90038-4. PubMed DOI
Hamilton WD. The genetical evolution of social behaviour. II. J Theor Biol. 1964;7:17–52. doi: 10.1016/0022-5193(64)90039-6. PubMed DOI
Ayala FJ, Campbell CA. Frequency-dependent selection. Ann Rev Ecol Syst. 1974;5:115–138. doi: 10.1146/annurev.es.05.110174.000555. DOI
Heino M, Metz JJ, Kaitala V. The enigma of frequency-dependent selection. TREE. 1998;13:367–370. PubMed
Allison AC. The distribution of the sickle-cell trait in East Africa and elsewhere, and its apparent relationship to the incidence of subtertian malaria. Trans R Soc Trop Med Hyg. 1954;48:312–318. doi: 10.1016/0035-9203(54)90101-7. PubMed DOI
Maynard Smith J, Price GR. The logic of animal conflicts. Nature. 1973;246:15–18. doi: 10.1038/246015a0. DOI
Maynard Smith J. Evolution and the theory of games. Cambridge University Press; 1982.
Flegr J. On the "origin" of natural selection by means of speciation. Riv Biol-Biol Forum. 1998;91:291–304.
Laubichler MD, Hagen EH, Hammerstein P. The strategy concept and John Maynard Smith's influence on theoretical biology. Biol Philos. 2005;20:1041–1050. doi: 10.1007/s10539-005-9022-6. DOI
Dobzhansky T, Ayala FJ, Stebbins GL, Valentine JW. Evolution. San Francisco: W.H. Freeman and Company; 1977.
Dobzhansky T, Spassky B. Artifitial and natural selection for two behavioral traits in Drosophila pseudoobscura. PNAS USA. 1969;62:75–80. doi: 10.1073/pnas.62.1.75. PubMed DOI PMC
Lerner IM. The genetic basis of selection. New York: Willey; 1958.
Eldredge N, Thompson JN, Brakefield PM, Gavrilets S, Jablonski D, Jackson JBC. The dynamics of evolutionary stasis. Paleobiology. 2005;31:133–145. doi: 10.1666/0094-8373(2005)031[0133:TDOES]2.0.CO;2. DOI
Wilson AJ, Pemberton JM, Pilkington JG, Clutton-Brock TH, Coltman DW, Kruuk LEB. Quantitative genetics of growth and cryptic evolution of body size in an island population. Evol Ecol. 2007;21:337–356. doi: 10.1007/s10682-006-9106-z. DOI
Hansen TF, Houle D. Phenotypic Integracion. Oxford: Oxford University Press; 2004. Evolvability, stabilizing selection, and the problem of stasis; pp. 130–153.
Rasnicyn AP. Collected works in evolutionary biology (Izbrannye trudy po evolucionnoj biologii) Moskva: Tovarisevstvo naucnych izdanii KMK; 2005.
Griffiths PE, Neumann-Held EM. The many faces of the gene. BioScience. 1999;49:656–662. doi: 10.2307/1313441. DOI
Stotz K, Griffiths PE, Knight R. How biologists conceptualize genes: an empirical study. Stud Hist Phil Biol & Biomed Sci. 2004;35:647–673.
Silander OK, Tenaillon O, Chao L. Understanding the evolutionary fate of finite populations: The dynamics of mutational effects. Plos Biology. 2007;5:922–931. doi: 10.1371/journal.pbio.0050094. PubMed DOI PMC
Wainscoat JS, Kanavakis E, Wood WG, Letsky EA, Huehns ER, Marsh GW. Thalassaemia intermedia in Cypress: The interaction of alpha and betha thalassaemia. Br J Haematol. 1983;53:411–416. doi: 10.1111/j.1365-2141.1983.tb02041.x. PubMed DOI
Templeton AR. The reality and importance of founder speciation in evolution. BioEssays. 2008;30:470–479. doi: 10.1002/bies.20745. PubMed DOI
van Heerwaarden B, Willi Y, Kristensen TN, Hoffmann AA. Population bottlenecks increase additive genetic variance but do not break a selection limit in rain forest Drosophila. Genetics. 2008;179:2135–2146. doi: 10.1534/genetics.107.082768. PubMed DOI PMC
Fabbro T, Davison AC, Steinger T. Reliable confidence intervals in quantitative genetics: narrow-sense heritability. Theor Appl Genet. 2007;115:933–944. doi: 10.1007/s00122-007-0619-9. PubMed DOI
Roff DA. A centennial celebration for quantitative genetics. Evolution. 2007;61:1017–1032. doi: 10.1111/j.1558-5646.2007.00100.x. PubMed DOI
Xu SZ, Jia ZY. Genomewide analysis of epistatic effects for quantitative traits in barley. Genetics. 2007;175:1955–1963. doi: 10.1534/genetics.106.066571. PubMed DOI PMC
Liberman U, Feldman MW. On the evolution of epistasis I: diploids under selection. Theor Popul Biol. 2005;67:141–160. doi: 10.1016/j.tpb.2004.11.001. PubMed DOI
Malmberg RL, Mauricio R. QTL-based evidence for the role of epistasis in evolution. Genet Res. 2005;86:89–95. doi: 10.1017/S0016672305007780. PubMed DOI
Leroi A, Koufopanou V, Burt A. Cancer selection. Nature Reviews Cancer. 2003;3:226–231. doi: 10.1038/nrc1016. PubMed DOI
Hammerstein P. Streetcar theory and long-term evolution. Sci. 1996;273:1032. doi: 10.1126/science.273.5278.1032. PubMed DOI
Hammerstein P. Strategic analysis in evolutionary genetics and the theory of games. J Genet. 2005;84:7–12. doi: 10.1007/BF02715884. PubMed DOI
Lively CM, Dybdahl MF. Parasite adaptation to locally common host genotypes. Nature. 2000;405:679–681. doi: 10.1038/35015069. PubMed DOI
Mayr E. Animal species and evolution. Cambridge: Harvard University Press; 1963.
Dobzhansky T. Genetics and the origin of species. New York: Columbia University Press; 1937.
Muller HJ. Reversibility in evolution considered from the standpoint of genetics. Biol Rev. 1939;14:261–280. doi: 10.1111/j.1469-185X.1939.tb00934.x. DOI
Nei M. Molecular population genetics and evolution. 1. Amsterdam: North-Holand Pub. Comp.; 1975. PubMed
Nei M, Maruyama T, Chakraborty R. The bottleneck effect and genetic variability in populations. Evolution. 1975;29:1–10. doi: 10.2307/2407137. PubMed DOI
Campbell MC, Tishkoff SA. African genetic diversity: Implications for human demographic history, modern human origins, and complex disease mapping. Annual Review of Genomics and Human Genetics. 2008;9:403–433. doi: 10.1146/annurev.genom.9.081307.164258. PubMed DOI PMC
Booy G, Hendriks RJJ, Smulders MJM, Van Groenendael JM, Vosman B. Genetic diversity and the survival of populations. Plant Biology. 2000;2:379–395. doi: 10.1055/s-2000-5958. DOI
Mikulas R. The principle of "Frozen Evolution" and its manifestation in the fossil record: the brachiopod genus Aegiromena Havlicek. Proceedings of Paleontological Workshop Held in Honour of Doc.RNDr. Jaroslav Kraft, CSc. Plzen. 2008.
Flegr J. Frozen evolution or, that's not the way it is, Mr. Darwin A farewell to selfish gene. Praque: Charles University in Praque Press; 2008.
Gould SJ. The structure of evolutionary theory. Camridge: The Belknap Press of Harvard University Press; 2002.
Hughes NC. Strength in numbers: high phenotypic variance in early Cambrian trilobites and its evolutionary implications. BioEssays. 2007;29:1081–1084. doi: 10.1002/bies.20674. PubMed DOI
Erwin DH. Disparity: Morphological pattern and developmental context. Palaeontology. 2007;50:57–73. doi: 10.1111/j.1475-4983.2006.00614.x. DOI
Webster M. A Cambrian peak in morphological variation within trilobite species. Sci. 2007;317:499–502. doi: 10.1126/science.1142964. PubMed DOI
Foote M. Survivorship analysis of Cambrian and Ordovician trilobites. Paleobiology. 1988;14:258–271.
Eldredge N. Allopatric model and phylogeny in paleozoic invertebrates. Evolution. 1971;25:156–167. doi: 10.2307/2406508. PubMed DOI
Eldredge N, Gould SJ. In: Models in Paleontology. Schopf TJM, editor. San Francisco; 1972. Punctuated equilibria: an alternative to phyletic gradualism; pp. 82–83.
Flegr J. A possible role of intracellular isoelectric focusing in the evolution of eukaryotic cells and multicellular organisms. . J Mol Evol . 2009;69:445–451. doi: 10.1007/s00239-009-9269-7. PubMed DOI
Brandon RN, Nijhout NH. The empirical nonequivalence of genic and genotypic models of selection: A (decisive) refutation of genic selectionism and pluralistic genic selectionism. Phil Sci. 2006;73:277–297. doi: 10.1086/515416. DOI
Wade MJ, Goodnight GC. Perspective The theories of Fisher and Wright in the context of metapopulations: When nature does many small experiments. Evolution. 1998;52:1537–1553. doi: 10.2307/2411328. PubMed DOI
Ricklefs RE. Cladogenesis and morphological diversification in passerine birds. Nature. 2004;430:338–341. doi: 10.1038/nature02700. PubMed DOI
Pagel M, Venditti C, Meade A. Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Sci. 2006;314:119–121. doi: 10.1126/science.1129647. PubMed DOI
Bryant EHS, McCommas A, Combs LM. Morphometric differentiation among experimental lines of the housefly in relation to a bottleneck. Genetics. 1986;114:1213–1223. PubMed PMC
Mezhzherin SV. Genetic differentiation and phylogenetic relationships among Palearctic mice (Rodentia, Muridae) Genetika (Moscow) 1997;33:78–86. PubMed
Costas E, Gonzalez-Gil S, Lopez-Rodas V, Aguilera A. The influence of the slowing of Earth's rotation: A hypothesis to explain cell division synchrony under different day duration in earlier and later evolved unicellular algae. Helgolander Meeresuntersuchungen. 1996;50:117–130. doi: 10.1007/BF02367140. DOI
Prinzing A, Ozinga WA, Durka W. The relationship between global and regional distribution diminishes among phylogenetically basal species. Evolution. 2004;58:2622–2633. PubMed
Peck JR, Yearsley JM, Waxman D. Explaining the geographic distributions of sexual and asexual population. Nature. 1998;391:889–892. doi: 10.1038/36099. DOI
Haag CR, Ebert D. A new hypothesis to explain geographic parthenogenesis. Ann Zool Fennici. 2004;41:539–544.
Flegr J. Was Lysenko (partly) right? Michurinist biology in the view of modern plant physiology and genetics. Riv Biol-Biol Forum. 2002;95:259–271. PubMed
Yonekura R, Kawamura K, Uchii K. A peculiar relationship between genetic diversity and adaptability in invasive exotic species: Bluegill sunfish as a model species. Ecological Research. 2007;22:911–919. doi: 10.1007/s11284-007-0357-0. DOI
Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ. Adaptive evolution in invasive species. Trends Plant Sci. 2008;13:288–294. doi: 10.1016/j.tplants.2008.03.004. PubMed DOI
Novak SJ. The role of evolution in the invasion process. Proc Natl Acad Sci USA. 2007;104:3671–3672. doi: 10.1073/pnas.0700224104. PubMed DOI PMC
Bradshaw WE, Holzapfel CM. Climate change. Evolutionary response to rapid climate change. Science. 2006;312:1477–1478. doi: 10.1126/science.1127000. PubMed DOI
Nussey DH, Postma E, Gienapp P, Visser ME. Selection on heritable phenotypic plasticity in a wild bird population. Sci. 2005;310:304–306. doi: 10.1126/science.1117004. PubMed DOI