General environmental heterogeneity as the explanation of sexuality? Comparative study shows that ancient asexual taxa are associated with both biotically and abiotically homogeneous environments
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29375771
PubMed Central
PMC5773305
DOI
10.1002/ece3.3716
PII: ECE33716
Knihovny.cz E-zdroje
- Klíčová slova
- Frozen evolution theory, ancient asexuals, asexual reproduction, habitat heterogeneity, sexual reproduction,
- Publikační typ
- časopisecké články MeSH
Ecological theories of sexual reproduction assume that sexuality is advantageous in certain conditions, for example, in biotically or abiotically more heterogeneous environments. Such theories thus could be tested by comparative studies. However, the published results of these studies are rather unconvincing. Here, we present the results of a new comparative study based exclusively on the ancient asexual clades. The association with biotically or abiotically homogeneous environments in these asexual clades was compared with the same association in their sister, or closely related, sexual clades. Using the conservative definition of ancient asexuals (i.e., age >1 million years), we found eight pairs of taxa of sexual and asexual species, six differing in the heterogeneity of their inhabited environment on the basis of available data. The difference between the environmental type associated with the sexual and asexual species was then compared in an exact binomial test. The results showed that the majority of ancient asexual clades tend to be associated with biotically, abiotically, or both biotically and abiotically more homogeneous environments than their sexual controls. In the exploratory part of the study, we found that the ancient asexuals often have durable resting stages, enabling life in subjectively homogeneous environments, live in the absence of intense biotic interactions, and are very often sedentary, inhabiting benthos, and soil. The consequences of these findings for the ecological theories of sexual reproduction are discussed.
Zobrazit více v PubMed
Becerra, M. , Brichette, I. , & Garcia, C. (1999). Short‐term evolution of competition between genetically homogeneous and heterogeneous populations of Drosophila melanogaster. Evolutionary Ecology Research, 1(5), 567–579.
Becks, L. , & Agrawal, A. F. (2010). Higher rates of sex evolve in spatially heterogeneous environments. Nature, 468(7320), 89–93. https://doi.org/10.1038/nature09449 PubMed DOI
Bell, G. (1982). The masterpiece of nature: The evolution and genetics of sexuality. London, UK: Croom Helm.
Bell, G. (1985). Two theories of sex and variation. Experientia, 41(10), 1235–1245. https://doi.org/10.1007/BF01952066 PubMed DOI
Bernstein, H. , Bernstein, C. (2013). Evolutionary origin and adaptive function of meiosis In Bernstein H. & Bernstein C. (Eds.), Meiosis (pp.41–75). Rijeka, Croatia: InTech; Retrieved from: http://www.intechopen.com/books/meiosis/evolutionary-origin-and-adaptive-function-of-meiosis (accessed 23 may 2017). https://doi.org/10.5772/56557 DOI
Bettarel, Y. , Bouvy, M. , Dumont, C. , & Sime‐Ngando, T. (2006). Virus‐bacterium interactions in water and sediment of West African inland aquatic systems. Applied and Environmental Microbiology, 72(8), 5274–5282. https://doi.org/10.1128/AEM.00863-06 PubMed DOI PMC
Birky, C. J. (2009). Sex and evolution in eukaryotes. Encyclopedia of Life Support Systems (EOLSS), Oxford, UK: Eolss Publishers; Retrieved from: http://www.eolss.net/sample-chapters/c03/e6-183-14-00.pdf (accessed 23 may 2017).
Bluhm, C. , Scheu, S. , & Maraun, M. (2016). Temporal fluctuations in oribatid mites indicate that density‐independent factors favour parthenogenetic reproduction. Experimental and Applied Acarology, 68(4), 387–407. https://doi.org/10.1007/s10493-015-0001-6 PubMed DOI
Bochkov, A. , & Walter, D. (2007). The life‐cycle of Pomerantzia philippina sp. n. (Prostigmata: Pomerantziidae) described from the Philippines. Acarina, 15(1), 159–170.
Bogart, J. P. , Bi, K. , Fu, J. Z. , Noble, D. W. A. , & Niedzwiecki, J. (2007). Unisexual salamanders (genus Ambystoma) present a new reproductive mode for eukaryotes. Genome, 50(2), 119–136. https://doi.org/10.1139/G06-152 PubMed DOI
Boschetti, C. , Pouchkina‐Stantcheva, N. , Hoffmann, P. , & Tunnacliffe, A. (2011). Foreign genes and novel hydrophilic protein genes participate in the desiccation response of the bdelloid rotifer Adineta ricciae . Journal of Experimental Biology, 214(1), 59–68. https://doi.org/10.1242/jeb.050328 PubMed DOI
Bratbak, G. , Egge, J. K. , & Heldal, M. (1993). Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Marine Ecology Progress Series, 93(1/2), 39–48. https://doi.org/10.3354/meps093039 DOI
Brues, C. (1932). Further studies on the fauna of North American hot springs. Proceedings of the American Academy of Arts and Sciences, 67(7), 185–303. https://doi.org/10.2307/20022903 DOI
Bruvo, R. , Adolfsson, S. , Symonova, R. , Lamatsch, D. , Schön, I. , Jokela, J. , … Muller, S. (2011). Few parasites, and no evidence for Wolbachia infections, in a freshwater ostracod inhabiting temporary ponds. Biological Journal of the Linnean Society, 102(1), 208–216. https://doi.org/10.1111/j.1095-8312.2010.01556.x DOI
Bunbury, J. , & Gajewski, K. (2009). Biogeography of freshwater ostracodes in the Canadian arctic archipelago. Arctic, 62(3), 324–332.
Burt, A. , & Bell, G. (1987). Mammalian chiasma frequencies as a test of two theories of recombination. Nature, 326(6115), 803–805. PubMed
Butlin, R. (2002). The costs and benefits of sex: New insights from old asexual lineages. Nature Reviews Genetics, 3(4), 311–317. https://doi.org/10.1038/nrg749 PubMed DOI
Butlin, R. , Schön, I. , & Griffiths, H. (1998). Introduction to reproductive modes In Martens K. (Ed.), Sex and parthenogenesis: Evolutionary ecology of reproductive modes in non‐marine ostracods (pp. 1–24). Leiden: Backhuys.
Butlin, R. , Schön, I. , & Martens, K. (1998). Asexual reproduction in nonmarine ostracods. Heredity, 81(5), 473–480. https://doi.org/10.1046/j.1365-2540.1998.00454.x DOI
Butlin, R. , Schön, I. , & Martens, K. (1999). Origin, age and diversity of clones. Journal of Evolutionary Biology, 12(6), 1020–1022. https://doi.org/10.1046/j.1420-9101.1999.00126.x DOI
Caponetti, J. , Whitten, M. , & Beck, M. (1982). Axenic culture and induction of callus and sporophytes of the Appalachian Vittaria gametophyte. American Fern Journal, 72(2), 36–40. https://doi.org/10.2307/1547052 DOI
Carbonel, P. , Colin, J. , Danielopol, D. , Loffler, H. , & Neustrueva, I. (1988). Paleoecology of limnic ostracodes: A review of some major topics. Palaeogeography Palaeoclimatology Palaeoecology, 62(1–4), 413–461. https://doi.org/10.1016/0031-0182(88)90066-1 DOI
Castagnonesereno, P. , Piotte, C. , Uijthof, J. , Abad, P. , Wajnberg, E. , Vanlerberghemasutti, F. , … Dalmasso, A. (1993). Phylogenetic relationships between amphimictic and parthenogenetic nematodes of the genus Meloidogyne as inferred from repetitive DNA analysis. Heredity, 70(2), 195–204. https://doi.org/10.1038/hdy.1993.29 DOI
Cianciolo, J. M. , & Norton, R. A. (2006). The ecological distribution of reproductive mode in oribatid mites, as related to biological complexity. Experimental and Applied Acarology, 40(1), 1–25. https://doi.org/10.1007/s10493-006-9016-3 PubMed DOI
Colegrave, N. , Kaltz, O. , & Bell, G. (2002). The ecology and genetics of fitness in Chlamydomonas. VIII. The dynamics of adaptation to novel environments after a single episode of sex. Evolution, 56(1), 14–21. https://doi.org/10.1111/j.0014-3820.2002.tb00845.x PubMed DOI
Coleman, D. A. , Crossley, D. A. , & Hendrix, P. F. (2004). Fundamentals of soil ecology, 2nd ed USA: Elsevier Academic Press.
Croll, D. , & Sanders, I. (2009). Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus. Bmc Evolutionary Biology, 9(1). PubMed PMC
Crow, J . (1970). Genetic loads and the cost of natural selection In Kojima K. (Ed.), Biomathematics. Volume 1. Mathematical topics in population genetics (pp. 128–177). Berlin: Springer‐Verlag; https://doi.org/10.1007/978-3-642-46244-3 DOI
Currie, C. , Mueller, U. , & Malloch, D. (1999). The agricultural pathology of ant fungus gardens. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 7998–8002. https://doi.org/10.1073/pnas.96.14.7998 PubMed DOI PMC
Currie, C. , Scott, J. , Summerbell, R. , & Malloch, D. (1999). Fungus‐growing ants use antibiotic‐producing bacteria to control garden parasites. Nature, 398(6729), 701–704. https://doi.org/10.1038/19519 DOI
Darby, B. , Neher, D. , Housman, D. , & Belnap, J. (2011). Few apparent short‐term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro‐ and meso‐fauna. Soil Biology & Biochemistry, 43(7), 1474–1481. https://doi.org/10.1016/j.soilbio.2011.03.020 DOI
Dartnall, H. (1983). Rotifers of the Antarctic and Subantarctic. Hydrobiologia, 104(1), 57–60. https://doi.org/10.1007/BF00045952 DOI
Dawkins, R. , & Krebs, J. R. (1979). Arms races between and within species. Proceedings of the Royal Society B‐Biological Sciences, 205(1161), 489–511. https://doi.org/10.1098/rspb.1979.0081 PubMed DOI
Debortoli, N. , Li, X. , Eyres, I. , Fontaneto, D. , Hespeels, B. , Tang, C. Q. , … Van Doninck, K. (2016). Genetic exchange among bdelloid rotifers is more likely due to horizontal gene transfer than to meiotic sex. Current Biology, 26(6), 723–732. https://doi.org/10.1016/j.cub.2016.01.031 PubMed DOI
Delorme, L. , & Donald, D. (1969). Torpidity of freshwater ostracodes. Canadian Journal of Zoology, 47(5), 997–999. https://doi.org/10.1139/z69-160 DOI
Devetter, M. , & Scholl, K. (2014). Hydrobiont animals in floodplain soil: Are they positively or negatively affected by flooding? Soil Biology & Biochemistry, 69, 393–397. https://doi.org/10.1016/j.soilbio.2013.11.005 DOI
Dole‐Olivier, M. , Galassi, D. , Marmonier, P. , & Des Chatelliers, M. (2000). The biology and ecology of lotic microcrustaceans. Freshwater Biology, 44(1), 63–91. https://doi.org/10.1046/j.1365-2427.2000.00590.x DOI
Domes, K. , Scheu, S. , & Maraun, M. (2007). Resources and sex: Soil re‐colonization by sexual and parthenogenetic oribatid mites. Pedobiologia, 51(1), 1–11. https://doi.org/10.1016/j.pedobi.2006.11.001 DOI
Donner, J. (1975). Randbiotope von Fliessgewässern als orte der Anpassung von Wasserorganismen an Bodenbedingungen, gezeigt an Rotatorien der Donau und Nebenflüsse In Müller P. (Ed.), Verhandlungen der Gesellschaft für Ökologie Wien 1975 (pp. 231–234). Dordrecht: Springer Science+Business Media B.V.
Douglas, A. (2010). The symbiotic habit. Princeton, NJ: Princeton University Press.
Drake, L. A. , Choi, K. H. , Haskell, A. E. , & Dobbs, F. C. (1998). Vertical profiles of virus‐like particles and bacteria in the water column and sediments of Chesapeake Bay, USA. Aquatic Microbial Ecology, 16(1), 17–25. https://doi.org/10.3354/ame016017 DOI
Elliott, E. T. , Anderson, R. V. , Coleman, D. C. , & Cole, C. V. (1980). Habitable pore space and microbial trophic interactions. Oikos, 35(3), 327–335. https://doi.org/10.2307/3544648 DOI
Emiliani, C. (1982). Extinctive evolution: Extinctive and competitive evolution combine into a unified model of evolution. Journal of Teoretical Biology, 97(1), 13–33. https://doi.org/10.1016/0022-5193(82)90273-9 DOI
Emiliani, C. (1993a). Extinction and viruses. Biosystems, 31(2–3), 155–159. https://doi.org/10.1016/0303-2647(93)90044-D PubMed DOI
Emiliani, C. (1993b). Viral extinctions in deep‐sea species. Nature, 366(6452), 217–218. https://doi.org/10.1038/366217a0 PubMed DOI
Etter, R. J. , Rex, M. A. , Chase, M. R. , & Quattro, J. M. (2005). Population differentiation decreases with depth in deep‐sea bivalves. Evolution, 59(7), 1479–1491. https://doi.org/10.1111/j.0014-3820.2005.tb01797.x PubMed DOI
Farrar, D. (1978). Problems in the identity and origin of the Appalachian Vittaria gametophyte, a sporophyteless fern of the eastern United States. American Journal of Botany, 65(1), 1–12. https://doi.org/10.2307/2442547 DOI
Farrar, D. (1990). Species and evolution in asexually reproducing independent fern gametophytes. Systematic Botany, 15(1), 98–111. https://doi.org/10.2307/2419020 DOI
Farrar, D. (1992). Trichomanes intricatum: The independent Trichomanes gametophyte in the eastern United States. American Fern Journal, 82(2), 68–74. https://doi.org/10.2307/1547382 DOI
Farrar, D. (1998). The tropical flora of rockhouse cliff formations in the eastern United States. Journal of the Torrey Botanical Society, 125(2), 91–108. https://doi.org/10.2307/2997297 DOI
Farrar, D. , & Mickel, J. (1991). Vittaria appalachiana: A name for the “Appalachian gametophyte”. American Fern Journal, 81(3), 69–75. https://doi.org/10.2307/1547574 DOI
Farrell, B. D. , Sequeira, A. S. , O'Meara, B. C. , Normark, B. B. , Chung, J. H. , & Jordal, B. H. (2001). The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution, 55(10), 2011–2027. https://doi.org/10.1111/j.0014-3820.2001.tb01318.x PubMed DOI
Filippini, M. , Buesing, N. , Bettarel, Y. , Sime‐Ngando, T. , & Gessner, M. O. (2006). Infection paradox: High abundance but low impact of freshwater benthic viruses. Applied and Environmental Microbiology, 72(7), 4893–4898. https://doi.org/10.1128/AEM.00319-06 PubMed DOI PMC
Fischer, O. , & Schmid‐Hempel, P. (2005). Selection by parasites may increase host recombination frequency. Biology Letters, 1(2), 193–195. https://doi.org/10.1098/rsbl.2005.0296 PubMed DOI PMC
Fisher, R. (2003). The genetical theory of natural selection: A complete, Variorum ed. New York, NY: Oxford University Press.
Fisher, U. R. , Wieltschnig, C. , Kirschner, A. K. T. , & Velimirov, B. (2003). Does virus‐induced lysis contribute significantly to bacterial mortality in the oxygenated sediment layer of shallow oxbow lakes? Applied and Environmental Microbiology, 69(9), 5281–5289. https://doi.org/10.1128/AEM.69.9.5281-5289.2003 PubMed DOI PMC
Flegr, J. (2002). Was Lysenko (partly) right? Michurinist biology in the view of modern plant physiology and genetics. Rivista Di Biologia‐Biology Forum, 95, 259–271. PubMed
Flegr, J. (2008). Frozen evolution: Or, that's not the way it is, mr. Darwin ‐ Farewell to selfish gene. USA: Createspace Independent Pub.
Flegr, J. (2010). Elastic, not plastic species: Frozen plasticity theory and the origin of adaptive evolution in sexually reproducing organisms. Biology Direct, 5(1), 2 https://doi.org/10.1186/1745-6150-5-2 PubMed DOI PMC
Flegr, J. (2013). Microevolutionary, macroevolutionary, ecological and taxonomical implications of punctuational theories of adaptive evolution. Biology Direct, 8, 1 https://doi.org/10.1186/1745-6150-8-1 PubMed DOI PMC
Fuhrman, J. A. (1999). Marine viruses and their biogeochemical and ecological effects. Nature, 399(6736), 541–548. https://doi.org/10.1038/21119 PubMed DOI
Garcia, C. , & Toro, M. (1992). Sib competition in Tribolium: A test of the elbow‐room model. Heredity, 68(6), 529–536. https://doi.org/10.1038/hdy.1992.75 DOI
Gladyshev, E. , & Meselson, M. (2008). Extreme resistance of bdelloid rotifers to ionizing radiation. Proceedings of the National Academy of Sciences of the United States of America, 105(13), 5139–5144. https://doi.org/10.1073/pnas.0800966105 PubMed DOI PMC
Glesener, R. , & Tilman, D. (1978). Sexuality and the components of environmental uncertainty: Clues from geographic parthenogenesis in terrestrial animals. The American Naturalist, 112(986), 659–673. https://doi.org/10.1086/283308 DOI
Gorelick, R. , & Carpinone, J. (2009). Origin and maintenance of sex: The evolutionary joys of self sex. Biological Journal of the Linnean Society, 98(4), 707–728. https://doi.org/10.1111/j.1095-8312.2009.01334.x DOI
Griffiths, H. , & Butlin, R. (1995). A timescale for sex versus parthenogenesis: Evidence from subfossil ostracods. Proceedings of the Royal Society of London Series B‐Biological Sciences, 260(1357), 65–71. https://doi.org/10.1098/rspb.1995.0060 DOI
Hamilton, W. , Axelrod, R. , & Tanese, R. (1990). Sexual reproduction as an adaptation to resist parasites (a review). Proceedings of the National Academy of Sciences of the United States of America, 87(9), 3566–3573. https://doi.org/10.1073/pnas.87.9.3566 PubMed DOI PMC
Heethoff, M. , Domes, K. , Laumann, M. , Maraun, M. , Norton, R. A. , & Scheu, S. (2007). High genetic divergences indicate ancient separation of parthenogenetic lineages of the oribatid mite Platynothrus peltifer (Acari, Oribatida). Journal of Evolutionary Biology, 20(1), 392–402. https://doi.org/10.1111/j.1420-9101.2006.01183.x PubMed DOI
Hörandl, E. (2006). The complex causality of geographical parthenogenesis. New Phytologist, 171(3), 525–538. PubMed
Hörandl, E. (2009). Geographical parthenogenesis: Opportunities for asexuality In Schön I., Martens K., & van Dijk P. (Eds.), Lost sex: The evolutionary biology of parthenogenesis (pp. 161–186). Dordrecht: Springer Science+Business Media B.V; https://doi.org/10.1007/978-90-481-2770-2 DOI
Issel, R. (1900). Saggio sulla fauna termale italiana, Nota I. Atti della Reale Accademia delle scienze di Torino, 36, 53–73.
Issel, R. (1901). Saggio sulla fauna termale italiana, Nota II. Atti della Reale Accademia delle scienze di Torino, 36, 265–277.
Jablonski, D. (1986). Background and mass extinctions: The alternation of macroevolutionary regimes. Science, 231(4734), 129–133. https://doi.org/10.1126/science.231.4734.129 PubMed DOI
Jana, B. , & Sarkar, H. (1971). The limnology of “Swetganga”—A thermal spring of Bakreswar, West Bengal, India. Hydrobiologia, 37(1), 33–47. https://doi.org/10.1007/BF00016366 DOI
Janiec, K. (1996). The comparison of freshwater invertebrates of Spitsbergen (Arctic) and King George Island (Antarctic). Polish Polar Research, 17(3–4), 173–202.
Janko, K. , Drozd, P. , & Eisner, J. (2011). Do clones degenerate over time? Explaining the genetic variability of asexuals through population genetic models. Biology Direct, 6(1). PubMed PMC
Janko, K. , Drozd, P. , Flegr, J. , & Pannell, J. (2008). Clonal turnover versus clonal decay: A null model for observed patterns of asexual longevity, diversity and distribution. Evolution, 62(5), 1264–1270. https://doi.org/10.1111/j.1558-5646.2008.00359.x PubMed DOI
Jorgensen, A. , Mobjerg, N. , & Kristensen, R. (2007). Molecular study of the tardigrade Echiniscus testudo (Echiniscidae) reveals low DNA sequence diversity over a large geographical area. Journal of Limnology, 66(1s), 77–83. https://doi.org/10.4081/jlimnol.2007.s1.77 DOI
Judson, O. P. , & Normark, B. B. (1996). Ancient asexual scandals. Trends in Ecology & Evolution, 11(2), 41–46. https://doi.org/10.1016/0169-5347(96)81040-8 PubMed DOI
Jungblut, A. D. , Vincent, W. F. , & Lovejoy, C. (2012). Eukaryotes in Arctic and Antarctic cyanobacterial mats. Fems Microbiology Ecology, 82(2), 416–428. https://doi.org/10.1111/j.1574-6941.2012.01418.x PubMed DOI
Kaltz, O. , & Bell, G. (2002). The ecology and genetics of fitness in Chlamydomonas. XII. Repeated sexual episodes increase rates of adaptation to novel environments. Evolution, 56(9), 1743–1753. https://doi.org/10.1111/j.0014-3820.2002.tb00188.x PubMed DOI
Karasawa, S. , & Hijii, N. (2008). Vertical stratification of oribatid (Acari: Oribatida) communities in relation to their morphological and life‐history traits and tree structures in a subtropical forest in Japan. Ecological Research, 23(1), 57–69. https://doi.org/10.1007/s11284-007-0337-4 DOI
Keightley, P. , & Otto, S. (2006). Interference among deleterious mutations favours sex and recombination in finite populations. Nature, 443(7107), 89–92. https://doi.org/10.1038/nature05049 PubMed DOI
Kethley, J. (1989). Occurrence of Pomerantzia kethleyi (Acari: Prostigmata: Pomerantziidae) in Illinois and Minnesota. Great Lakes Entomologist, 22(2), 101.
Klie, V. (1939). Zur Kenntnis von Cypris balnearia Moniez (Ostracoda) . Zoologische Anzeiger, 126, 298–302.
Koella, J. (1993). Ecological correlates of chiasma frequency and recombination index of plants. Biological Journal of the Linnean Society, 48(3), 227–238. https://doi.org/10.1111/j.1095-8312.1993.tb00889.x DOI
Kondrashov, A. (1982). Selection against harmful mutations in large sexual and asexual populations. Genetical Research, 40(03), 325–332. https://doi.org/10.1017/S0016672300019194 PubMed DOI
Kondrashov, A. (1993). Classification of hypotheses on the advantage of amphimixis. Journal of Heredity, 84(5), 372–387. https://doi.org/10.1093/oxfordjournals.jhered.a111358 PubMed DOI
Koste, W. , & Shiel, R. J. (1986). Rotifera from Australian inland waters. I. Bdelloidea (Rotifera: Digononta). Australian Journal of Marine and Freshwater Research, 37(6), 765–792. https://doi.org/10.1071/MF9860765 DOI
Krivolutsky, D. , & Druk, A. (1986). Fossil oribatid mites. Annual Review of Entomology, 31(1), 533–545. https://doi.org/10.1146/annurev.en.31.010186.002533 DOI
Külköylüoğlu, O. , Meisch, C. , & Rust, R. (2003). Thermopsis thermophila n. gen. n. sp. from hot springs in Nevada, USA (Crustacea, Ostracoda). Hydrobiologia, 499(1–3), 113–123.
Külköylüoğlu, O. , & Vinyard, G. (2000). Distribution and ecology of freshwater Ostracoda (Crustacea) collected from springs of Nevada, Idaho, and Oregon: A preliminary study. Western North American Naturalist, 60(3), 291–303.
Ladle, R. , Johnstone, R. , & Judson, O. (1993). Coevolutionary dynamics of sex in a metapopulation: Escaping the Red Queen. Proceedings of the Royal Society of London Series B‐Biological Sciences, 253(1337), 155–160. https://doi.org/10.1098/rspb.1993.0096 DOI
Lavelle, P. , & Spain, A. V. (2003). Soil ecology. New York, USA: Kluwer Academic Publishers.
Law, J. , & Crespi, B. (2002a). Recent and ancient asexuality in Timema walkingsticks. Evolution, 56(8), 1711–1717. https://doi.org/10.1111/j.0014-3820.2002.tb01484.x PubMed DOI
Law, J. , & Crespi, B. (2002b). The evolution of geographic parthenogenesis in Timema walking‐sticks. Molecular Ecology, 11(8), 1471–1489. https://doi.org/10.1046/j.1365-294X.2002.01547.x PubMed DOI
Lehtonen, J. , Jennions, M. , & Kokko, H. (2012). The many costs of sex. Trends in Ecology & Evolution, 27(3), 172–178. https://doi.org/10.1016/j.tree.2011.09.016 PubMed DOI
Lewis, J. , & Wolpert, L. (1979). Diploidy, evolution and sex. Journal of Theoretical Biology, 78(3), 425–438. https://doi.org/10.1016/0022-5193(79)90341-2 PubMed DOI
Li, H. , & Reynolds, J. (1995). On definition and quantification of heterogeneity. Oikos, 73(2), 280–284. https://doi.org/10.2307/3545921 DOI
Mantovani, B. , Passamonti, M. , & Scali, V. (2001). The mitochondrial cytochrome oxidase II gene in Bacillus stick insects: Ancestry of hybrids, androgenesis, and phylogenetic relationships. Molecular Phylogenetics and Evolution, 19(1), 157–163. https://doi.org/10.1006/mpev.2000.0850 PubMed DOI
Maraun, M. , Erdmann, G. , Schulz, G. , Norton, R. A. , Scheu, S. , & Domes, K. (2009). Multiple convergent evolution of arboreal life in oribatid mites indicates the primacy of ecology. Proceedings of the Royal Society B‐Biological Sciences, 276(1671), 3219–3227. https://doi.org/10.1098/rspb.2009.0425 PubMed DOI PMC
Maraun, M. , Norton, R. A. , Ehnes, R. B. , Scheu, S. , & Erdmann, G. (2012). Positive correlation between density and parthenogenetic reproduction in oribatid mites (Acari) supports the structured resource theory of sexual reproduction. Evolutionary Ecology Research, 14(3), 311–323.
Martens, K. (1998). Sex and ostracods: A new synthesis In Martens K. (Ed.), Sex and parthenogenesis: Evolutionary ecology of reproductive modes in non‐marine ostracds (pp. 295–321). Leiden: Backhuys.
Martens, K. , Horne, D. , & Griffiths, H. (1998). Age and diversity of non‐marine ostracods In Martens K. (Ed.), Sex and Parthenogenesis: Evolutionary Ecology of Reproductive Modes in Non‐Marine Ostracds (pp. 37–55). Leiden: Backhuys.
Martens, K. , & Schön, I . (2000). The importance of habitat stability for the prevalence of sexual reproduction In Minoura K. (Ed.), Lake Baikal: A mirror in time and space for understanding global change processes yokohama symposium 1998. (pp. 324–330). Amsterdam, the Netherlands: Elsevier.
Martens, K. , Schön, I. , Meisch, C. , & Horne, D. (2008). Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia, 595(1), 185–193.
Maynard Smith, J. (1978). The evolution of sex. Cambridge, UK: Cambridge University Press.
Maynard Smith, J. (1993). The theory of evolution. Cambridge, UK: Cambridge University Press.
McDermott, T. , & Skorupa, D. (2011). Microbiology of Serpentine Hot Springs, Alaska. Bozeman: Montana State University.
McDonald, J. H. (2014). Handbook of biological statistics, 3rd ed Baltimore, USA: Sparky House Publishing.
McLay, C. (1978). Comparative observations on the ecology of four species of ostracods living in a temporary freshwater puddle. Canadian Journal of Zoology, 56(4), 663–675. https://doi.org/10.1139/z78-094 DOI
de Meeus, T. , Prugnolle, F. , & Agnew, P. (2007). Asexual reproduction: Genetics and evolutionary aspects. Cellular and Molecular Life Sciences, 64(11), 1355–1372. https://doi.org/10.1007/s00018-007-6515-2 PubMed DOI PMC
Meirmans, S. , & Strand, R. (2010). Why are there so many theories for sex, and what do we do with them? Journal of Heredity, 101(1s), S3–S12. https://doi.org/10.1093/jhered/esq021 PubMed DOI
Mikheyev, A. S. , Mueller, U. G. , & Abbot, P. (2006). Cryptic sex and many‐to‐one colevolution in the fungus‐growing ant symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 103(28), 10702–10706. https://doi.org/10.1073/pnas.0601441103 PubMed DOI PMC
Mobjerg, N. , Halberg, K. , Jorgensen, A. , Persson, D. , Bjorn, M. , Ramlov, H. , & Kristensen, R. (2011). Survival in extreme environments – on the current knowledge of adaptations in tardigrades. Acta Physiologica, 202(3), 409–420. https://doi.org/10.1111/j.1748-1716.2011.02252.x PubMed DOI
Moniez, R. (1893). Description d'une nouvelle espèce de Cypris vivant dans les eaux thermales du Hammam‐Meskhoutine. Bulletin de la Société zoologique de France, 18, 140–142.
Morton, J. E. , Boney, A. D. , & Corner, E. D. S. (1957). The adaptations of Lasaea rubra (Montagu), a small intertidal lamellibranch. Journal of the Marine Biological Association of the United Kingdom, 36(02), 383–405. https://doi.org/10.1017/S0025315400016878 DOI
Mueller, U. G. (2002). Ant versus fungus versus mutualism: ant–cultivar conflict and the deconstruction of the attine ant–fungus symbiosis. American Naturalist, 160(S4), S67–S98. https://doi.org/10.1086/342084 PubMed DOI
Mueller, U. G. , Rehner, S. A. , & Schultz, T. R. (1998). The evolution of agriculture in ants. Science, 281(5385), 2034–2038. https://doi.org/10.1126/science.281.5385.2034 PubMed DOI
Muller, H. (1932). Some genetic aspects of sex. The American Naturalist, 66(703), 118–138. https://doi.org/10.1086/280418 DOI
Muller, H. (1964). The relation of recombination to mutational advance. Mutation Research, 1(1), 2–9. https://doi.org/10.1016/0027-5107(64)90047-8 PubMed DOI
Murphy, S. L. , & Tate, R. L. (1996). Bacterial movement through soil In Stozsky G., & Bollag J. M. (Eds.), Soil biochemistry, Vol. 9 (pp. 253–286). New York: Marcel Dekker.
Neher, D. , Lewins, S. , Weicht, T. , & Darby, B. (2009). Microarthropod communities associated with biological soil crusts in the Colorado Plateau and Chihuahuan deserts. Journal of Arid Environments, 73(6), 672–677. https://doi.org/10.1016/j.jaridenv.2009.01.013 DOI
Neiman, M. , Jokela, J. , & Lively, C. (2005). Variation in asexual lineage age in Potamopyrgus antipodarum, a New Zealand snail. Evolution, 59(9), 1945–1952. https://doi.org/10.1111/j.0014-3820.2005.tb01064.x PubMed DOI
Neiman, M. , & Koskella, B. (2009). Sex and the Red queen In Schön I., Martens K., & van Dijk P. (Eds.), Lost sex: The evolutionary biology of parthenogenesis (pp. 133–159). Dordrecht: Springer Science+Business Media B.V; https://doi.org/10.1007/978-90-481-2770-2 DOI
Neiman, M. , Meirmans, S. , Meirmans, P. , Schlichting, C. , & Mousseau, T. (2009). What can asexual lineage age tell us about the maintenance of sex? Annals of the New York Academy of Sciences, 1168(1), 185–200. https://doi.org/10.1111/j.1749-6632.2009.04572.x PubMed DOI
Neiman, M. , & Schwander, T. (2011). Using parthenogenetic lineages to identify advantages of sex. Evolutionary Biology, 38(2), 115–123. https://doi.org/10.1007/s11692-011-9113-z DOI
Normark, B. , Judson, O. , & Moran, N. (2003). Genomic signatures of ancient asexual lineages. Biological Journal of the Linnean Society, 79(1), 69–84. https://doi.org/10.1046/j.1095-8312.2003.00182.x DOI
Norton, R . (1994). Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata In Houck M. (Ed.), Mites. Ecological and evolutionary analyses of life‐history patterns (pp. 99–135). New York, USA: Chapman & Hall.
Norton, R. , & Behan‐Pelletier, V. (2009). Suborder Oribatida In Krantz G., & Walter D. (Eds.), A manual of acarology (pp. 430–564). Lubbock: Texas Tech University Press.
Norton, R. , Kethley, J. , Johnston, D. , & O'Connor, B. (1993). Phylogenetic perspectives on genetic systems and reproductive modes of mites In Wrensch D., & Ebbert M. (Eds.), Evolution and diversity of sex ratio in insects and mites (pp. 8–99). New York: Chapman and Hall; https://doi.org/10.1007/978-1-4684-1402-8 DOI
Norton, R. , & Palmer, S. (1991). The distribution, mechanisms and evolutionary significance of parthenogenesis in oribatid mites In Schuster R., & Murphy P. (Eds.), The Acari: Reproduction, development and life‐history strategies (pp. 107–136). London: Chapman and Hall; https://doi.org/10.1007/978-94-011-3102-5 DOI
Nunney, L. (1989). The maintenance of sex by group selection. Evolution, 43(2), 245–257. https://doi.org/10.1111/j.1558-5646.1989.tb04225.x PubMed DOI
Ó Foighil, D. (1988). Random mating and planktotrophic larval development in the brooding hermaphroditic clam Lasaea australis (Lamarck, 1818). Veliger, 31(3–4), 214–221.
Ó Foighil, D. (1989). Planktotrophic larval development is associated with a restricted geographic range in Lasaea, a genus of brooding, hermaphroditic bivalves. Marine Biology, 103(3), 349–358. https://doi.org/10.1007/BF00397269 DOI
Ó Foighil, D. , & Eernisse, D. (1988). Geographically widespread, non‐hybridizing, sympatric strains of the hermaphroditic, brooding clam Lasaea in the northeastern Pacific Ocean. Biological Bulletin, 175(2), 218–229. https://doi.org/10.2307/1541562 DOI
Ó Foighil, D. , & Smith, M. (1995). Evolution of asexuality in the cosmopolitan marine clam Lasaea . Evolution, 49(1), 140–150. https://doi.org/10.1111/j.1558-5646.1995.tb05966.x PubMed DOI
Ó Foighil, D. , & Thiriot‐Quievreux, C. (1999). Sympatric Australian Lasaea species (Mollusca: Bivalvia) differ in their ploidy levels, reproductive modes and developmental modes. Zoological Journal of the Linnean Society, 127(4), 477–494. https://doi.org/10.1111/j.1096-3642.1999.tb01382.x DOI
Oconnor, B. (2009). Cohort Astigmatina In Krantz G., & Walter D. (Eds.), A manual of acarology (pp. 565–657). Lubbock: Texas Tech University Press.
Otto, S. (2009). The Evolutionary Enigma of Sex. American Naturalist, 174(S1), S1–S14. https://doi.org/10.1086/599084 PubMed DOI
Otto, S. , & Lenormand, T. (2002). Resolving the paradox of sex and recombination. Nature Reviews Genetics, 3(4), 252–261. https://doi.org/10.1038/nrg761 PubMed DOI
Paul, E. A. (2007). Soil microbiology, ecology and biochemistry. USA: Academic Press.
Pax, F. , & Wulfert, K. (1941). Die Rädertiere der deutschen Thermen. Lotos, 88, 246–262.
Pejler, B. (1995). Relation to habitat in rotifers. Hydrobiologia, 313(1), 267–278. https://doi.org/10.1007/BF00025959 DOI
Pieri, V. , Martens, K. , Stoch, F. , & Rossetti, G. (2009). Distribution and ecology of non‐marine ostracods (Crustacea, Ostracoda) from Friuli Venezia Giulia (NE Italy). Journal of Limnology, 68(1), 1–15. https://doi.org/10.4081/jlimnol.2009.1 DOI
Pilato, G. (1979). Correlations between cryptobiosis and other biological characteristics in some soil animals. Italian Journal of Zoology, 46(4), 319–332.
Pinto, R. , Rocha, C. , & Martens, K. (2005). On new terrestrial ostracods (Crustacea, Ostracoda) from Brazil, primarily from Sao Paulo State. Zoological Journal of the Linnean Society, 145(2), 145–173. https://doi.org/10.1111/j.1096-3642.2005.00185.x DOI
Poinar, G. O. , & Ricci, C. (1992). Bdelloid rotifers in Dominican amber: Evidence for parthenogenetic continuity. Experientia, 48(4), 408–410. https://doi.org/10.1007/BF01923444 DOI
Pokorný, V . (1965). Principles of zoological micropalaeontology: Vol. 2 International series of monographs on earth sciences. Oxford, UK: Pergamon Press.
Pongratz, N. , Storhas, M. , Carranza, S. , & Michiels, N. (2003). Phylogeography of competing sexual and parthenogenetic forms of a freshwater flatworm: Patterns and explanations. Bmc Evolutionary Biology, 3(1). PubMed PMC
Pontecorvo, D. (1954). Mitotic recombination in the genetic systems of filamentous fungi. Caryologia, 6, 192–200.
Quesada, C. A. , Miranda, A. C. , Hodnett, M. G. , Santos, A. J. B. , Miranda, H. S. , & Breyer, L. M. (2004). Seasonal and depth variation of soil moisture in a burned open savanna (campo sujo) in central Brazil. Ecological Applications, 14(4s), 33–41. https://doi.org/10.1890/01-6017 DOI
R_Core_Team . (2014). R: A language and environment for statistical computing, version 3.1.2. Vienna, Austria: R Foundation for Statistical Computing; Retrieved from: https://www.r-project.org (accessed 23 may 2016).
van Raay, T. , & Crease, T. (1995). Mitochondrial DNA diversity in an apomictic Daphnia complex from the Canadian High Arctic. Molecular Ecology, 4(2), 149–161. https://doi.org/10.1111/j.1365-294X.1995.tb00204.x PubMed DOI
Ranta, E. (1979). Population biology of Darwinula stevensoni (Crustacea, Ostracoda) in an oligotrophic lake. Annales Zoologici Fennici, 16(1), 28–35.
Redecker, D. , Kodner, R. , & Graham, L. (2000). Glomalean fungi from the Ordovician. Science, 289(5486), 1920–1921. https://doi.org/10.1126/science.289.5486.1920 PubMed DOI
Remy, W. , Taylor, T. , Hass, H. , & Kerp, H. (1994). Four hundred‐million‐year‐old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences of the United States of America, 91(25), 11841–11843. https://doi.org/10.1073/pnas.91.25.11841 PubMed DOI PMC
Renaut, S. , Replansky, T. , Heppleston, A. , & Bell, G. (2006). The ecology and genetics of fitness in Chlamydomonas. XIII. The fitness of long‐term sexual and asexual populations in benign environments. Evolution, 60(11), 2272–2279. https://doi.org/10.1111/j.0014-3820.2006.tb01864.x PubMed DOI
Retrum, J. , Hasiotis, S. , & Kaesler, R. (2011). Neoichnological experiments with the freshwater ostracode Heterocypris incongruens: Implications for reconstructing aquatic settings. Palaios, 26(8), 509–518. https://doi.org/10.2110/palo.2010.p10-110r DOI
Ricci, C. (1987). Ecology of bdelloids: How to be successful. Hydrobiologia, 147(1), 117–127. https://doi.org/10.1007/BF00025734 DOI
Ricci, C. (2001). Dormancy patterns in rotifers. Hydrobiologia, 446(1), 1–11. https://doi.org/10.1023/A:1017548418201 DOI
Ricci, C. , & Balsamo, M. (2000). The biology and ecology of lotic rotifers and gastrotrichs. Freshwater Biology, 44(1), 15–28. https://doi.org/10.1046/j.1365-2427.2000.00584.x DOI
Ricci, C. , & Perletti, F. (2006). Starve and survive: Stress tolerance and life‐history traits of a bdelloid rotifer. Functional Ecology, 20(2), 340–346. https://doi.org/10.1111/j.1365-2435.2006.01082.x DOI
Rohde, K. (1986). Differences in species diversity of monogenea between the pacific and atlantic oceans. Hydrobiologia, 137(1), 21–28. https://doi.org/10.1007/BF00004168 DOI
Rohde, K. , & Heap, M. (1998). Latitudinal differences in species and community richness and in community structure of metazoan endo‐ and ectoparasites of marine teleost fish. International Journal For Parasitology, 28(3), 461–474. https://doi.org/10.1016/S0020-7519(97)00209-9 PubMed DOI
Rosewater, J. (1975). An annotated list of the marine mollusks of Ascension Island, South Atlantic Ocean. Washington: Smithsonian Institution Press.
Rossetti, G. , Pinto, R. , & Martens, K. (2011). Description of a new genus and two new species of Darwinulidae (Crustacea, Ostracoda), from Christmas Island (Indian Ocean) with some considerations on the morphological evolution of ancient asexuals. Belgian Journal of Zoology, 141(2), 55–74.
Rossi, V. , Todeschi, E. , Gandolfi, A. , Invidia, M. , & Menozzi, P. (2002). Hypoxia and starvation tolerance in individuals from a riverine and a lacustrine population of Darwinula stevensoni (Crustacea: Ostracoda). Archiv Fur Hydrobiologie, 154(1), 151–171. https://doi.org/10.1127/archiv-hydrobiol/154/2002/151 DOI
Roughgarden, J. (1991). The evolution of sex. American Naturalist, 138(4), 934–953. https://doi.org/10.1086/285261 DOI
Sandoval, C. , Carmean, D. , & Crespi, B. (1998). Molecular phylogenetics of sexual and parthenogenetic Timema walking‐sticks. Proceedings of the Royal Society B‐Biological Sciences, 265(1396), 589–595. https://doi.org/10.1098/rspb.1998.0335 DOI
Scheu, S. , & Drossel, B. (2007). Sexual reproduction prevails in a world of structured resources in short supply. Proceedings of the Royal Society B‐Biological Sciences, 274(1614), 1225–1231. https://doi.org/10.1098/rspb.2007.0040 PubMed DOI PMC
Scholl, K. , & Devetter, M. (2013). Soil rotifers new to Hungary from the Gemenc floodplain (Duna‐Drava National Park, Hungary). Turkish Journal of Zoology, 37(4), 406–412.
Schön, I. , Butlin, R. , Griffiths, H. , & Martens, K. (1998). Slow molecular evolution in an ancient asexual ostracod. Proceedings of the Royal Society of London Series B‐Biological Sciences, 265(1392), 235–242. https://doi.org/10.1098/rspb.1998.0287 DOI
Schön, I. , & Martens, K. (2004). Adaptive, pre‐adaptive and non‐adaptive components of radiations in ancient lakes: A review. Organisms Diversity & Evolution, 4(3), 137–156. https://doi.org/10.1016/j.ode.2004.03.001 DOI
Schön, I. , Martens, K. , & Rossi, V. (1996). Ancient asexuals: Scandal or artifact? Trends in Ecology and Evolution, 11(7), 296–297. https://doi.org/10.1016/0169-5347(96)81125-6 PubMed DOI
Schön, I. , Rossetti, G. , & Martens, K. (2009). Darwinulid ostracods: Ancient asexual scandals or scandalous gossip? In Schon I., Martens K. & Van Dijk P. (Eds.), Lost sex: The evolutionary biology of parthenogenesis (pp. 217–240), Dordrecht, the Netherlands: Springer Science+Business Media B.V; https://doi.org/10.1007/978-90-481-2770-2 DOI
Schurko, A. , Neiman, M. , & Logsdon, J. (2009). Signs of sex: What we know and how we know it. Trends in Ecology & Evolution, 24(4), 208–217. https://doi.org/10.1016/j.tree.2008.11.010 PubMed DOI
Schwander, T. (2016). Evolution: The end of an ancient asexual scandal. Current Biology, 26(6), R233–R235. https://doi.org/10.1016/j.cub.2016.01.034 PubMed DOI
Schwander, T. , & Crespi, B. J. (2009). Twigs on the tree of life? Neutral and selective models for integrating macroevolutionary patterns with microevolutionary processes in the analysis of asexuality. Molecular Ecology, 18(1), 28–42. https://doi.org/10.1111/j.1365-294X.2008.03992.x PubMed DOI
Schwander, T. , Henry, L. , & Crespi, B. (2011). Molecular evidence for ancient asexuality in Timema stick insects. Current Biology, 21(13), 1129–1134. https://doi.org/10.1016/j.cub.2011.05.026 PubMed DOI
Sharp, N. , & Otto, S. (2016). Evolution of sex: Using experimental genomics to select among competing theories. BioEssays, 38(8), 751–757. https://doi.org/10.1002/bies.201600074 PubMed DOI
Sheldon, P. (1996). Plus ça change—a model for stasis and evolution in different environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 127(1–4), 209–227. https://doi.org/10.1016/S0031-0182(96)00096-X DOI
Siepel, H. (1994). Life‐history tactics of soil microarthropods. Biology and Fertility of Soils, 18(4), 263–278. https://doi.org/10.1007/BF00570628 DOI
Siepel, H. (1996). Biodiversity of soil microarthropods: The filtering of species. Biodiversity & Conservation, 5(2), 251–260. https://doi.org/10.1007/BF00055834 DOI
Smith, J. (1980). Selection for recombination in a polygenic model. Genetical Research, 35(03), 269–277. https://doi.org/10.1017/S0016672300014130 PubMed DOI
Smith, R. , Kamiya, T. , & Horne, D. (2006). Living males of the ‘ancient asexual’ Darwinulidae (Ostracoda: Crustacea). Proceedings of the Royal Society B‐Biological Sciences, 273(1593), 1569–1578. https://doi.org/10.1098/rspb.2005.3452 PubMed DOI PMC
Sohlenius, B. , & Bostrom, S. (2005). The geographic distribution of metazoan microfauna on East Antarctic nunataks. Polar Biology, 28(6), 439–448. https://doi.org/10.1007/s00300-004-0708-z DOI
Song, Y. , Drossel, B. , & Scheu, S. (2011). Tangled Bank dismissed too early. Oikos, 120(11), 1601–1607. https://doi.org/10.1111/j.1600-0706.2011.19698.x DOI
Speijer, D. , Lukes, J. , & Elias, M. (2015). Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proceedings of the National Academy of Sciences of the United States of America, 112(29), 8827–8834. https://doi.org/10.1073/pnas.1501725112 PubMed DOI PMC
Sterrer, W. (2002). On the origin of sex as vaccination. Journal of Theoretical Biology, 216(4), 387–396. https://doi.org/10.1006/jtbi.2002.3008 PubMed DOI
Suttle, C. S. (2005). Viruses in the sea. Nature, 437(7057), 356–361. https://doi.org/10.1038/nature04160 PubMed DOI
Suttle, C. S. (2007). Marine viruses—major players in the global ecosystem. Nature Reviews Microbiology, 5(10), 801–812. https://doi.org/10.1038/nrmicro1750 PubMed DOI
Suttle, C. S. , Chan, A. M. , & Cottrell, M. T. (1990). Infection of phytoplankton by viruses and reduction of primary productivity. Nature, 347(6292), 467–469. https://doi.org/10.1038/347467a0 DOI
Taylor, D. , Ó Foighil, D. (2000). Transglobal comparisons of nuclear and mitochondrial genetic structure in a marine polyploid clam (Lasaea, Lasaeidae). Heredity, 84(3), 321–330. https://doi.org/10.1046/j.1365-2540.2000.00673.x PubMed DOI
Tobler, M. , Schlupp, I. , de Leon, F. , Glaubrecht, M. , & Plath, M. (2007). Extreme habitats as refuge from parasite infections? Evidence from an extremophile fish. Acta Oecologica, 31(3), 270–275. https://doi.org/10.1016/j.actao.2006.12.002 DOI
Tokeshi, M. (1999). Species coexistence: Ecological and evolutionary perspectives. Oxford, UK: Blackwell Science Ltd.
Toman, J. , & Flegr, J. (2017). Stability‐based sorting: The forgotten process behind (not only) biological evolution. Journal of Theoretical Biology, 435, 29–41. https://doi.org/10.1016/j.jtbi.2017.09.004 PubMed DOI
Tudorancea, C. , Green, R. , & Huebner, J. (1979). Structure, dynamics and production of the benthic fauna in Lake Manitoba. Hydrobiologia, 64(1), 59–95. https://doi.org/10.1007/BF00015452 DOI
Turgeon, J. , & Hebert, P. (1994). Evolutionary interactions between sexual and all‐female taxa of Cyprinotus (Ostracoda: Cyprididae). Evolution, 48(6), 1855–1865. https://doi.org/10.1111/j.1558-5646.1994.tb02219.x PubMed DOI
Van Dijk, P. (2009). Apomixis: Basics for non‐botanists In Schön I., Martens K., & van Dijk P. (Eds.), Lost sex: The evolutionary biology of parthenogenesis (pp. 47–62). Dordrecht: Springer Science+Business Media B.V; https://doi.org/10.1007/978-90-481-2770-2 DOI
Vanhaecke, P. , Siddall, S. , & Sorgeloos, P. (1984). International study on Artemia. II. Combined effects of temperature and salinity on the survival of Artemia of various geographical origin. Journal of Experimental Marine Biology and Ecology, 80(3), 259–275. https://doi.org/10.1016/0022-0981(84)90154-0 DOI
Vrijenhoek, R. (1984). The evolution of clonal diversity in Poeciliopsis In Turner B. (Ed.), Evolutionary genetics of fishes (pp. 399–429). New York: Plenum Press; https://doi.org/10.1007/978-1-4684-4652-4 DOI
Vrijenhoek, R. , & Parker, E . (2009). Geographical parthenogenesis: General purpose genotypes and frozen niche variation In Schön I., Martens K. & van Dijk P. (Eds.), Lost sex: The evolutionary biology of parthenogenesis (pp. 99–131). Dordrecht, the Netherlands: Springer Science+Business Media B.V. https://doi.org/10.1007/978-90-481-2770-2 DOI
Wallwork, J. A. (1970). Ecology of soil animals. London, UK: McGRAW‐HILL Publishing Company Limited.
Walter, D. (2001). Endemism and cryptogenesis in ‘segmented’ mites: A review of Australian Alicorhagiidae, Terpnacaridae, Oehserchestidae and Grandjeanicidae (Acari: sarcoptiformes). Australian Journal of Entomology, 40(3), 207–218. https://doi.org/10.1046/j.1440-6055.2001.00226.x DOI
Walter, D. (2009). Suborder Endeostigmata In Krantz G., & Walter D. (Eds.), A manual of acarology (pp. 421–429). Lubbock: Texas Tech University Press.
Walter, D. , Lindquist, E. , Smith, I. , Cook, D. , & Krantz, G. (2009). Order Trombidiformes In Krantz G., & Walter D. (Eds.), A manual of acarology (pp. 233–420). Lubbock: Texas Tech University Press.
Welch, D. , Ricci, C. , & Meselson, M. (2009). Bdelloid rotifers: Progress in understanding the success of an evolutionary scandal In Schön I., Martens K., & van Dijk P. (Eds.), Lost sex: The evolutionary biology of parthenogenesis (pp. 259–279). Dordrecht: Springer Science+Business Media B.V; https://doi.org/10.1007/978-90-481-2770-2 DOI
West, S. , Lively, C. , & Read, A. (1999). A pluralist approach to sex and recombination. Journal of Evolutionary Biology, 12(6), 1003–1012. https://doi.org/10.1046/j.1420-9101.1999.00119.x DOI
Wickstrom, C. , & Castenholz, R. (1985). Dynamics of cyanobacterial and ostracod interactions in an Oregon hot spring. Ecology, 66(3), 1024–1041. https://doi.org/10.2307/1940563 DOI
Williams, G. C. (1975). Sex and evolution. Princeton, NJ: Princeton University Press.
Wilson, C. (2011). Desiccation‐tolerance in bdelloid rotifers facilitates spatiotemporal escape from multiple species of parasitic fungi. Biological Journal of the Linnean Society, 104(3), 564–574. https://doi.org/10.1111/j.1095-8312.2011.01737.x DOI
Wilson, C. , & Sherman, P. (2010). Anciently asexual bdelloid rotifers escape lethal fungal parasites by drying up and blowing away. Science, 327(5965), 574–576. https://doi.org/10.1126/science.1179252 PubMed DOI
Wommack, K. E. , & Colwell, R. R. (2000). Virioplankton: Viruses in Aquatic Ecosystems. Microbiology and Molecular Biology Reviews, 64(1), 69–114. https://doi.org/10.1128/MMBR.64.1.69-114.2000 PubMed DOI PMC