A possible role of intracellular isoelectric focusing in the evolution of eukaryotic cells and multicellular organisms

. 2009 Nov ; 69 (5) : 444-51. [epub] 20090818

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19688285

A new scenario of the origin of eukaryotic cell and multicellularity is presented. A concentric pH-gradient has been shown to exist in the cytosol of eukaryotic cells. The most probable source of such gradient is its self-formation in gradient of electric field between center and periphery of a cell. Theoretical analysis has shown that, for example, a cell of Saccharomyces cerevisiae has enough energy to continuously sustain such gradient of strength about 1.5 kV/cm, the value sufficient for effective isoelectric focusing of cytoplasmic proteins. Focusing of enzymes could highly increase the effectiveness of an otherwise diffusion-limited metabolism of large cells by concentrating enzymes into small and distinct parts of a cytoplasm. By taking away an important physical constraint to the volume of cytoplasm, the intracellular isoelectric focusing enabled evolution of cells 3-4 order of magnitude larger than typical prokaryotic cells. This opened the way for the origin of phagocytosis and lately for the development of different forms of endosymbiosis, some of them resulting in an endosymbiotic origin of mitochondria and plastids. The large volume of a cell-enabled separation of nuclear and cytoplasmic compartments which was a precondition for separation of transcription and translation processes and therefore also for the origin of various RNA-preprocessing mechanisms. The possibility to regulate gene expression by postprocessing RNA and to regulate metabolism by an electrophoretic translocation enzymes between different parts of cytoplasm by changing their isoelectric points opened the way for cell and tissue differentiation and therefore for the origin of complex multicellular organisms.

Zobrazit více v PubMed

J Cell Biol. 1977 Dec;75(3):807-17 PubMed

Nature. 1998 Mar 5;392(6671):37-41 PubMed

Life Sci. 1985 Jan 28;36(4):299-307 PubMed

Biosystems. 1985;18(2):135-9 PubMed

Biochem J. 1994 Mar 1;298 ( Pt 2):313-20 PubMed

Biosystems. 1990;24(2):127-33 PubMed

Annu Rev Phytopathol. 2003;41:429-53 PubMed

Biochim Biophys Acta. 1984 Sep 27;766(3):679-84 PubMed

Trends Biochem Sci. 1988 Feb;13(2):43-6 PubMed

Cell Biochem Funct. 1996 Dec;14(4):237-48 PubMed

J Cell Biol. 1983 Oct;97(4):1249-54 PubMed

Electrophoresis. 1995 Jun;16(6):1010-5 PubMed

Exp Cell Res. 1980 Jun;127(2):397-408 PubMed

Annu Rev Microbiol. 1996;50:317-48 PubMed

FEBS Lett. 1983 Jun 13;156(2):227-30 PubMed

J Theor Biol. 1986 Feb 21;118(4):443-69 PubMed

Biochem J. 1978 Jan 15;170(1):103-14 PubMed

J Cell Biol. 1983 Oct;97(4):1207-13 PubMed

Phys Biol. 2006 May 16;3(2):101-6 PubMed

Riv Biol. 2002 May-Aug;95(2):258-72 PubMed

Ann N Y Acad Sci. 1973 Jun 15;209:11-22 PubMed

Biophys J. 2007 Mar 15;92(6):2108-19 PubMed

Biochim Biophys Acta. 1981 Nov 9;639(1):53-76 PubMed

Nature. 1987 Jan 29-Feb 4;325(6103):447-50 PubMed

Trends Biochem Sci. 1994 May;19(5):193-7 PubMed

Biochemistry. 1979 Oct 16;18(21):4487-99 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...