A possible role of intracellular isoelectric focusing in the evolution of eukaryotic cells and multicellular organisms
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- biologická evoluce * MeSH
- biologické modely MeSH
- cytoplazma fyziologie MeSH
- eukaryotické buňky * cytologie fyziologie MeSH
- fyziologie buňky MeSH
- isoelektrická fokusace * MeSH
- koncentrace vodíkových iontů MeSH
- proteiny fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny MeSH
A new scenario of the origin of eukaryotic cell and multicellularity is presented. A concentric pH-gradient has been shown to exist in the cytosol of eukaryotic cells. The most probable source of such gradient is its self-formation in gradient of electric field between center and periphery of a cell. Theoretical analysis has shown that, for example, a cell of Saccharomyces cerevisiae has enough energy to continuously sustain such gradient of strength about 1.5 kV/cm, the value sufficient for effective isoelectric focusing of cytoplasmic proteins. Focusing of enzymes could highly increase the effectiveness of an otherwise diffusion-limited metabolism of large cells by concentrating enzymes into small and distinct parts of a cytoplasm. By taking away an important physical constraint to the volume of cytoplasm, the intracellular isoelectric focusing enabled evolution of cells 3-4 order of magnitude larger than typical prokaryotic cells. This opened the way for the origin of phagocytosis and lately for the development of different forms of endosymbiosis, some of them resulting in an endosymbiotic origin of mitochondria and plastids. The large volume of a cell-enabled separation of nuclear and cytoplasmic compartments which was a precondition for separation of transcription and translation processes and therefore also for the origin of various RNA-preprocessing mechanisms. The possibility to regulate gene expression by postprocessing RNA and to regulate metabolism by an electrophoretic translocation enzymes between different parts of cytoplasm by changing their isoelectric points opened the way for cell and tissue differentiation and therefore for the origin of complex multicellular organisms.
Zobrazit více v PubMed
J Cell Biol. 1977 Dec;75(3):807-17 PubMed
Nature. 1998 Mar 5;392(6671):37-41 PubMed
Life Sci. 1985 Jan 28;36(4):299-307 PubMed
Biosystems. 1985;18(2):135-9 PubMed
Biochem J. 1994 Mar 1;298 ( Pt 2):313-20 PubMed
Biosystems. 1990;24(2):127-33 PubMed
Annu Rev Phytopathol. 2003;41:429-53 PubMed
Biochim Biophys Acta. 1984 Sep 27;766(3):679-84 PubMed
Trends Biochem Sci. 1988 Feb;13(2):43-6 PubMed
Cell Biochem Funct. 1996 Dec;14(4):237-48 PubMed
J Cell Biol. 1983 Oct;97(4):1249-54 PubMed
Electrophoresis. 1995 Jun;16(6):1010-5 PubMed
Exp Cell Res. 1980 Jun;127(2):397-408 PubMed
Annu Rev Microbiol. 1996;50:317-48 PubMed
FEBS Lett. 1983 Jun 13;156(2):227-30 PubMed
J Theor Biol. 1986 Feb 21;118(4):443-69 PubMed
Biochem J. 1978 Jan 15;170(1):103-14 PubMed
J Cell Biol. 1983 Oct;97(4):1207-13 PubMed
Phys Biol. 2006 May 16;3(2):101-6 PubMed
Riv Biol. 2002 May-Aug;95(2):258-72 PubMed
Ann N Y Acad Sci. 1973 Jun 15;209:11-22 PubMed
Biophys J. 2007 Mar 15;92(6):2108-19 PubMed
Biochim Biophys Acta. 1981 Nov 9;639(1):53-76 PubMed
Nature. 1987 Jan 29-Feb 4;325(6103):447-50 PubMed
Trends Biochem Sci. 1994 May;19(5):193-7 PubMed
Biochemistry. 1979 Oct 16;18(21):4487-99 PubMed