Wetting of MXenes and Beyond
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic
Typ dokumentu úvodníky
PubMed
37121917
PubMed Central
PMC10149433
DOI
10.1007/s40820-023-01049-x
PII: 10.1007/s40820-023-01049-x
Knihovny.cz E-zdroje
- Klíčová slova
- 2D material, Composites, Hydrophilicity, MXene, Wetting,
- Publikační typ
- úvodníky MeSH
MXenes are a class of 2D nanomaterials with exceptional tailor-made properties such as mechano-ceramic nature, rich chemistry, and hydrophilicity, to name a few. However, one of the most challenging issues in any composite/hybrid system is the interfacial wetting. Having a superior integrity of a given composite system is a direct consequence of the proper wettability. While wetting is a fundamental feature, dictating many physical and chemical attributes, most of the common nanomaterials possesses poor affinity due to hydrophobic nature, making them hard to be easily dispersed in a given composite. Thanks to low contact angle, MXenes can offer themselves as an ideal candidate for manufacturing different nano-hybrid structures. Herein this review, it is aimed to particularly study the wettability of MXenes. In terms of the layout of the present study, MXenes are first briefly introduced, and then, the wettability phenomenon is discussed in detail. Upon reviewing the sporadic research efforts conducted to date, a particular attention is paid on the current challenges and research pitfalls to light up the future perspectives. It is strongly believed that taking the advantage of MXene's rich hydrophilic surface may have a revolutionizing role in the fabrication of advanced materials with exceptional features.
Zobrazit více v PubMed
Malaki M, Varma RS. Mechanotribological aspects of MXene-reinforced nanocomposites. Adv. Mater. 2020;32(38):2003154. doi: 10.1002/adma.202003154. PubMed DOI
Anasori B, Lukatskaya M, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017;2:16098. doi: 10.1038/natrevmats.2016.98. DOI
Shi Z, Khaledialidusti R, Malaki M, Zhang H. MXene-based materials for solar cell applications. Nanomaterials. 2021;11(12):3170. doi: 10.3390/nano11123170. PubMed DOI PMC
Z. Aghayar, M. Malaki, Y. Zhang, Mxene-based ink design for printed applications. Nanomaterials 12, 4346 (2022). 10.3390/nano12234346 PubMed PMC
M. Malaki, X. Jiang, H. Wang, R. Podila, H. Zhang et al., MXenes: from past to future perspectives. Chem. Eng. J. 463, 142351 (2023). 10.1016/j.cej.2023.142351
Soleymaniha M, Shahbazi MA, Rafieerad AR, Maleki A, Amiri A. Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv. Healthc. Mater. 2018;8(1):1801137. doi: 10.1002/adhm.201801137. PubMed DOI
Iravani S, Varma RS. MXene-based composites as nanozymes in biomedicine: a perspective. Nano-Micro Lett. 2022;14:213. doi: 10.1007/s40820-022-00958-7. PubMed DOI PMC
Kamysbayev V, Filatov AS, Hu H, Rui X, Lagunas F, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science. 2020;369(6506):979–983. doi: 10.1126/science.aba8311. PubMed DOI
Malaki M, Tehrani AF, Niroumand B, Gupta M. Wettability in metal matrix composites. Metals. 2021;11(7):1034. doi: 10.3390/met11071034. DOI
Hashim J, Looney L, Hashmi MSJ. The wettability of SiC particles by molten aluminium alloy. J. Mater. Proc. Technol. 2001;119(1):324–328. doi: 10.1016/S0924-0136(01)00975-X. DOI
Raj R, Maroo SC, Wang EN. Wettability of graphene. Nano Lett. 2013;13(4):1509–1515. doi: 10.1021/nl304647t. PubMed DOI
Singh B, Ali N, Chakravorty A, Sulania I, Ghosh S, et al. Wetting behavior of MoS2 thin films. Mater. Res. Express. 2019;6(9):096424. doi: 10.1088/2053-1591/ab2e5a. DOI
Laurent V, Rado C, Eustathopoulos N. Wetting kinetics and bonding of Al and Al alloys on α-SiC. Mater. Sci. Eng. A. 1996;205(1):1–8. doi: 10.1016/0921-5093(95)09896-8. DOI
Lim KRG, Shekhirev M, Wyatt BC, Anasori B, Gogotsi Y, et al. Fundamentals of MXene synthesis. Nat. Synth. 2022;1:601–614. doi: 10.1038/s44160-022-00104-6. DOI
Zeraati AS, Mirkhani SA, Sun P, Naguib M, Braun PV, et al. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale. 2021;13(6):3572–3580. doi: 10.1039/D0NR06671K. PubMed DOI
Lipatov A, Alhabeb M, Lu H, Zhao S, Loes MJ, et al. Electrical and elastic properties of individual single-layer Nb4C3Tx MXene flakes. Adv. Electron. Mater. 2020;6(4):1901382. doi: 10.1002/aelm.201901382. DOI
Ghidiu M, Lukatskaya MR, Zhao M, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature. 2014;516:78–81. doi: 10.1038/nature13970. PubMed DOI
Gogotsi Y, Anasori B. The rise of MXenes. ACS Nano. 2019;13(8):8491–8494. doi: 10.1021/acsnano.9b06394. PubMed DOI
Naguib M, Barsoum MW, Gogotsi Y. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 2021;33(39):2103393. doi: 10.1002/adma.202103393. PubMed DOI
Munshi A, Singh V, Kumar M, Singh J. Effect of nanoparticle size on sessile droplet contact angle. J. Appl. Phys. 2008;103(8):084315. doi: 10.1063/1.2912464. DOI
Nakae H, Fujii H, Sato K. Reactive wetting of ceramics by liquid metals. Mater. Transact. JIM. 1992;33(4):400–406. doi: 10.2320/matertrans1989.33.400. DOI
Machata P, Hofbauerová M, Soyka Y, Stepura A, Truchan D, et al. Wettability of MXene films. J. Colloid Interface Sci. 2022;622:759–768. doi: 10.1016/j.jcis.2022.04.135. PubMed DOI
Wang S, Zhang Y, Abidi N, Cabrales L. Wettability and surface free energy of graphene films. Langmuir. 2009;25(18):11078–11081. doi: 10.1021/la901402f. PubMed DOI
Belyaeva LA, Schneider GF. Wettability of graphene. Surf. Sci. Rep. 2020;75(2):100482. doi: 10.1016/j.surfrep.2020.100482. DOI
Taherian F, Marcon V, Vegt NF, Leroy F. What is the contact angle of water on graphene? Langmuir. 2013;29(5):1457–1465. doi: 10.1021/la304645w. PubMed DOI
Geim AK, Novoselov KS. The rise of graphene. Nat. Mater. 2007;6(3):183–191. doi: 10.1038/nmat1849. PubMed DOI
Shin YJ, Wang Y, Huang H, Kalon G, Wee ATS, et al. Surface-energy engineering of graphene. Langmuir. 2010;26(6):3798–3802. doi: 10.1021/la100231u. PubMed DOI
Rafiee J, Mi X, Gullapalli H, Thomas AV, Yavari F, et al. Wetting transparency of graphene. Nat. Mater. 2012;11(3):217–222. doi: 10.1038/nmat3228. PubMed DOI
Shih CJ, Wang QH, Lin S, Park KC, Jin Z, et al. Breakdown in the wetting transparency of graphene. Phys. Rev. Lett. 2012;109(17):176101. doi: 10.1103/PhysRevLett.109.176101. PubMed DOI
Wei N, Lv C, Xu Z. Wetting of graphene oxide: a molecular dynamics study. Langmuir. 2014;30(12):3572–3578. doi: 10.1021/la500513x. PubMed DOI
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017;2(8):17033. doi: 10.1038/natrevmats.2017.33. DOI
Luan B, Zhou R. Wettability and friction of water on a MoS2 nanosheet. Appl. Phys. Lett. 2016;108(13):131601. doi: 10.1063/1.4944840. DOI
Chow PK, Singh E, Viana BC, Gao J, Luo J, et al. Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. ACS Nano. 2015;9(3):3023–3031. doi: 10.1021/nn5072073. PubMed DOI
Kozbial A, Gong X, Liu H, Li L. Understanding the intrinsic water wettability of molybdenum disulfide (MoS2) Langmuir. 2015;31(30):8429–8435. doi: 10.1021/acs.langmuir.5b02057. PubMed DOI
Malaki M, Tehrani AF, Niroumand B. Fatgiue behavior of metal matrix nanocomposites. Ceram. Int. 2020;46(15):23326–23336. doi: 10.1016/j.ceramint.2020.06.246. DOI
Yu L, Lu L, Zhou X, Xu L. Current understanding of the wettability of MXenes. Adv. Mater. Interfaces. 2022;10(2):2201818. doi: 10.1002/admi.202201818. DOI
Malaki M, Maleki A, Varma RS. MXenes and ultrasonication. J. Mater. Chem. A. 2019;7(18):10843–10857. doi: 10.1039/C9TA01850F. DOI
Zukiene K, Monastyreckis G, Kilikevicius S, Procházka M, Micusik M, et al. Wettability of MXene and its interfacial adhesion with epoxy resin. Mater. Chem. Phys. 2021;257:123820. doi: 10.1016/j.matchemphys.2020.123820. DOI
Lorencova L, Bertok T, Dosekova E, Holazova A, Paprckova D, et al. Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2 sensing. Electrochim. Acta. 2017;235:471–479. doi: 10.1016/j.electacta.2017.03.073. PubMed DOI PMC
Yang W, Liu JJ, Wang LL, Wang W, Yuen ACY, et al. Multifunctional MXene/natural rubber composite films with exceptional flexibility and durability. Compos. B Eng. 2020;188:107875. doi: 10.1016/j.compositesb.2020.107875. DOI
Liu J, Liu Z, Zhang HB, Chen W, Zhao Z, et al. Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding. Adv. Electron. Mater. 2020;6(1):1901094. doi: 10.1002/aelm.201901094. DOI
Liu J, Zhang HB, Sun R, Liu Y, Liu Z, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Adv. Mater. 2017;29(38):1702367. doi: 10.1002/adma.201702367. PubMed DOI
Ding L, Wei Y, Wang Y, Chen H, Caro J, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 2017;56(7):1825–1829. doi: 10.1002/anie.201609306. PubMed DOI
Ling Z, Ren CE, Zhao MQ, Yang J, Giammarco JM, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. 2014;111(47):16676–16681. doi: 10.1073/pnas.1414215111. PubMed DOI PMC
Fan Z, Wang Y, Xie Z, Xu X, Yuan Y, et al. A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale. 2018;10(20):9642–9652. doi: 10.1039/C8NR01550C. PubMed DOI
Jin X, Shin SJ, Kim N, Kang B, Piao H, et al. Superior role of MXene nanosheet as hybridization matrix over graphene in enhancing interfacial electronic coupling and functionalities of metal oxide. Nano Energy. 2018;53:841–848. doi: 10.1016/j.nanoen.2018.09.055. DOI
Zhang T, Pan L, Tang H, Du F, Guo Y, et al. Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: enhanced exfoliation and delamination. J. Alloys Compd. 2017;695:818–826. doi: 10.1016/j.jallcom.2016.10.127. DOI
Du F, Tang H, Pan L, Zhang T, Lu H, et al. Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries. Electrochim. Acta. 2017;235:690–699. doi: 10.1016/j.electacta.2017.03.153. DOI
Zhao MQ, Xie X, Ren CE, Makaryan T, Anasori B, et al. Hollow MXene spheres and 3D macroporous MXene frameworks for Na-ion storage. Adv. Mater. 2017;29(37):1702410. doi: 10.1002/adma.201702410. PubMed DOI
Kang KM, Kim DW, Ren CE, Cho KM, Kim SJ, et al. Selective molecular separation on Ti3C2Tx-graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Appl. Mater. Interfaces. 2017;9(51):44687–44694. doi: 10.1021/acsami.7b10932. PubMed DOI
Luo J, Fang C, Jin C, Yuan H, Sheng O, et al. Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J. Mater. Chem. A. 2018;6(17):7794–7806. doi: 10.1039/C8TA02068J. DOI
Wei S, Xie Y, Xing Y, Wang L, Ye H, et al. Two-dimensional graphene oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. J. Membrane Sci. 2019;582:414–422. doi: 10.1016/j.memsci.2019.03.085. DOI
Bian R, Xiang S, Cai D. Fast treatment of MXene films with isocyanate to give enhanced stability. ChemNanoMat. 2020;6(1):64–67. doi: 10.1002/cnma.201900602. DOI
Liu G, Shen J, Liu Q, Liu G, Xiong J, et al. Ultrathin two-dimensional MXene membrane for pervaporation desalination. J. Membrane Sci. 2018;548:548–558. doi: 10.1016/j.memsci.2017.11.065. DOI
Zhang X, Xu J, Wang H, Zhang J, Yan H, et al. Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si0.75Al0.25C2. Angew. Chem. Int. Ed. 2013;52(16):4361–4365. doi: 10.1002/anie.201300285. PubMed DOI
Zhang H, Wang L, Chen Q, Li P, Zhou A, et al. Preparation, mechanical and anti–Friction performance of MXene/polymer composites. Mater. Design. 2016;92:682–689. doi: 10.1016/j.matdes.2015.12.084. DOI
Monastyreckis G, Mishnaevsky L, Hatter C, Aniskevich A, Gogotsi Y, et al. Micromechanical modeling of MXene-polymer composites. Carbon. 2020;162:402–409. doi: 10.1016/j.carbon.2020.02.070. DOI
Zhou H, Wang F, Wang Y, Li C, Shi C, et al. Study on contact angles and surface energy of MXene films. RSC Adv. 2021;11(10):5512–5520. doi: 10.1039/D0RA09125A. PubMed DOI PMC
Kilikevičius S, Kvietkaitė S, Žukienė K, Omastová M, Aniskevich A, et al. Numerical investigation of the mechanical properties of a novel hybrid polymer composite reinforced with graphene and MXene nanosheets. Comput. Mater. Sci. 2020;174:109497. doi: 10.1016/j.commatsci.2019.109497. DOI
Liu L, Ying G, Hu C, Zhang K, Ma F, et al. Functionalization with MXene (Ti3C2) enhances the wettability and shear strength of carbon fiber-epoxy composites. ACS Appl. Nano Mater. 2019;2(9):5553–5562. doi: 10.1021/acsanm.9b01127. DOI
Yu J, Chen H, Huang H, Zeng M, Qin J, et al. Protein-induced decoration of applying MXene directly to UHMWPE fibers and fabrics for improved adhesion properties and electronic textiles. Compos. Sci. Technol. 2022;218:109158. doi: 10.1016/j.compscitech.2021.109158. DOI
Guo J, Qiu T, Yu C, Liu Y, Ning C, et al. Three-dimensional structured MXene/SiO2 for improving the interfacial properties of composites by self-assembly strategy. Polym. Compos. 2022;43(1):84–93. doi: 10.1002/pc.26358. DOI
Ding R, Sun Y, Lee J, Nam JD, Suhr J. Enhancing interfacial properties of carbon fiber reinforced epoxy composites by grafting MXene sheets (Ti2C) Compos. B Eng. 2021;207:108580. doi: 10.1016/j.compositesb.2020.108580. DOI
Shen J, Liu G, Ji Y, Liu Q, Cheng L, et al. 2D MXene nanofilms with tunable gas transport channels. Adv. Funct. Mater. 2018;28(31):1801511. doi: 10.1002/adfm.201801511. DOI
Wang NN, Wang H, Wang YY, Wei YH, Si JY, et al. Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation. ACS Appl. Mater. Interfaces. 2019;11(43):40512–40523. doi: 10.1021/acsami.9b14265. PubMed DOI
Malaki M, Tehrani AF, Niroumand B, Abdullah A. Ultrasonically stir cast SiO2/A356 metal matrix nanocomposites. Metals. 2021;11(12):2004. doi: 10.3390/met11122004. DOI
Chen S, Xiang Y, Peng C, Jiang J, Xu W, et al. Photo-responsive azobenzene-MXene hybrid and its optical modulated electrochemical effects. J. Power Sources. 2019;414:192–200. doi: 10.1016/j.jpowsour.2019.01.009. DOI
Zhou H, Wang Y, Wang F, Deng H, Song Y, et al. Water permeability in MXene membranes: process matters. Chinese Chem. Lett. 2020;31(6):1665–1669. doi: 10.1016/j.cclet.2019.10.037. DOI