MXene-Based Photocatalysts in Degradation of Organic and Pharmaceutical Pollutants
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36296531
PubMed Central
PMC9606916
DOI
10.3390/molecules27206939
PII: molecules27206939
Knihovny.cz E-zdroje
- Klíčová slova
- MXene-based nanocomposites, MXenes, pharmaceutical pollutants, photocatalysis, photocatalytic degradation, pollutants,
- MeSH
- grafit * chemie MeSH
- látky znečišťující životní prostředí * chemie MeSH
- léčivé přípravky MeSH
- oxid uhličitý MeSH
- oxidy MeSH
- porézní koordinační polymery * MeSH
- sulfidy MeSH
- vodík MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- grafit * MeSH
- látky znečišťující životní prostředí * MeSH
- léčivé přípravky MeSH
- oxid uhličitý MeSH
- oxidy MeSH
- porézní koordinační polymery * MeSH
- sulfidy MeSH
- vodík MeSH
These days, explorations have focused on designing two-dimensional (2D) nanomaterials with useful (photo)catalytic and environmental applications. Among them, MXene-based composites have garnered great attention owing to their unique optical, mechanical, thermal, chemical, and electronic properties. Various MXene-based photocatalysts have been inventively constructed for a variety of photocatalytic applications ranging from pollutant degradation to hydrogen evolution. They can be applied as co-catalysts in combination with assorted common photocatalysts such as metal sulfide, metal oxides, metal-organic frameworks, graphene, and graphitic carbon nitride to enhance the function of photocatalytic removal of organic/pharmaceutical pollutants, nitrogen fixation, photocatalytic hydrogen evolution, and carbon dioxide conversion, among others. High electrical conductivity, robust photothermal effects, large surface area, hydrophilicity, and abundant surface functional groups of MXenes render them as attractive candidates for photocatalytic removal of pollutants as well as improvement of photocatalytic performance of semiconductor catalysts. Herein, the most recent developments in photocatalytic degradation of organic and pharmaceutical pollutants using MXene-based composites are deliberated, with a focus on important challenges and future perspectives; techniques for fabrication of these photocatalysts are also covered.
Zobrazit více v PubMed
Ihsanullah I. MXenes (two-dimensional metal carbides) as emerging nanomaterials for water purification: Progress, challenges and prospects. Chem. Eng. J. 2020;388:124340. doi: 10.1016/j.cej.2020.124340. DOI
Tang W., Dong Z., Zhang R., Yi X., Yang K., Jin M., Yuan C., Xiao Z., Liu Z., Cheng L. Multifunctional Two-Dimensional Core–Shell MXene@Gold Nanocomposites for Enhanced Photo–Radio Combined Therapy in the Second Biological Window. ACS Nano. 2019;13:284–294. doi: 10.1021/acsNano8b05982. PubMed DOI
Murugan C., Sharma V., Murugan R.K., Malaimegu G., Sundaramurthy A. Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy. J. Control. Release. 2019;299:1–20. doi: 10.1016/j.jconrel.2019.02.015. PubMed DOI
Shafiee A., Iravani S., Varma R.S. Graphene and graphene oxide with anticancer applications: Challenges and future perspectives. MedComm. 2022;3:e118. doi: 10.1002/mco2.118. PubMed DOI PMC
Shafiei N., Nasrollahzadeh M., Iravani S. Green Synthesis of Silica and Silicon Nanoparticles and Their Biomedical and Catalytic Applications. Comments Inorg. Chem. 2021;41:317–372. doi: 10.1080/02603594.2021.1904912. DOI
Ji Y., Luo Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2(101) surface: The essential role of oxygen vacancy. J. Am. Chem. Soc. 2016;138:15896–15902. doi: 10.1021/jacs.6b05695. PubMed DOI
Yang C., Tan Q., Li Q., Zhou J., Fan J., Li B., Sun J., Lv K. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea. Appl. Catal. B. 2020;268:118738. doi: 10.1016/j.apcatb.2020.118738. DOI
Rhouati A., Berkani M., Vasseghian Y., Golzadeh N. MXene-based electrochemical sensors for detection of environmental pollutants: A comprehensive review. Chemosphere. 2022;291:132921. doi: 10.1016/j.chemosphere.2021.132921. PubMed DOI
Feng X., Yu Z., Sun Y., Long R., Shan M., Li X., Liu Y., Liu J. Review MXenes as a new type of nanomaterial for environmental applications in the photocatalytic degradation of water pollutants. Ceram. Int. 2021;47:7321–7343. doi: 10.1016/j.ceramint.2020.11.151. DOI
Iravani P., Iravani S., Varma R.S. MXene-Chitosan Composites and Their Biomedical Potentials. Micromachines. 2022;13:1383. doi: 10.3390/mi13091383. PubMed DOI PMC
Iravani S., Varma R.S. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances. Mater. Adv. 2021;2:2906–2917. doi: 10.1039/D1MA00189B. DOI
Iravani S., Varma R.S. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater. Sci. Eng. 2021;7:1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI
Sreedhar A., Noh J.-S. Recent advances in partially and completely derived 2D Ti3C2 MXene based TiO2 nanocomposites towards photocatalytic applications: A review. Sol. Energy. 2021;222:48–73. doi: 10.1016/j.solener.2021.05.010. DOI
Abbasi Z., Feizi S., Taghipour E., Ghadam P. Green synthesis of silver nanoparticles using aqueous extract of dried Juglans regia green husk and examination of its biological properties. Green Process. Synth. 2017;6:477–485. doi: 10.1515/gps-2016-0108. DOI
Iravani S. MXenes and MXene-based (nano)structures: A perspective on greener synthesis and biomedical prospects. Ceram. Int. 2022;48:24144–24156. doi: 10.1016/j.ceramint.2022.05.137. DOI
Iravani S., Varma R.S. MXenes in photomedicine: Advances and prospects. Chem. Commun. 2022;58:7336–7350. doi: 10.1039/D2CC01694J. PubMed DOI
Rahman U.U., Humayun M., Ghani U., Usman M., Ullah H., Khan A., El-Metwaly N.M., Khan A. MXenes as Emerging Materials: Synthesis, Properties, and Applications. Molecules. 2022;27:4909. doi: 10.3390/molecules27154909. PubMed DOI PMC
Shuck C.E., Ventura-Martinez K., Goad A., Uzun S., Shekhirev M., Gogotsi Y. Safe Synthesis of MAX and MXene: Guidelines to Reduce Risk During Synthesis. ACS Chem. Health Saf. 2021;28:326–338. doi: 10.1021/acs.chas.1c00051. DOI
Sun Y., Meng X., Dall’Agnese Y., Dall’Agnese C., Duan S., Gao Y., Chen G., Wang X.-F. 2D MXenes as co-catalysts in photocatalysis: Synthetic methods. Nano Micro. Lett. 2019;11:1–22. doi: 10.1007/s40820-019-0309-6. PubMed DOI PMC
Wei Y., Zhang P., Soomro R.A., Zhu Q., Xu B. Advances in the Synthesis of 2D MXenes. Adv. Mater. 2021;33:2103148. doi: 10.1002/adma.202103148. PubMed DOI
Wu Q., Li N., Wang Y., Xu Y., Wu J., Jia G., Ji F., Fang X., Chen F., Cui X. Ultrasensitive and Selective Determination of Carcinoembryonic Antigen Using Multifunctional Ultrathin Amino-Functionalized Ti3C2-MXene Nanosheets. Anal. Chem. 2020;92:3354–3360. doi: 10.1021/acs.analchem.9b05372. PubMed DOI
Wyatt B.C., Rosenkranz A., Anasori B. 2D MXenes: Tunable Mechanical and Tribological Properties. Adv. Mater. 2021;33:2007973. doi: 10.1002/adma.202007973. PubMed DOI
Iravani S., Varma R.S. MXenes in Cancer Nanotheranostics. Nanomaterials. 2022;12:3360. doi: 10.3390/nano12193360. PubMed DOI PMC
You Z., Liao Y., Li X., Fan J., Xiang Q. State-of-the-art recent progress in MXene-based photocatalysts: A comprehensive review. Nanoscale. 2021;13:9463–9504. doi: 10.1039/D1NR02224E. PubMed DOI
Kuang P., Low J., Cheng B., Yu J., Fan J. MXene-based photocatalysts. J. Mater. Sci. Technol. 2020;56:18–44. doi: 10.1016/j.jmst.2020.02.037. DOI
Im J.K., Sohn E.J., Kim S., Jang M., Son A., Zoh K.-D., Yoon Y. Review of MXene-based nanocomposites for photocatalysis. Chemosphere. 2021;270:129478. doi: 10.1016/j.chemosphere.2020.129478. PubMed DOI
Khatami M., Iravani P., Jamalipour Soufi G., Iravani S. MXenes for antimicrobial and antiviral applications: Recent advances. Mater. Technol. Adv. Perform. Mater. 2022;37:1890–1905. doi: 10.1080/10667857.2021.2002587. DOI
Khatami M., Iravani S. MXenes and MXene-based Materials for the Removal of Water Pollutants: Challenges and Opportunities. Comments Inorg. Chem. 2021;41:213–248. doi: 10.1080/02603594.2021.1922396. DOI
Zhang S., Bilal M., Adeel M., Barceló D., Iqbal H.M.N. MXene-based designer nanomaterials and their exploitation to mitigate hazardous pollutants from environmental matrices. Chemosphere. 2021;283:131293. doi: 10.1016/j.chemosphere.2021.131293. PubMed DOI
Bai X., Hou S., Wang X., Hao D., Sun B., Jia T., Shi R., Ni B.-J. Mechanism of surface and interface engineering under diverse dimensional combinations: The construction of efficient nanostructured MXene-based photocatalysts. Catal. Sci. Technol. 2021;11:5028–5049. doi: 10.1039/D1CY00803J. DOI
Wojciechowski T., Rozmysłowska-Wojciechowska A., Matyszczak G., Wrzecionek M., Olszyna A., Peter A., Mihaly-Cozmuta A., Nicula C., Mihaly-Cozmuta L., Podsiadło S., et al. Ti2C MXene Modified with Ceramic Oxide and Noble Metal Nanoparticles: Synthesis, Morphostructural Properties, and High Photocatalytic Activity. Inorg. Chem. 2019;58:7602–7614. doi: 10.1021/acs.inorgchem.9b01015. PubMed DOI
Makola L.C., Moeno S., Ouma C.N.M., Sharma A., Vo D.-V.N., Dlamini L.N. Facile fabrication of a metal-free 2D–2D Nb2CTx@g-C3N4 MXene-based Schottky-heterojunction with the potential application in photocatalytic processes. J. Alloy. Compd. 2022;916:165459. doi: 10.1016/j.jallcom.2022.165459. DOI
Sun Y., Zhou Y., Liu Y., Wu Q., Zhu M., Huang H., Liu Y., Shao M., Kang Z. A photoactive process cascaded electrocatalysis for enhanced methanol oxidation over Pt-MXene-TiO2 composite. Nano Res. 2020;13:2683–2690. doi: 10.1007/s12274-020-2910-x. DOI
Hasija V., Raizada P., Sudhaik A., Sharma K., Kumar A., Singh P., Jonnalagadda S.B., Thakur V.K. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: A review. Appl. Mater. Today. 2019;15:494–524. doi: 10.1016/j.apmt.2019.04.003. DOI
Soni V., Singh P., Phan Quang H.H., Parwaz Khan A.A., Bajpai A., Van Le Q., Thakur V.K., Thakur S., Nguyen V.-H., Raizada P. Emerging architecture titanium carbide (Ti3C2Tx) MXene based photocatalyst toward degradation of hazardous pollutants: Recent progress and perspectives. Chemosphere. 2022;293:133541. doi: 10.1016/j.chemosphere.2022.133541. PubMed DOI
Hoai Ta Q.T., Tran N.M., Noh J.-S. Rice crust-like ZnO/Ti3C2Tx MXene hybrid structures for improved photocatalytic activity. Catalysts. 2020;10:1140.
Ihsanullah I. MXenes as next-generation materials for the photocatalytic degradation of pharmaceuticals in water. J. Environ. Chem. Eng. 2022;10:107381. doi: 10.1016/j.jece.2022.107381. DOI
Tu W., Liu Y., Chen M., Zhou Y., Xie Z., Ma L., Li L., Yang B. Carbon nitride coupled with Ti3C2-Mxene derived amorphous Ti-peroxo heterojunction for photocatalytic degradation of rhodamine B and tetracycline. Colloids Surf. A Physicochem. Eng. Asp. 2022;640:128448. doi: 10.1016/j.colsurfa.2022.128448. PubMed DOI
Liu T., Li L., Geng X., Yang C., Zhang X., Lin X., Lv P., Mu Y., Huang S. Heterostructured MXene-derived oxides as superior photocatalysts for MB degradation. J. Alloys Compd. 2022;919:165629. doi: 10.1016/j.jallcom.2022.165629. DOI
Cui C., Guo R., Ren E., Xiao H., Lai X., Qin Q., Jiang S., Shen H., Zhou M., Qin W. Facile hydrothermal synthesis of rod-like Nb2O5/Nb2CTx composites for visible-light driven photocatalytic degradation of organic pollutants. Environ. Res. 2021;193:110587. doi: 10.1016/j.envres.2020.110587. PubMed DOI
Shahzad A., Rasool K., Nawaz M., Miran W., Jang J., Moztahida M., Mahmoud K.A., Lee D.S. Heterostructural TiO2/Ti3C2Tx (MXene) for photocatalytic degradation of antiepileptic drug carbamazepine. Chem. Eng. J. 2018;349:748–755. doi: 10.1016/j.cej.2018.05.148. DOI
Iqbal M.A., Ali S.I., Amin F., Tariq A., Iqbal M.Z., Rizwan S. La- and Mn-Codoped Bismuth Ferrite/Ti3C2 MXene Composites for Efficient Photocatalytic Degradation of Congo Red Dye. ACS Omega. 2019;4:8661–8668. doi: 10.1021/acsomega.9b00493. PubMed DOI PMC
Zhong Q., Liu J., Wang Z., Ghasemi J.B., Zhang G. Ti3C2 MXene/Ag2ZnGeO4 Schottky heterojunctions with enhanced photocatalytic performances: Efficient charge separation and mechanism studies. Sep. Purif. Technol. 2021;278:119560. doi: 10.1016/j.seppur.2021.119560. DOI
Chen W., Wu B., Yao Q., Dong G., Zuo C., Zhang Y., Zhou Y., Liu Y., Zhang Z. A MXene-based multiple catalyst for highly efficient photocatalytic removal of nitrate. Environ. Sci. Pollut. Res. 2022;29:58149–58160. doi: 10.1007/s11356-022-19616-x. PubMed DOI
Jang J., Shahzad A., Woo S.H., Lee D.S. Magnetic Ti3C2Tx (Mxene) for diclofenac degradation via the ultraviolet/chlorine advanced oxidation process. Environ. Res. 2020;182:108990. doi: 10.1016/j.envres.2019.108990. PubMed DOI
Liu N., Lu N., Yu H., Chen S., Quan X. Efficient day-night photocatalysis performance of 2D/2D Ti3C2/Porous g-C3N4 nanolayers composite and its application in the degradation of organic pollutants. Chemosphere. 2020;246:125760. doi: 10.1016/j.chemosphere.2019.125760. PubMed DOI
Cao Y., Fang Y., Lei X., Tan B., Hu X., Liu B., Chen Q. Fabrication of novel CuFe2O4/MXene hierarchical heterostructures for enhanced photocatalytic degradation of sulfonamides under visible light. J. Hazard. Mater. 2020;387:122021. doi: 10.1016/j.jhazmat.2020.122021. PubMed DOI
Wu S., Su Y., Zhu Y., Zhang Y., Zhu M. In-situ growing Bi/BiOCl microspheres on Ti3C2 nanosheets for upgrading visible-light-driven photocatalytic activity. Appl. Surf. Sci. 2020;520:146339. doi: 10.1016/j.apsusc.2020.146339. DOI
Wang W.Y., Hood Z.D., Zhang X.Y., Ivanov I.N., Bao Z.H., Su T.M., Jin M.Z., Bai L., Wang X.W., Zhang R.B., et al. Construction of 2D BiVO4-CdS-Ti3C2Tx heterostructures for enhanced photo-redox activities. ChemCatChem. 2020;12:3496–3503. doi: 10.1002/cctc.202000448. DOI
Zhong Q., Li Y., Zhang G. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chem. Eng. J. 2021;409:128099. doi: 10.1016/j.cej.2020.128099. DOI
Chen Y., Xie X.Q., Xin X., Tang Z.R., Xu Y.J. Ti3C2Tx-based three-dimensional hydrogel by a graphene oxide-assisted self-convergence process for enhanced photoredox catalysis. ACS Nano. 2019;13:295–304. doi: 10.1021/acsNano8b06136. PubMed DOI
Li J.Y., Li Y.H., Zhang F., Tang Z.R., Xu Y.J. Visible-light-driven integrated organic synthesis and hydrogen evolution over 1D/2D CdS-Ti3C2Tx MXene composites. Appl. Catal. B Environ. 2020;269:118783. doi: 10.1016/j.apcatb.2020.118783. DOI
Chen W., Han B., Xie Y., Liang S., Deng H., Lin Z. Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chem. Eng. J. 2020;391:123519. doi: 10.1016/j.cej.2019.123519. DOI
Cao S.W., Shen B.J., Tong T., Fu J.W., Yu J.G. 2D/2D Heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018;28:1800136. doi: 10.1002/adfm.201800136. DOI
Anasori B., Lukatskaya M.R., Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017;2:16098. doi: 10.1038/natrevmats.2016.98. DOI
Nan J., Guo X., Xiao J., Li X., Chen W., Wu W., Liu H., Wang Y., Wu M., Wang G. Nanoengineering of 2D MXene-based materials for energy storage applications. Small. 2021;17:1902085. doi: 10.1002/smll.201902085. PubMed DOI
Li M., Lu J., Luo K., Li Y., Chang K., Chen K., Zhou J., Rosen J., Hultman L., Eklund P., et al. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. J. Am. Chem. Soc. 2019;141:4730–4737. doi: 10.1021/jacs.9b00574. PubMed DOI
Salim O., Mahmoud K.A., Pant K.K., Joshi R.K. Introduction to MXenes: Synthesis and characteristics. Mater. Today Chem. 2019;14:100191. doi: 10.1016/j.mtchem.2019.08.010. PubMed DOI
Xu C., Wang L., Liu Z., Chen L., Guo J., Kang N., Ma X.-L., Cheng H.-M., Ren W. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015;14:1135–1141. doi: 10.1038/nmat4374. PubMed DOI
Geng D., Zhao X., Chen Z., Sun W., Fu W., Chen J., Liu W., Zhou W., Loh K.P. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 2017;29:1700072. doi: 10.1002/adma.201700072. PubMed DOI
Sharma S.K., Kumar A., Sharma G., Vo D.-V.N., García-Peñas A., Moradi O., Sillanpää M. MXenes based nano-heterojunctions and composites for advanced photocatalytic environmental detoxification and energy conversion: A review. Chemosphere. 2022;291:132923. doi: 10.1016/j.chemosphere.2021.132923. PubMed DOI
Velempini T., Prabakaran E., Pillay K. Recent developments in the use of metal oxides for photocatalytic degradation of pharmaceutical pollutants in water—A review. Mater. Today Chem. 2021;19:100380. doi: 10.1016/j.mtchem.2020.100380. DOI
Siwal S.S., Sheoran K., Mishra K., Kaur H., Saini A.K., Saini V., Vo D.-V.N., Nezhad H.Y., Thakur V.K. Novel synthesis methods and applications of MXene-based nanomaterials (MBNs) for hazardous pollutants degradation: Future perspectives. Chemosphere. 2022;293:133542. doi: 10.1016/j.chemosphere.2022.133542. PubMed DOI
Assad H., Fatma I., Kumar A., Kaya S., Vo D.-V.N., Al-Gheethi A., Sharma A. An overview of MXene-Based nanomaterials and their potential applications towards hazardous pollutant adsorption. Chemosphere. 2022;298:134221. doi: 10.1016/j.chemosphere.2022.134221. PubMed DOI
Biswal L., Mohanty R., Nayak S., Parida K. Review on MXene/TiO2 nanohybrids for photocatalytic hydrogen production and pollutant degradations. J. Environ. Chem. Eng. 2022;10:107211. doi: 10.1016/j.jece.2022.107211. DOI
Wang Q., Mei Y., Zhou R., Komarneni S., Ma J. Persulfate activation of CuS@Ti3C2-based MXene with Bi-active centers toward Orange II removal under visible light. Colloids Surf. A Physicochem. Eng. Asp. 2022;648:129315. doi: 10.1016/j.colsurfa.2022.129315. DOI
Zhang H., Li M., Zhu C., Tang Q., Kang P., Cao J. Preparation of magnetic α-Fe2O3/ZnFe2O4@Ti3C2 MXene with excellent photocatalytic performance. Ceram. Int. 2020;46:81–88. doi: 10.1016/j.ceramint.2019.08.236. DOI
Yao Z., Sun H., Sui H., Liu X. 2D/2D Heterojunction of R-scheme Ti3C2 MXene/MoS2 Nanosheets for Enhanced Photocatalytic Performance. Nanoscale Res. Lett. 2020;15:78. doi: 10.1186/s11671-020-03314-z. PubMed DOI PMC
Zhang Y.-Z., El-Demellawi J.K., Jiang Q., Ge G., Liang H., Lee K., Dong X., Alshareef H.N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020;49:7229–7251. doi: 10.1039/D0CS00022A. PubMed DOI
Yang Y., Cao Z., He P., Shi L., Ding G., Wang R., Sun J. Ti3C2Tx MXene-graphene composite films for wearable strain sensors featured with high sensitivity and large range of linear response. Nano Energy. 2019;66:104134. doi: 10.1016/j.nanoen.2019.104134. DOI
Mostafavi E., Iravani S. MXene-Graphene Composites: A Perspective on Biomedical Potentials. Nano Micro Lett. 2022;14:130. doi: 10.1007/s40820-022-00880-y. PubMed DOI PMC
Han R., Wu P. High-performance graphene oxide nanofiltration membrane with continuous nanochannels prepared by the in situ oxidation of MXene. J. Mater. Chem. 2019;7:6475–6481. doi: 10.1039/C9TA00137A. DOI
Wu Z., Liang Y., Yuan X., Zou D., Fang J., Jiang L., Zhang J., Yang H., Xiao Z. MXene Ti3C2 derived Z–scheme photocatalyst of graphene layers anchored TiO2/g–C3N4 for visible light photocatalytic degradation of refractory organic pollutants. Chem. Eng. J. 2020;394:124921. doi: 10.1016/j.cej.2020.124921. DOI
Xu J., Zeng G., Lin Q., Gu Y., Wang X., Feng Z., Sengupta A. Application of 3D magnetic nanocomposites: MXene-supported Fe3O4@CS nanospheres for highly efficient adsorption and separation of dyes. Sci. Total Environ. 2022;822:153544. doi: 10.1016/j.scitotenv.2022.153544. PubMed DOI
Lin P., Shen J., Yu X., Liu Q., Li D., Tang H. Construction of Ti3C2 MXene/O-doped g-C3N4 2D-2D Schottky-junction for enhanced photocatalytic hydrogen evolution. Ceram. Int. 2019;45:24656–24663. doi: 10.1016/j.ceramint.2019.08.203. DOI
Lv Y., Wang K., Li D., Li P., Chen X., Han W. Rare Ag nanoparticles loading induced surface-enhanced pollutant adsorption and photocatalytic degradation on Ti3C2Tx MXene-based nanosheets. Chem. Phys. 2022;560:111591. doi: 10.1016/j.chemphys.2022.111591. DOI
Thirumal V., Yuvakkumar R., Kumar P.S., Ravi G., Keerthana S.P., Velauthapillai D. Facile single-step synthesis of MXene@CNTs hybrid nanocomposite by CVD method to remove hazardous pollutants. Chemosphere. 2022;286:131733. doi: 10.1016/j.chemosphere.2021.131733. PubMed DOI
Zhang L., Ma P., Dai L., Bu Z., Li X., Yu W., Cao Y., Guan J. Removal of pollutants via synergy of adsorption and photocatalysis over MXene-based nanocomposites. Chem. Eng. J. Adv. 2022;10:100285. doi: 10.1016/j.ceja.2022.100285. DOI
Zhou W., Yu B., Zhu J., Li K., Tian S. Hierarchical ZnO/MXene (Nb2C and V2C) heterostructure with efficient electron transfer for enhanced photocatalytic activity. Appl. Surf. Sci. 2022;590:153095. doi: 10.1016/j.apsusc.2022.153095. DOI
Sun B., Tao F., Huang Z., Yan W., Zhang Y., Dong X., Wu Y., Zhou G. Ti3C2 MXene-bridged Ag/Ag3PO4 hybrids toward enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 2021;535:147354. doi: 10.1016/j.apsusc.2020.147354. DOI
Zou X., Zhao X., Zhang J., Lv W., Qiu L., Zhang Z. Photocatalytic degradation of ranitidine and reduction of nitrosamine dimethylamine formation potential over MXene–Ti3C2/MoS2 under visible light irradiation. J. Hazard. Mater. 2021;413:125424. doi: 10.1016/j.jhazmat.2021.125424. PubMed DOI
Kumar A., Majithia P., Choudhary P., Mabbett I., Kuehnel M., Pitchaimuthu S., Krishnan V. MXene coupled graphitic carbon nitride nanosheets based plasmonic photocatalysts for removal of pharmaceutical pollutant. Chemosphere. 2022:136297. doi: 10.1016/j.chemosphere.2022.136297. PubMed DOI
Lai Y.-J., Lee D.-J. Pollutant degradation with mediator Z-scheme heterojunction photocatalyst in water: A review. Chemosphere. 2021;282:131059. doi: 10.1016/j.chemosphere.2021.131059. PubMed DOI
Stelo F., Kublik N., Ullah S., Wender H. Recent advances in Bi2MoO6 based Z-scheme heterojunctions for photocatalytic degradation of pollutants. J. Alloys Compd. 2020;829:154591. doi: 10.1016/j.jallcom.2020.154591. DOI
Zhang G., Wang Z., Wu J. Construction of a Z-scheme heterojunction for high-efficiency visible-light-driven photocatalytic CO2 reduction. Nanoscale. 2021;13:4359–4389. doi: 10.1039/D0NR08442E. PubMed DOI
Zhou Y., Yu M., Zhan R., Wang X., Peng G., Niu J. Ti3C2 MXene-induced interface electron separation in g-C3N4/Ti3C2 MXene/MoSe2 Z-scheme heterojunction for enhancing visible light-irradiated enoxacin degradation. Sep. Purif. Technol. 2021;275:119194. doi: 10.1016/j.seppur.2021.119194. DOI
Cao Z., Su J., Li Y., Li J., Wang Z., Li M., Fan B., Shao G., Wang H., Xu H., et al. High-energy ball milling assisted one-step preparation of g-C3N4/TiO2@Ti3C2 composites for effective visible light degradation of pollutants. J. Alloys Compd. 2021;889:161771. doi: 10.1016/j.jallcom.2021.161771. DOI
Cai T., Wang L., Liu Y., Zhang S., Dong W., Chen H., Yi X., Yuan J., Xia X., Liu C., et al. Ag3PO4/Ti3C2 MXene interface materials as a Schottky catalyst with enhanced photocatalytic activities and anti-photocorrosion performance. Appl. Catal. B Environ. 2018;239:545–554. doi: 10.1016/j.apcatb.2018.08.053. DOI
Long R., Yu Z., Tan Q., Feng X., Zhu X., Li X., Wang P. Ti3C2 MXene/NH2-MIL-88B(Fe): Research on the adsorption kinetics and photocatalytic performance of an efficient integrated photocatalytic adsorbent. Appl. Surf. Sci. 2021;570:151244. doi: 10.1016/j.apsusc.2021.151244. DOI
Vigneshwaran S., Park C.M., Meenakshi S. Designed fabrication of sulfide-rich bi-metallic-assembled MXene layered sheets with dramatically enhanced photocatalytic performance for Rhodamine B removal. Sep. Purif. Technol. 2021;258:118003. doi: 10.1016/j.seppur.2020.118003. DOI