• This record comes from PubMed

Chitosan-Based Carbon Quantum Dots for Biomedical Applications: Synthesis and Characterization

. 2019 Feb 16 ; 9 (2) : . [epub] 20190216

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
2017/25/N/ST8/02952 Narodowe Centrum Nauki

Rapid development in medicine and pharmacy has created a need for novel biomaterials with advanced properties such as photoluminescence, biocompability and long-term stability. The following research deals with the preparation of novel types of N-doped chitosan-based carbon quantum dots. Nanomaterials were obtained with simultaneous nitrogen-doping using biocompatible amino acids according to Green Chemistry principles. For the carbon quantum dots synthesis chitosan was used as a raw material known for its biocompability. The nanomaterials obtained in the form of lyophilic colloids were characterized by spectroscopic and spectrofluorimetric methods. Their quantum yields were determined. Additionally the cytotoxicity of the prepared bionanomaterials was evaluated by XTT (2,3-Bis-(2-methoxy-4-nitro5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt) method. Our results confirmed the formation of biocompatible quantum dots with carbon cores exhibiting luminescence in visible range. Performed studies showed that modification with lysine (11.5%) and glutamic acid (7.4%) had a high impact on quantum yield, whereas functionalization with amino acids rich in S and N atoms did not significantly increase in fluorescence properties. XTT assays as well as morphological studies on human dermal fibroblasts confirmed the lack of cytotoxicity of the prepared bionanomaterials. The study shows chitosan-based quantum dots to be promising for biomedical applications such as cell labelling, diagnostics or controlled drug delivery and release systems.

See more in PubMed

Liang Z., Kang M., Payne G.F., Wang X., Sun R. Probing Energy and Electron Transfer Mechanisms in Fluorescence Quenching of Biomass Carbon Quantum Dots. ACS Appl. Mater. Interfaces. 2016;8:17478–17488. doi: 10.1021/acsami.6b04826. PubMed DOI

Roy P., Chen P.-C., Periasamy A.P., Chen Y.-N., Chang H.-T. Photoluminescent carbon nanodots: Synthesis, physicochemical properties and analytical applications. Elsevier. 2015;18:447–458. doi: 10.1016/j.mattod.2015.04.005. DOI

Panda S., Jadav A., Panda N., Mohapatra S. A novel carbon quantum dot-based fluorescent nanosensor for selective detection of flumioxazin in real samples. N. J. Chem. 2018;42:2074–2080. doi: 10.1039/C7NJ04358A. DOI

Gao X., Du C., Zhuang Z., Chen W. Carbon quantum dot-based nanoprobes for metal ion detection. J. Mater. Chem. C. 2016;4:6927–6945. doi: 10.1039/C6TC02055K. DOI

Cayuela A., Soriano M.L., Carrillo-Carrion C., Valcarcel M. Semiconductor and carbon-based fluorescent nanodots: The need for consistency. Chem. Commun. 2015;52:1311–1326. doi: 10.1039/C5CC07754K. PubMed DOI

Wang R., Lu K.-Q., Tang Z.-R., Xu Y.-J. Recent progress in carbon quantum dots: Synthesis, properties and applications in photocatalysis. J. Mater. Chem. A. 2017;5:3717–3734. doi: 10.1039/C6TA08660H. DOI

Yu T., Wang H., Guo C., Zhai Y., Yang J., Yuan J. A rapid microwave synthesis of green-emissive carbon dots with solid-state fluorescence and pH-sensitive properties. R. Soc. Open Sci. 2018;5:180245. doi: 10.1098/rsos.180245. PubMed DOI PMC

Prasannan A., Imae T. One-Pot Synthesis of Fluorescent Carbon Dots from Orange Waste Peels. Ind. Eng. Chem. Res. 2013;52:15673–15678. doi: 10.1021/ie402421s. DOI

Zhang M., Fang Z., Zhao X., Niu Y., Lou J., Zhao L., Wu Y., Zou S., Du F., Shao Q. Hyaluronic acid functionalized Nitrogen-doped carbon quantum dots for targeted specific bioimaging. RSC Adv. 2016;6:104979–104984. doi: 10.1039/C6RA22210B. DOI

Luo P.G., Yang F., Yang S.T., Sonkar S.K., Yang L., Broglie J.J., Liu Y., Sun Y.P. Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Adv. 2014;4:10791–10807. doi: 10.1039/c3ra47683a. DOI

Tang C., Zhou J., Qian Z., Ma Y., Huang Y., Feng H. A universal fluorometric assay strategy for glycosidases based on functional carbon quantum dots: β-galactosidase activity detection in vitro and in living cells. J. Mater. Chem. B. 2017;5:1971–1979. doi: 10.1039/C6TB03361J. PubMed DOI

Wang Y., Hu A. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C. 2014;2:6921–6939. doi: 10.1039/C4TC00988F. DOI

Choi Y., Thongsai N., Chae A., Job S., Kang E.B., Paoprasert P., Park S.Y., In I. Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. J. Ind. Eng. Chem. 2017;47:329–335. doi: 10.1016/j.jiec.2016.12.002. DOI

Das R.K., Mohapatra S. Highly luminescent, heteroatom-doped carbon quantum dots for ultrasensitive sensing of glucosamine and targeted imaging of liver cancer cells. J. Mater. Chem. B. 2017;5:2190–2197. doi: 10.1039/C6TB03141B. PubMed DOI

Adams L.A., Fagbenro-Owoseni K.A. Tunable carbon quantum dots from starch via microwave assisted Carbonization. Int. J. Nanoelectronics Mater. 2017;10:11–20.

Rodríguez-Padrón D., Algarra M., Tarelho L.A.C., Frade J., Franco A., de Miguel G., Jiménez J., Rodríguez-Castellón E., Luque R. Catalyzed Microwave-Assisted Preparation of Carbon Quantum Dots from Lignocellulosic Residues. ACS Sustain. Chem. Eng. 2018;6:7200–7205. doi: 10.1021/acssuschemeng.7b03848. DOI

Lim S.Y., Shen W., Gao Z. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015;44:362–381. doi: 10.1039/C4CS00269E. PubMed DOI

Chae A., Choi Y., Jo S., Paoprasert P., Park S.Y., In I. Microwave-assisted synthesis of fluorescent carbon quantum dots from an A2/B3 monomer set. RSC Adv. 2017;7:12663–12669. doi: 10.1039/C6RA28176A. DOI

Pires N.R., Santos C.M.W., Sousa R.R., de Paula R.C.M., Cunha P.L.R., Feitosa J.P.A. Novel and Fast Microwave-Assisted Synthesis of Carbon Quantum Dots from Raw Cashew Gum. J. Braz. Chem. Soc. 2015;26:1274–1282. doi: 10.5935/0103-5053.20150094. DOI

Zuo J., Jiang T., Zhao X., Xiong X., Xiao S., Zhu Z. Preparation and Application of Fluorescent Carbon Dots. J. Nanomaterials. 2015;2015:1–13. doi: 10.1155/2015/787862. DOI

Chandra S., Pathan S.H., Mitra S., Modha B.H., Goswami A., Pramanik P. Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Adv. 2012;2:3602–3606. doi: 10.1039/c2ra00030j. DOI

Gao J., Zhu M., Huang H., Liu Y., Kang Z. Advances, challenges and promises of carbon dots. Inorg. Chem. Front. 2017;4:1963–1986. doi: 10.1039/C7QI00614D. DOI

Liu X., Pang J., Xu F., Zhan X. Simple Approach to Synthesize Amino-Functionalized Carbon Dots by Carbonization of Chitosan. Sci. Rep. 2016;6:31100. doi: 10.1038/srep31100. PubMed DOI PMC

Song J., Zhao L., Wang Y., Xue Y., Deng Y., Zhao X., Li Q. Carbon Quantum Dots Prepared with Chitosan for Synthesis of CQDs/AuNPs for Iodine Ions Detection. Nanomaterials. 2018;8:1043. doi: 10.3390/nano8121043. PubMed DOI PMC

Chowdhury D., Gogoi N., Majumdar G. Fluorescent carbon dots obtained from chitosan gel. RSC Adv. 2012;2:12156–12159. doi: 10.1039/c2ra21705h. DOI

Iannazzo D., Ziccarelli I., Pistone A. Graphene quantum dots: Multifunctional nanoplatforms for anticancer therapy. J. Mater. Chem. B. 2017;5:6471–6489. doi: 10.1039/C7TB00747G. PubMed DOI

Namdari P., Negahdari B., Eatemadi A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed. Pharmacother. 2017;87:209–222. doi: 10.1016/j.biopha.2016.12.108. PubMed DOI

Atabaev T. Doped carbon dots for sensing and bioimaging applications: A minireview. Nanomaterials. 2018;8:342. doi: 10.3390/nano8050342. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...