Eco-Friendly and Sustainable Pathways to Photoluminescent Carbon Quantum Dots (CQDs)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
36770515
PubMed Central
PMC9920802
DOI
10.3390/nano13030554
PII: nano13030554
Knihovny.cz E-zdroje
- Klíčová slova
- bottom-up approach, carbon quantum dots (CQDs), green synthesis, photoluminescent, top-down approach,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Carbon quantum dots (CQDs), a new family of photoluminescent 0D NPs, have recently received a lot of attention. They have enormous future potential due to their unique properties, which include low toxicity, high conductivity, and biocompatibility and accordingly can be used as a feasible replacement for conventional materials deployed in various optoelectronic, biomedical, and energy applications. The most recent trends and advancements in the synthesizing and setup of photoluminescent CQDs using environmentally friendly methods are thoroughly discussed in this review. The eco-friendly synthetic processes are emphasized, with a focus on biomass-derived precursors. Modification possibilities for creating newer physicochemical properties among different CQDs are also presented, along with a brief conceptual overview. The extensive amount of writings on them found in the literature explains their exceptional competence in a variety of fields, making these nanomaterials promising alternatives for real-world applications. Furthermore, the benefits, drawbacks, and opportunities for CQDs are discussed, with an emphasis on their future prospects in this emerging research field.
Zobrazit více v PubMed
Varma R.S. Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials. ACS Sustain. Chem. Eng. 2016;4:5866–5878. doi: 10.1021/acssuschemeng.6b01623. PubMed DOI PMC
Varma R.S. Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications. ACS Sustain. Chem. Eng. 2019;7:6458–6470. doi: 10.1021/acssuschemeng.8b06550. DOI
Varma R.S. Greener Approach to Nanomaterials and Their Sustainable Applications. Curr. Opin. Chem. Eng. 2012;1:123–128. doi: 10.1016/j.coche.2011.12.002. DOI
Varma R.S. Greener and Sustainable Chemistry. Appl. Sci. 2014;4:493–497. doi: 10.3390/app4040493. DOI
Iravani S., Varma R.S. Biofactories: Engineered Nanoparticles: Via Genetically Engineered Organisms. Green Chem. 2019;21:4583–4603. doi: 10.1039/C9GC01759C. DOI
Mohammadinejad R., Shavandi A., Raie D.S., Sangeetha J., Soleimani M., Shokrian Hajibehzad S., Thangadurai D., Hospet R., Popoola J.O., Arzani A., et al. Plant Molecular Farming: Production of Metallic Nanoparticles and Therapeutic Proteins Using Green Factories. Green Chem. 2019;21:1845–1865. doi: 10.1039/C9GC00335E. DOI
Mohammadinejad R., Karimi S., Iravani S., Varma R.S. Plant-Derived Nanostructures: Types and Applications. Green Chem. 2015;18:20–52. doi: 10.1039/C5GC01403D. DOI
Iravani S., Varma R.S. Plant-Derived Edible Nanoparticles and MiRNAs: Emerging Frontier for Therapeutics and Targeted Drug-Delivery. ACS Sustain. Chem. Eng. 2019;7:8055–8069. doi: 10.1021/acssuschemeng.9b00954. DOI
Zahir N., Magri P., Luo W., Gaumet J.J., Pierrat P. Recent Advances on Graphene Quantum Dots for Electrochemical Energy Storage Devices. Energy Environ. Mater. 2021;5:201–214. doi: 10.1002/eem2.12167. DOI
Facure M.H.M., Schneider R., Mercante L.A., Correa D.S. A Review on Graphene Quantum Dots and Their Nanocomposites: From Laboratory Synthesis towards Agricultural and Environmental Applications. Environ. Sci. Nano. 2020;7:3710–3734. doi: 10.1039/D0EN00787K. DOI
Liu Q., Sun J., Gao K., Chen N., Sun X., Ti D., Bai C., Cui R., Qu L. Graphene Quantum Dots for Energy Storage and Conversion: From Fabrication to Applications. Mater. Chem. Front. 2020;4:421–436. doi: 10.1039/C9QM00553F. DOI
Bak S., Kim D., Lee H. Graphene Quantum Dots and Their Possible Energy Applications: A Review. Curr. Appl. Phys. 2016;16:1192–1201. doi: 10.1016/j.cap.2016.03.026. DOI
Matsui T., Sai H., Bidiville A., Hsu H.J., Matsubara K. Progress and Limitations of Thin-Film Silicon Solar Cells. Sol. Energy. 2018;170:486–498. doi: 10.1016/j.solener.2018.05.077. DOI
Gao Z., Zhao K. Minimal Realization of Linear System Based on New Smith-Mcmillan Normal Form of Transfer Function Matrix. Adv. Syst. Sci. Appl. 2010;10:531–537.
Mhatre V.H., Kcm J.-A.L. Genetic Changes NIH Public Access. Bone. 2012;23:1–7. doi: 10.1038/jid.2014.371. DOI
Pan D., Zhang J., Li Z., Wu M. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Adv. Mater. 2010;22:734–738. doi: 10.1002/adma.200902825. PubMed DOI
Shaker M., Riahifar R., Li Y. A Review on the Superb Contribution of Carbon and Graphene Quantum Dots to Electrochemical Capacitors’ Performance: Synthesis and Application. FlatChem. 2020;22:100171. doi: 10.1016/j.flatc.2020.100171. DOI
Peng J., Gao W., Gupta B.K., Liu Z., Romero-Aburto R., Ge L., Song L., Alemany L.B., Zhan X., Gao G., et al. Graphene Quantum Dots Derived from Carbon Fibers. Nano Lett. 2012;12:844–849. doi: 10.1021/nl2038979. PubMed DOI
Bressi V., Ferlazzo A., Iannazzo D., Espro C. Graphene Quantum Dots by Eco-Friendly Green Synthesis for Electrochemical Sensing: Recent Advances and Future Perspectives. Nanomaterials. 2021;11:1120. doi: 10.3390/nano11051120. PubMed DOI PMC
Sharma R.K., Gulati S., Mehta S. Preparation of Gold Nanoparticles Using Tea: A Green Chemistry Experiment. J. Chem. Educ. 2012;89:1316–1318. doi: 10.1021/ed2002175. DOI
Sharma R.K., Gulati S., Sachdeva S. One Pot and Solvent-Free Synthesis of 2,9,16,23-Tetrachlorometal(II) Phthalocyanines. Green Chem. Lett. Rev. 2012;5:83–87. doi: 10.1080/17518253.2011.581701. DOI
Pant P., Bansal R., Gulati S., Kumar S., Kodwani R. Porous and Chelated Nanostructured Multifunctional Materials: Recoverable and Reusable Sorbents for Extraction of Metal Ions and Catalysts for Diverse Organic Reactions. J. Nanostruct. Chem. 2016;6:145–157. doi: 10.1007/s40097-016-0190-5. DOI
Sharma R.K., Sharma S., Gulati S., Pandey A. Fabrication of a Novel Nano-Composite Carbon Paste Sensor Based on Silica-Nanospheres Functionalized with Isatin Thiosemicarbazone for Potentiometric Monitoring of Cu2+ Ions in Real Samples. Anal. Methods. 2013;5:1414–1426. doi: 10.1039/c3ay26319c. DOI
Kumar S., Diwan A., Singh P., Gulati S., Choudhary D., Mongia A., Shukla S., Gupta A. Functionalized Gold Nanostructures: Promising Gene Delivery Vehicles in Cancer Treatment. RSC Adv. 2019;9:23894–23907. doi: 10.1039/C9RA03608C. PubMed DOI PMC
Iravani S., Varma R.S. Green Synthesis, Biomedical and Biotechnological Applications of Carbon and Graphene Quantum Dots. A Review. Environ. Chem. Lett. 2020;18:703–727. doi: 10.1007/s10311-020-00984-0. PubMed DOI PMC
Shaik S.A., Sengupta S., Varma R.S., Gawande M.B., Goswami A. Syntheses of N-Doped Carbon Quantum Dots (NCQDs) from Bioderived Precursors: A Timely Update. ACS Sustain. Chem. Eng. 2021;9:3–49. doi: 10.1021/acssuschemeng.0c04727. DOI
Jouyandeh M., Mousavi Khadem S.S., Habibzadeh S., Esmaeili A., Abida O., Vatanpour V., Rabiee N., Bagherzadeh M., Iravani S., Reza Saeb M., et al. Quantum Dots for Photocatalysis: Synthesis and Environmental Applications. Green Chem. 2021;23:4931–4954. doi: 10.1039/D1GC00639H. DOI
Gawande M.B., Moores A., Varma R.S. ACS Sustainable Chemistry & Engineering Virtual Special Issue on N-Doped Carbon Materials: Synthesis and Sustainable Applications. ACS Sustain. Chem. Eng. 2021;9:3975–3976. doi: 10.1021/acssuschemeng.1c01349. DOI
Sharma K., Raizada P., Hasija V., Singh P., Bajpai A., Nguyen V.H., Rangabhashiyam S., Kumar P., Nadda A.K., Kim S.Y., et al. ZnS-Based Quantum Dots as Photocatalysts for Water Purification. J. Water Process Eng. 2021;43:102217. doi: 10.1016/j.jwpe.2021.102217. DOI
Zheng X.T., Ananthanarayanan A., Luo K.Q., Chen P. Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small. 2015;11:1620–1636. doi: 10.1002/smll.201402648. PubMed DOI
Roy P., Periasamy A.P., Chuang C., Liou Y.R., Chen Y.F., Joly J., Liang C.T., Chang H.T. Plant Leaf-Derived Graphene Quantum Dots and Applications for White LEDs. New J. Chem. 2014;38:4946–4951. doi: 10.1039/C4NJ01185F. DOI
Wang Z., Yu J., Zhang X., Li N., Liu B., Li Y., Wang Y., Wang W., Li Y., Zhang L., et al. Large-Scale and Controllable Synthesis of Graphene Quantum Dots from Rice Husk Biomass: A Comprehensive Utilization Strategy. ACS Appl. Mater. Interfaces. 2016;8:1434–1439. doi: 10.1021/acsami.5b10660. PubMed DOI
Suryawanshi A., Biswal M., Mhamane D., Gokhale R., Patil S., Guin D., Ogale S. Large Scale Synthesis of Graphene Quantum Dots (GQDs) from Waste Biomass and Their Use as an Efficient and Selective Photoluminescence on-off-on Probe for Ag+ Ions. Nanoscale. 2014;6:11664–11670. doi: 10.1039/C4NR02494J. PubMed DOI
Kang Z., Lee S.-T. Carbon Dots: Advances in Nanocarbon Applications. Nanoscale. 2019;11:19214–19224. doi: 10.1039/C9NR05647E. PubMed DOI
Das P., Ganguly S., Ahmed S.R., Sherazee M., Margel S., Gedanken A., Srinivasan S., Rajabzadeh A.R. Carbon Dot Biopolymer-Based Flexible Functional Films for Antioxidant and Food Monitoring Applications. ACS Appl. Polym. Mater. 2022;4:9323–9340. doi: 10.1021/acsapm.2c01579. DOI
Du X., Zhang M., Ma Y., Wang X., Liu Y., Huang H., Kang Z. Size-Dependent Antibacterial of Carbon Dots by Selective Absorption and Differential Oxidative Stress of Bacteria. J. Colloid Interface Sci. 2023;634:44–53. doi: 10.1016/j.jcis.2022.12.025. PubMed DOI
Ponomarenko L.A., Schedin F., Katsnelson M.I., Yang R., Hill E.W., Novoselov K.S., Geim A.K. Chaotic Dirac Billiard in Graphene Quantum Dots. Science. 2008;320:356–358. doi: 10.1126/science.1154663. PubMed DOI
Li X., Rui M., Song J., Shen Z., Zeng H. Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Adv. Funct. Mater. 2015;25:4929–4947. doi: 10.1002/adfm.201501250. DOI
Zheng P., Wu N. Fluorescence and Sensing Applications of Graphene Oxide and Graphene Quantum Dots: A Review. Chem. Asian J. 2017;12:2343–2353. doi: 10.1002/asia.201700814. PubMed DOI PMC
Yan X., Cui X., Li B., Li L.S. Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics. Nano Lett. 2010;10:1869–1873. doi: 10.1021/nl101060h. PubMed DOI
Wang Y., Li X., Song J., Xiao L., Zeng H., Sun H. All-Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics. Adv. Mater. 2015;27:7101–7108. doi: 10.1002/adma.201503573. PubMed DOI
Wang Y., Li X., Zhao X., Xiao L., Zeng H., Sun H. Nonlinear Absorption and Low-Threshold Multiphoton Pumped Stimulated Emission from All-Inorganic Perovskite Nanocrystals. Nano Lett. 2016;16:448–453. doi: 10.1021/acs.nanolett.5b04110. PubMed DOI
Hardman R. A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors. Environ. Health Perspect. 2006;114:165–172. doi: 10.1289/ehp.8284. PubMed DOI PMC
Geys J., Nemmar A., Verbeken E., Smolders E., Ratoi M., Hoylaerts M.F., Nemery B., Hoet P.H.M. Acute Toxicity and Prothrombotic Effects of Quantum Dots: Impact of Surface Charge. Environ. Health Perspect. 2008;116:1607–1613. doi: 10.1289/ehp.11566. PubMed DOI PMC
Xu X., Ray R., Gu Y., Ploehn H.J., Gearheart L., Raker K., Scrivens W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004;126:12736–12737. doi: 10.1021/ja040082h. PubMed DOI
Dong Y., Shao J., Chen C., Li H., Wang R., Chi Y., Lin X., Chen G. Blue Luminescent Graphene Quantum Dots and Graphene Oxide Prepared by Tuning the Carbonization Degree of Citric Acid. Carbon. 2012;50:4738–4743. doi: 10.1016/j.carbon.2012.06.002. DOI
Fang X., Li M., Guo K., Li J., Pan M., Bai L., Luoshan M., Zhao X. Graphene Quantum Dots Optimization of Dye-Sensitized Solar Cells. Electrochim. Acta. 2014;137:634–638. doi: 10.1016/j.electacta.2014.06.075. DOI
Chung S., Revia R.A., Zhang M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. Adv. Mater. 2021;33:1904362. doi: 10.1002/adma.201904362. PubMed DOI PMC
Prabhu S.A., Kavithayeni V., Suganthy R., Geetha K. Graphene Quantum Dots Synthesis and Energy Application: A Review. Carbon Lett. 2021;31:1–12. doi: 10.1007/s42823-020-00154-w. DOI
Ghosh D., Sarkar K., Devi P., Kim K.H., Kumar P. Current and Future Perspectives of Carbon and Graphene Quantum Dots: From Synthesis to Strategy for Building Optoelectronic and Energy Devices. Renew. Sustain. Energy Rev. 2021;135:110391. doi: 10.1016/j.rser.2020.110391. DOI
Varma R.S. Journey on Greener Pathways: From the Use of Alternate Energy Inputs and Benign Reaction Media to Sustainable Applications of Nano-Catalysts in Synthesis and Environmental Remediation. Green Chem. 2014;16:2027–2041. doi: 10.1039/c3gc42640h. DOI
Sharma R.K., Gulati S., Puri A. Green Chemistry Solutions to Water Pollution. Elsevier Inc.; Amsterdam, The Netherlands: 2014.
Cue B.W., Zhang J. Green Process Chemistry in the Pharmaceutical Industry. Green Chem. Lett. Rev. 2009;2:193–211. doi: 10.1080/17518250903258150. DOI
Malik P., Shankar R., Malik V., Sharma N., Mukherjee T.K. Green Chemistry Based Benign Routes for Nanoparticle Synthesis. J. Nanoparticles. 2014;2014:1–14. doi: 10.1155/2014/302429. DOI
Mahesh S., Lekshmi C.L., Renuka K.D. New Paradigms for the Synthesis of Graphene Quantum Dots from Sustainable Bioresources. New J. Chem. 2017;41:8706–8710. doi: 10.1039/C7NJ00544J. DOI
Tade R.S., Nangare S.N., Patil A.G., Pandey A., Deshmukh P.K., Patil D.R., Agrawal T.N., Mutalik S., Patil A.M., More M.P., et al. Recent Advancement in Bio-Precursor Derived Graphene Quantum Dots: Synthesis, Characterization and Toxicological Perspective. Nanotechnology. 2020;31:292001. doi: 10.1088/1361-6528/ab803e. PubMed DOI
Zhang J., Ma Y.Q., Li N., Zhu J.L., Zhang T., Zhang W., Liu B. Preparation of Graphene Quantum Dots and Their Application in Cell Imaging. J. Nanomater. 2016;2016:9245865. doi: 10.1155/2016/9245865. DOI
Zhu S., Song Y., Wang J., Wan H., Zhang Y., Ning Y., Yang B. Photoluminescence Mechanism in Graphene Quantum Dots: Quantum Confinement Effect and Surface/Edge State. Nano Today. 2017;13:10–14. doi: 10.1016/j.nantod.2016.12.006. DOI
Ye R., Xiang C., Lin J., Peng Z., Huang K., Yan Z., Cook N.P., Samuel E.L.G., Hwang C.C., Ruan G., et al. Coal as an Abundant Source of Graphene Quantum Dots. Nat. Commun. 2013;4:2943. doi: 10.1038/ncomms3943. PubMed DOI
Chingombe P., Saha B., Wakeman R.J. Surface Modification and Characterisation of a Coal-Based Activated Carbon. Carbon. 2005;43:3132–3143. doi: 10.1016/j.carbon.2005.06.021. DOI
Kawano T., Kubota M., Onyango M.S., Watanabe F., Matsuda H. Preparation of Activated Carbon from Petroleum Coke by KOH Chemical Activation for Adsorption Heat Pump. Appl. Therm. Eng. 2008;28:865–871. doi: 10.1016/j.applthermaleng.2007.07.009. DOI
Xie X., Goodell B. Thermal Degradation and Conversion of Plant Biomass into High Value Carbon Products. ACS Symp. Ser. 2014;1158:147–158. doi: 10.1021/bk-2014-1158.ch008. DOI
Schmidt L.D., Dauenhauer P.J. Chemical Engineering: Hybrid Routes to Biofuels. Nature. 2007;447:914–915. doi: 10.1038/447914a. PubMed DOI
Tilman D., Hill J., Lehman C. Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass. Science. 2006;314:1598–1600. doi: 10.1126/science.1133306. PubMed DOI
Yang S., Yang Y., He P., Wang G., Ding G., Xie X. Insights into the Oxidation Mechanism of Sp2-Sp3 Hybrid Carbon Materials: Preparation of a Water-Soluble 2D Porous Conductive Network and Detectable Molecule Separation. Langmuir. 2017;33:913–919. doi: 10.1021/acs.langmuir.6b03937. PubMed DOI
Zhu C., Yang S., Wang G., Mo R., He P., Sun J., Di Z., Kang Z., Yuan N., Ding J., et al. A New Mild, Clean and Highly Efficient Method for the Preparation of Graphene Quantum Dots without by-Products. J. Mater. Chem. B. 2015;3:6871–6876. doi: 10.1039/C5TB01093D. PubMed DOI
Zhou X., Zhang Y., Wang C., Wu X., Yang Y., Zheng B., Wu H., Guo S., Zhang J. Photo-Fenton Reaction of Graphene Oxide: A New Strategy to Prepare Graphene Quantum Dots for DNA Cleavage. ACS Nano. 2012;6:6592–6599. doi: 10.1021/nn301629v. PubMed DOI
Kumar V.B., Tang J., Lee K.J., Pol V.G., Gedanken A. In Situ Sonochemical Synthesis of Luminescent Sn@C-Dots and a Hybrid Sn@C-Dots@Sn Anode for Lithium-Ion Batteries. RSC Adv. 2016;6:66256–66265. doi: 10.1039/C6RA09926B. DOI
Chen W., Shen J., Lv G., Li D., Hu Y., Zhou C., Liu X., Dai Z. Green Synthesis of Graphene Quantum Dots from Cotton Cellulose. ChemistrySelect. 2019;4:2898–2902. doi: 10.1002/slct.201803512. DOI
Zhuo S., Shao M., Lee S. Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis. ACS Nano. 2012;6:1059–1064. doi: 10.1021/nn2040395. PubMed DOI
Zhu Y., Wang G., Jiang H., Chen L., Zhang X. One-Step Ultrasonic Synthesis of Graphene Quantum Dots with High Quantum Yield and Their Application in Sensing Alkaline Phosphatase. Chem. Commun. 2015;51:948–951. doi: 10.1039/C4CC07449A. PubMed DOI
Sarkar S., Gandla D., Venkatesh Y., Bangal P.R., Ghosh S., Yang Y., Misra S. Graphene Quantum Dots from Graphite by Liquid Exfoliation Showing Excitation-Independent Emission, Fluorescence Upconversion and Delayed Fluorescence. Phys. Chem. Chem. Phys. 2016;18:21278–21287. doi: 10.1039/C6CP01528J. PubMed DOI
Wen J., Li M., Xiao J., Liu C., Li Z., Xie Y., Ning P., Cao H., Zhang Y. Novel Oxidative Cutting Graphene Oxide to Graphene Quantum Dots for Electrochemical Sensing Application. Mater. Today Commun. 2016;8:127–133. doi: 10.1016/j.mtcomm.2016.07.006. DOI
Kanwal S., Jahan S., Mansoor F. An Ultrasonic-Assisted Synthesis of Leather-Derived Luminescent Graphene Quantum Dots: Catalytic Reduction and Switch on-off Probe for Nitro-Explosives. RSC Adv. 2020;10:22959–22965. doi: 10.1039/D0RA03715J. PubMed DOI PMC
Ali J., Siddiqui G.U.D., Yang Y.J., Lee K.T., Um K., Choi K.H. Direct Synthesis of Graphene Quantum Dots from Multilayer Graphene Flakes through Grinding Assisted Co-Solvent Ultrasonication for All-Printed Resistive Switching Arrays. RSC Adv. 2016;6:5068–5078. doi: 10.1039/C5RA21699K. DOI
Gao H., Xue C., Hu G., Zhu K. Production of Graphene Quantum Dots by Ultrasound-Assisted Exfoliation in Supercritical CO2/H2O Medium. Ultrason. Sonochem. 2017;37:120–127. doi: 10.1016/j.ultsonch.2017.01.001. PubMed DOI
Lu L., Zhu Y., Shi C., Pei Y.T. Large-Scale Synthesis of Defect-Selective Graphene Quantum Dots by Ultrasonic-Assisted Liquid-Phase Exfoliation. Carbon. 2016;109:373–383. doi: 10.1016/j.carbon.2016.08.023. DOI
Sandeep Kumar G., Roy R., Sen D., Ghorai U.K., Thapa R., Mazumder N., Saha S., Chattopadhyay K.K. Amino-Functionalized Graphene Quantum Dots: Origin of Tunable Heterogeneous Photoluminescence. Nanoscale. 2014;6:3384–3391. doi: 10.1039/c3nr05376h. PubMed DOI
Zhang Y., Li K., Ren S., Dang Y., Liu G., Zhang R., Zhang K., Long X., Jia K. Coal-Derived Graphene Quantum Dots Produced by Ultrasonic Physical Tailoring and Their Capacity for Cu(II) Detection. ACS Sustain. Chem. Eng. 2019;7:9793–9799. doi: 10.1021/acssuschemeng.8b06792. DOI
Ding H., Zhang F., Zhao C., Lv Y., Ma G., Wei W., Tian Z. Beyond a Carrier: Graphene Quantum Dots as a Probe for Programmatically Monitoring Anti-Cancer Drug Delivery, Release, and Response. ACS Appl. Mater. Interfaces. 2017;9:27396–27401. doi: 10.1021/acsami.7b08824. PubMed DOI
Gu S., Hsieh C.T., Chiang Y.M., Tzou D.Y., Chen Y.F., Gandomi Y.A. Optimization of Graphene Quantum Dots by Chemical Exfoliation from Graphite Powders and Carbon Nanotubes. Mater. Chem. Phys. 2018;215:104–111. doi: 10.1016/j.matchemphys.2018.05.016. DOI
Wang N., Li L., Zhou N., Chen S. Cage Breaking of C60 Into Photoluminescent Graphene Oxide Quantum Dots: An Efficient Peroxidase Mimic. Phys. Status Solidi Basic Res. 2018;255:2–5. doi: 10.1002/pssb.201700535. DOI
Liu F., Sun Y., Zheng Y., Tang N., Li M., Zhong W., Du Y. Gram-Scale Synthesis of High-Purity Graphene Quantum Dots with Multicolor Photoluminescence. RSC Adv. 2015;5:103428–103432. doi: 10.1039/C5RA19219F. DOI
Wang L., Li W., Wu B., Li Z., Wang S., Liu Y., Pan D., Wu M. Facile Synthesis of Fluorescent Graphene Quantum Dots from Coffee Grounds for Bioimaging and Sensing. Chem. Eng. J. 2016;300:75–82. doi: 10.1016/j.cej.2016.04.123. DOI
Tian R., Zhong S., Wu J., Jiang W., Shen Y., Jiang W., Wang T. Solvothermal Method to Prepare Graphene Quantum Dots by Hydrogen Peroxide. Opt. Mater. 2016;60:204–208. doi: 10.1016/j.optmat.2016.07.032. DOI
Xin Q., Shah H., Xie W., Wang Y., Jia X., Nawaz A., Song M., Gong J.R. Preparation of Blue- and Green-Emissive Nitrogen-Doped Graphene Quantum Dots from Graphite and Their Application in Bioimaging. Mater. Sci. Eng. C. 2021;119:111642. doi: 10.1016/j.msec.2020.111642. PubMed DOI
Huang H., Yang S., Li Q., Yang Y., Wang G., You X., Mao B., Wang H., Ma Y., He P., et al. Electrochemical cutting in weak aqueous electrolytes: The strategy for efficient and controllable preparation of graphene quantum dots. Langmuir. 2018;34:250–258. doi: 10.1021/acs.langmuir.7b03425. PubMed DOI
Lu J., Yang J.X., Wang J., Lim A., Wang S., Loh K.P. One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano. 2009;3:2367–2375. doi: 10.1021/nn900546b. PubMed DOI
Nirala N.R., Khandelwal G., Kumar B., Vinita, Prakash R., Kumar V. One Step Electro-Oxidative Preparation of Graphene Quantum Dots from Wood Charcoal as a Peroxidase Mimetic. Talanta. 2017;173:36–43. doi: 10.1016/j.talanta.2017.05.061. PubMed DOI
Li Q., Zhang S., Dai L., Li L.S. Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction. J. Am. Chem. Soc. 2012;134:18932–18935. doi: 10.1021/ja309270h. PubMed DOI
Li Y., Hu Y., Zhao Y., Shi G., Deng L., Hou Y., Qu L. An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics. Adv. Mater. 2011;23:776–780. doi: 10.1002/adma.201003819. PubMed DOI
Li H., He X., Kang Z., Huang H., Liu Y., Liu J., Lian S., Tsang C.H.A., Yang X., Lee S.T. Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew. Chem. Int. Ed. 2010;49:4430–4434. doi: 10.1002/anie.200906154. PubMed DOI
Ananthanarayanan A., Wang X., Routh P., Sana B., Lim S., Kim D.H., Lim K.H., Li J., Chen P. Facile Synthesis of Graphene Quantum Dots from 3D Graphene and Their Application for Fe3+ Sensing. Adv. Funct. Mater. 2014;24:3021–3026. doi: 10.1002/adfm.201303441. DOI
Sun J., Yang S., Wang Z., Shen H., Xu T., Sun L., Li H., Chen W., Jiang X., Ding G., et al. Ultra-High Quantum Yield of Graphene Quantum Dots: Aromatic-Nitrogen Doping and Photoluminescence Mechanism. Part. Part. Syst. Charact. 2015;32:434–440. doi: 10.1002/ppsc.201400189. DOI
Ghanbari N., Salehi Z., Khodadadi A.A., Shokrgozar M.A., Saboury A.A., Farzaneh F. Tryptophan-Functionalized Graphene Quantum Dots with Enhanced Curcumin Loading Capacity and PH-Sensitive Release. J. Drug Deliv. Sci. Technol. 2021;61:102137. doi: 10.1016/j.jddst.2020.102137. DOI
Li Y., Liu H., Liu X.Q., Li S., Wang L., Ma N., Qiu D. Free-Radical-Assisted Rapid Synthesis of Graphene Quantum Dots and Their Oxidizability Studies. Langmuir. 2016;32:8641–8649. doi: 10.1021/acs.langmuir.6b02422. PubMed DOI
Hu X., Ma X.Y., Tian J., Huang Z. Rapid and Facile Synthesis of Graphene Quantum Dots with High Antioxidant Activity. Inorg. Chem. Commun. 2020;122:108288. doi: 10.1016/j.inoche.2020.108288. DOI
Zhou C., Jiang W., Via B.K. Facile Synthesis of Soluble Graphene Quantum Dots and Its Improved Property in Detecting Heavy Metal Ions. Colloids Surf. B Biointerfaces. 2014;118:72–76. doi: 10.1016/j.colsurfb.2014.03.038. PubMed DOI
Chen W., Li F., Wu C., Guo T. Optical Properties of Fluorescent Zigzag Graphene Quantum Dots Derived from Multi-Walled Carbon Nanotubes. Appl. Phys. Lett. 2014;104:063109. doi: 10.1063/1.4863963. DOI
Wang C.C., Lu S.Y. Carbon Black-Derived Graphene Quantum Dots Composited with Carbon Aerogel as a Highly Efficient and Stable Reduction Catalyst for the Iodide/Tri-Iodide Couple. Nanoscale. 2015;7:1209–1215. doi: 10.1039/C4NR06118G. PubMed DOI
Piyasena P., Dussault C., Koutchma T., Ramaswamy H.S., Awuah G.B. Radio Frequency Heating of Foods: Principles, Applications and Related Properties—A Review. Crit. Rev. Food Sci. Nutr. 2003;43:587–606. doi: 10.1080/10408690390251129. PubMed DOI
Zheng B., Chen Y., Li P., Wang Z., Cao B., Qi F., Liu J., Qiu Z., Zhang W. Ultrafast Ammonia-Driven, Microwave-Assisted Synthesis of Nitrogen-Doped Graphene Quantum Dots and Their Optical Properties. Nanophotonics. 2017;6:259–267. doi: 10.1515/nanoph-2016-0102. DOI
Tak K., Sharma R., Dave V., Jain S., Sharma S. Clitoria Ternatea Mediated Synthesis of Graphene Quantum Dots for the Treatment of Alzheimer’s Disease. ACS Chem. Neurosci. 2020;11:3741–3748. doi: 10.1021/acschemneuro.0c00273. PubMed DOI
Li L.L., Ji J., Fei R., Wang C.Z., Lu Q., Zhang J.R., Jiang L.P., Zhu J.J. A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots. Adv. Funct. Mater. 2012;22:2971–2979. doi: 10.1002/adfm.201200166. DOI
Fresco-Cala B., Soriano M.L., Sciortino A., Cannas M., Messina F., Cardenas S. One-Pot Synthesis of Graphene Quantum Dots and Simultaneous Nanostructured Self-Assembly: Via a Novel Microwave-Assisted Method: Impact on Triazine Removal and Efficiency Monitoring. RSC Adv. 2018;8:29939–29946. doi: 10.1039/C8RA04286A. PubMed DOI PMC
Gu S., Hsieh C.T., Ashraf Gandomi Y., Chang J.K., Li J., Li J., Zhang H., Guo Q., Lau K.C., Pandey R. Microwave Growth and Tunable Photoluminescence of Nitrogen-Doped Graphene and Carbon Nitride Quantum Dots. J. Mater. Chem. C. 2019;7:5468–5476. doi: 10.1039/C9TC00233B. DOI
Hai X., Mao Q.X., Wang W.J., Wang X.F., Chen X.W., Wang J.H. An Acid-Free Microwave Approach to Prepare Highly Luminescent Boron-Doped Graphene Quantum Dots for Cell Imaging. J. Mater. Chem. B. 2015;3:9109–9114. doi: 10.1039/C5TB01954K. PubMed DOI
Kumawat M.K., Srivastava R., Thakur M., Gurung R.B. Graphene Quantum Dots from Mangifera Indica: Application in near-Infrared Bioimaging and Intracellular Nanothermometry. ACS Sustain. Chem. Eng. 2017;5:1382–1391. doi: 10.1021/acssuschemeng.6b01893. DOI
Vijaya P.M., Kumar M.P., Takahashi C., Kundu S., Narayanan T.N., Pattanayak D.K. Boron-Doped Graphene Quantum Dots: An Efficient Photoanode for a Dye Sensitized Solar Cell. New J. Chem. 2019;43:14313–14319. doi: 10.1039/c9nj00052f. DOI
Nguyen H.Y., Le X.H., Dao N.T., Pham N.T., Vu T.H.H., Nguyen N.H., Pham T.N. Microwave-Assisted Synthesis of Graphene Quantum Dots and Nitrogen-Doped Graphene Quantum Dots: Raman Characterization and Their Optical Properties. Adv. Nat. Sci. Nanosci. Nanotechnol. 2019;10:025005. doi: 10.1088/2043-6254/ab1b73. DOI
Qu D., Zheng M., Zhang L., Zhao H., Xie Z., Jing X., Haddad R.E., Fan H., Sun Z. Formation Mechanism and Optimization of Highly Luminescent N-Doped Graphene Quantum Dots. Sci. Rep. 2014;4:5294. doi: 10.1038/srep05294. PubMed DOI PMC
Ren Q., Ga L., Ai J. Rapid Synthesis of Highly Fluorescent Nitrogen-Doped Graphene Quantum Dots for Effective Detection of Ferric Ions and as Fluorescent Ink. ACS Omega. 2019;4:15842–15848. doi: 10.1021/acsomega.9b01612. PubMed DOI PMC
Kumawat M.K., Thakur M., Gurung R.B., Srivastava R. Graphene Quantum Dots for Cell Proliferation, Nucleus Imaging, and Photoluminescent Sensing Applications. Sci. Rep. 2017;7:15858. doi: 10.1038/s41598-017-16025-w. PubMed DOI PMC
Shin Y., Lee J., Yang J., Park J., Lee K., Kim S., Park Y., Lee H. Mass Production of Graphene Quantum Dots by One-Pot Synthesis Directly from Graphite in High Yield. Small. 2014;10:866–870. doi: 10.1002/smll.201302286. PubMed DOI
Li W., Li M., Liu Y., Pan D., Li Z., Wang L., Wu M. Three Minute Ultrarapid Microwave-Assisted Synthesis of Bright Fluorescent Graphene Quantum Dots for Live Cell Staining and White LEDs. ACS Appl. Nano Mater. 2018;1:1623–1630. doi: 10.1021/acsanm.8b00114. DOI
Umrao S., Jang M.H., Oh J.H., Kim G., Sahoo S., Cho Y.H., Srivastva A., Oh I.K. Microwave Bottom-up Route for Size-Tunable and Switchable Photoluminescent Graphene Quantum Dots Using Acetylacetone: New Platform for Enzyme-Free Detection of Hydrogen Peroxide. Carbon. 2015;81:514–524. doi: 10.1016/j.carbon.2014.09.084. DOI
Zhuang Q., Wang Y., Ni Y. Solid-Phase Synthesis of Graphene Quantum Dots from the Food Additive Citric Acid under Microwave Irradiation and Their Use in Live-Cell Imaging. Luminescence. 2016;31:746–753. doi: 10.1002/bio.3019. PubMed DOI
Zeng Z., Chen S., Tan T.T.Y., Xiao F.X. Graphene Quantum Dots (GQDs) and Its Derivatives for Multifarious Photocatalysis and Photoelectrocatalysis. Catal. Today. 2018;315:171–183. doi: 10.1016/j.cattod.2018.01.005. DOI
Ozhukil Valappil M., Pillai V.K., Alwarappan S. Spotlighting Graphene Quantum Dots and beyond: Synthesis, Properties and Sensing Applications. Appl. Mater. Today. 2017;9:350–371. doi: 10.1016/j.apmt.2017.09.002. DOI
Tang L., Ji R., Cao X., Lin J., Jiang H., Li X., Teng K.S., Luk C.M., Zeng S., Hao J., et al. Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots. ACS Nano. 2012;6:5102–5110. doi: 10.1021/nn300760g. PubMed DOI
Tang L., Ji R., Li X., Teng K.S., Lau S.P. Size-Dependent Structural and Optical Characteristics of Glucose-Derived Graphene Quantum Dots. Part. Part. Syst. Charact. 2013;30:523–531. doi: 10.1002/ppsc.201200131. DOI
Chen S., Hai X., Xia C., Chen X.W., Wang J.H. Preparation of Excitation-Independent Photoluminescent Graphene Quantum Dots with Visible-Light Excitation/Emission for Cell Imaging. Chem. Eur. J. 2013;19:15918–15923. doi: 10.1002/chem.201302207. PubMed DOI
Sun H., Ji H., Ju E., Guan Y., Ren J., Qu X. Synthesis of Fluorinated and Nonfluorinated Graphene Quantum Dots through a New Top-down Strategy for Long-Time Cellular Imaging. Chem. Eur. J. 2015;21:3791–3797. doi: 10.1002/chem.201406345. PubMed DOI
Agarwal S., Sadeghi N., Tyagi I., Gupta V.K., Fakhri A. Adsorption of Toxic Carbamate Pesticide Oxamyl from Liquid Phase by Newly Synthesized and Characterized Graphene Quantum Dots Nanomaterials. J. Colloid Interface Sci. 2016;478:430–438. doi: 10.1016/j.jcis.2016.06.029. PubMed DOI
Hou X., Li Y., Zhao C. Microwave-Assisted Synthesis of Nitrogen-Doped Multi-Layer Graphene Quantum Dots with Oxygen-Rich Functional Groups. Aust. J. Chem. 2016;69:357–360. doi: 10.1071/CH15431. DOI
Ben Aoun S. Nanostructured Carbon Electrode Modified with N-Doped Graphene Quantum Dots—Chitosan Nanocomposite: A Sensitive Electrochemical Dopamine Sensor. R. Soc. Open Sci. 2017;4:171199. doi: 10.1098/rsos.171199. PubMed DOI PMC
Luo Z., Qi G., Chen K., Zou M., Yuwen L., Zhang X., Huang W., Wang L. Microwave-Assisted Preparation of White Fluorescent Graphene Quantum Dots as a Novel Phosphor for Enhanced White-Light-Emitting Diodes. Adv. Funct. Mater. 2016;26:2739–2744. doi: 10.1002/adfm.201505044. DOI
Luo Z., Yang D., Yang C., Wu X., Hu Y., Zhang Y., Yuwen L., Yeow E.K.L., Weng L., Huang W., et al. Graphene Quantum Dots Modified with Adenine for Efficient Two-Photon Bioimaging and White Light-Activated Antibacteria. Appl. Surf. Sci. 2018;434:155–162. doi: 10.1016/j.apsusc.2017.10.121. DOI
Jénnifer Gómez I., Vázquez Sulleiro M., Dolečková A., Pizúrová N., Medalová J., Bednařík A., Preisler J., Nečas D., Zajíčková L. Structure Elucidation of Multicolor Emissive Graphene Quantum Dots towards Cell Guidance. Mater. Chem. Front. 2022;6:145–154. doi: 10.1039/D1QM01126J. DOI
Chaudhary P., Verma A., Mishra A., Yadav D., Pal K., Yadav B.C., Ranjith Kumar E., Thapa K.B., Mishra S., Dwivedi D.K. Preparation of Carbon Quantum Dots Using Bike Pollutant Soot: Evaluation of Structural, Optical and Moisture Sensing Properties. Phys. E Low Dimens. Syst. Nanostruct. 2022;139:115174. doi: 10.1016/j.physe.2022.115174. DOI
Rajamanikandan S., Biruntha M., Ramalingam G. Blue Emissive Carbon Quantum Dots (CQDs) from Bio-Waste Peels and Its Antioxidant Activity. J. Clust. Sci. 2022;33:1045–1053. doi: 10.1007/s10876-021-02029-0. DOI
Tyagi A., Tripathi K.M., Singh N., Choudhary S., Gupta R.K. Green Synthesis of Carbon Quantum Dots from Lemon Peel Waste: Applications in Sensing and Photocatalysis. RSC Adv. 2016;6:72423–72432. doi: 10.1039/C6RA10488F. DOI
Kang S., Kim K.M., Jung K., Son Y., Mhin S., Ryu J.H., Shim K.B., Lee B., Han H.S., Song T. Graphene Oxide Quantum Dots Derived from Coal for Bioimaging: Facile and Green Approach. Sci. Rep. 2019;9:4101. doi: 10.1038/s41598-018-37479-6. PubMed DOI PMC
Zhang Y.P., Ma J.M., Yang Y.S., Ru J.X., Liu X.Y., Ma Y., Guo H.C. Synthesis of Nitrogen-Doped Graphene Quantum Dots (N-GQDs) from Marigold for Detection of Fe3+ Ion and Bioimaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019;217:60–67. doi: 10.1016/j.saa.2019.03.044. PubMed DOI
Gupta G.K., Sagar P., Srivastava M., Singh A.K., Singh J., Srivastava S.K., Srivastava A. Excellent Supercapacitive Performance of Graphene Quantum Dots Derived from a Bio-Waste Marigold Flower (Tagetes Erecta) Int. J. Hydrogen Energy. 2021;46:38416–38424. doi: 10.1016/j.ijhydene.2021.09.094. DOI
Adolfsson K.H., Hassanzadeh S., Hakkarainen M. Valorization of Cellulose and Waste Paper to Graphene Oxide Quantum Dots. RSC Adv. 2015;5:26550–26558. doi: 10.1039/C5RA01805F. DOI
Liu Q., Zhang J., He H., Huang G., Xing B., Jia J., Zhang C. Green Preparation of High Yield Fluorescent Graphene Quantum Dots from Coal-Tar-Pitch by Mild Oxidation. Nanomaterials. 2018;8:844. doi: 10.3390/nano8100844. PubMed DOI PMC
Jlassi K., Mallick S., Eribi A., Chehimi M.M., Ahmad Z., Touati F., Krupa I. Facile Preparation of N-S Co-Doped Graphene Quantum Dots (GQDs) from Graphite Waste for Efficient Humidity Sensing. Sens. Actuators B Chem. 2021;328:129058. doi: 10.1016/j.snb.2020.129058. DOI
Mohan A.N., Manoj B. Biowaste Derived Graphene Quantum Dots Interlaced with SnO2 Nanoparticles-a Dynamic Disinfection Agent against: Pseudomonas Aeruginosa. New J. Chem. 2019;43:13681–13689. doi: 10.1039/C9NJ00379G. DOI
Ding Z., Li F., Wen J., Wang X., Sun R. Gram-Scale Synthesis of Single-Crystalline Graphene Quantum Dots Derived from Lignin Biomass. Green Chem. 2018;20:1383–1390. doi: 10.1039/C7GC03218H. DOI
Khose R.V., Bangde P., Bondarde M.P., Dhumal P.S., Bhakare M.A., Chakraborty G., Ray A.K., Dandekar P., Some S. Waste Derived Approach towards Wealthy Fluorescent N-Doped Graphene Quantum Dots for Cell Imaging and H2O2 Sensing Applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022;266:120453. doi: 10.1016/j.saa.2021.120453. PubMed DOI
Wang Q., Li H., Chen L., Huang X. Monodispersed Hard Carbon Spherules with Uniform Nanopores. Carbon. 2001;39:2211–2214. doi: 10.1016/S0008-6223(01)00040-9. DOI
Ortiz Balbuena J., Tutor De Ureta P., Rivera Ruiz E., Mellor Pita S. Enfermedad de Vogt-Koyanagi-Harada. Med. Clin. 2016;146:93–94. doi: 10.1016/j.medcli.2015.04.005. PubMed DOI
Lai C.W., Hsiao Y.H., Peng Y.K., Chou P.T. Facile Synthesis of Highly Emissive Carbon Dots from Pyrolysis of Glycerol; Gram Scale Production of Carbon Dots/MSiO2 for Cell Imaging and Drug Release. J. Mater. Chem. 2012;22:14403–14409. doi: 10.1039/c2jm32206d. DOI
Bourlinos A.B., Stassinopoulos A., Anglos D., Zboril R., Karakassides M., Giannelis E.P. Surface Functionalized Carbogenic Quantum Dots. Small. 2008;4:455–458. doi: 10.1002/smll.200700578. PubMed DOI
Deng Y., Zhao D., Chen X., Wang F., Song H., Shen D. Long Lifetime Pure Organic Phosphorescence Based on Water Soluble Carbon Dots. Chem. Commun. 2013;49:5751–5753. doi: 10.1039/c3cc42600a. PubMed DOI
Click M. Manuscript Click Here to View Linked References. Brain. 2010;2:617–638. doi: 10.1016/j.actpsy.2011.12.005. DOI
Jia X., Li J., Wang E. One-Pot Green Synthesis of Optically PH-Sensitive Carbon Dots with Upconversion Luminescence. Nanoscale. 2012;4:5572–5575. doi: 10.1039/c2nr31319g. PubMed DOI
Kalita H., Mohapatra J., Pradhan L., Mitra A., Bahadur D., Aslam M. Efficient Synthesis of Rice Based Graphene Quantum Dots and Their Fluorescent Properties. RSC Adv. 2016;6:23518–23524. doi: 10.1039/C5RA25706A. DOI
Mahesh S., Lekshmi C.L., Renuka K.D., Joseph K. Simple and Cost-Effective Synthesis of Fluorescent Graphene Quantum Dots from Honey: Application as Stable Security Ink and White-Light Emission. Part. Part. Syst. Charact. 2016;33:70–74. doi: 10.1002/ppsc.201500103. DOI
Zhu S., Zhang J., Tang S., Qiao C., Wang L., Wang H., Liu X., Li B., Li Y., Yu W., et al. Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to up-Conversion Bioimaging Applications. Adv. Funct. Mater. 2012;22:4732–4740. doi: 10.1002/adfm.201201499. DOI
Bayat A., Saievar-Iranizad E. Synthesis of Green-Photoluminescent Single Layer Graphene Quantum Dots: Determination of HOMO and LUMO Energy States. J. Lumin. 2017;192:180–183. doi: 10.1016/j.jlumin.2017.06.055. DOI
Naik J.P., Sutradhar P., Saha M. Molecular Scale Rapid Synthesis of Graphene Quantum Dots (GQDs) J. Nanostruct. Chem. 2017;7:85–89. doi: 10.1007/s40097-017-0222-9. DOI
Li X., Lau S.P., Tang L., Ji R., Yang P. Sulphur Doping: A Facile Approach to Tune the Electronic Structure and Optical Properties of Graphene Quantum Dots. Nanoscale. 2014;6:5323–5328. doi: 10.1039/C4NR00693C. PubMed DOI
Alizadeh T., Shokri M. A New Humidity Sensor Based upon Graphene Quantum Dots Prepared via Carbonization of Citric Acid. Sens. Actuators B Chem. 2016;222:728–734. doi: 10.1016/j.snb.2015.08.122. DOI
Amjadi M., Manzoori J.L., Hallaj T. Chemiluminescence of Graphene Quantum Dots and Its Application to the Determination of Uric Acid. J. Lumin. 2014;153:73–78. doi: 10.1016/j.jlumin.2014.03.020. DOI
Arvand M., Hemmati S. Magnetic Nanoparticles Embedded with Graphene Quantum Dots and Multiwalled Carbon Nanotubes as a Sensing Platform for Electrochemical Detection of Progesterone. Sens. Actuators B Chem. 2017;238:346–356. doi: 10.1016/j.snb.2016.07.066. DOI
Diao J., Wang T., Li L. Graphene Quantum Dots as Nanoprobes for Fluorescent Detection of Propofol in Emulsions. R. Soc. Open Sci. 2019;6:181753. doi: 10.1098/rsos.181753. PubMed DOI PMC
Jian X., Liu X., Yang H.M., Guo M.M., Song X.L., Dai H.Y., Liang Z.H. Graphene Quantum Dots Modified Glassy Carbon Electrode via Electrostatic Self-Assembly Strategy and Its Application. Electrochim. Acta. 2016;190:455–462. doi: 10.1016/j.electacta.2016.01.045. DOI
Tashkhourian J., Dehbozorgi A. Determination of Dopamine in the Presence of Ascorbic and Uric Acids by Fluorometric Method Using Graphene Quantum Dots. Spectrosc. Lett. 2016;49:319–325. doi: 10.1080/00387010.2016.1144074. DOI
Teymourinia H., Salavati-Niasari M., Amiri O., Safardoust-Hojaghan H. Synthesis of Graphene Quantum Dots from Corn Powder and Their Application in Reduce Charge Recombination and Increase Free Charge Carriers. J. Mol. Liq. 2017;242:447–455. doi: 10.1016/j.molliq.2017.07.052. DOI
Teymourinia H., Salavati-Niasari M., Amiri O., Farangi M. Facile Synthesis of Graphene Quantum Dots from Corn Powder and Their Application as down Conversion Effect in Quantum Dot-Dye-Sensitized Solar Cell. J. Mol. Liq. 2018;251:267–272. doi: 10.1016/j.molliq.2017.12.059. DOI
Van Tam T., Trung N.B., Kim H.R., Chung J.S., Choi W.M. One-Pot Synthesis of N-Doped Graphene Quantum Dots as a Fluorescent Sensing Platform for Fe3+ Ions Detection. Sens. Actuators B Chem. 2014;202:568–573. doi: 10.1016/j.snb.2014.05.045. DOI
Ananthanarayanan A., Wang Y., Routh P., Sk M.A., Than A., Lin M., Zhang J., Chen J., Sun H., Chen P. Nitrogen and Phosphorus Co-Doped Graphene Quantum Dots: Synthesis from Adenosine Triphosphate, Optical Properties, and Cellular Imaging. Nanoscale. 2015;7:8159–8165. doi: 10.1039/C5NR01519G. PubMed DOI
Gu J., Zhang X., Pang A., Yang J. Facile Synthesis and Photoluminescence Characteristics of Blue-Emitting Nitrogen-Doped Graphene Quantum Dots. Nanotechnology. 2016;27:165704. doi: 10.1088/0957-4484/27/16/165704. PubMed DOI
Kaur M., Mehta S.K., Kansal S.K. A Fluorescent Probe Based on Nitrogen Doped Graphene Quantum Dots for Turn off Sensing of Explosive and Detrimental Water Pollutant, TNP in Aqueous Medium. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017;180:37–43. doi: 10.1016/j.saa.2017.02.035. PubMed DOI
Liu H., Wang H., Qian Y., Zhuang J., Hu L., Chen Q., Zhou S. Nitrogen-Doped Graphene Quantum Dots as Metal-Free Photocatalysts for Near-Infrared Enhanced Reduction of 4-Nitrophenol. ACS Appl. Nano Mater. 2019;2:7043–7050. doi: 10.1021/acsanm.9b01549. DOI
Wang R., Fan H., Jiang W., Ni G., Qu S. Amino-Functionalized Graphene Quantum Dots Prepared Using High-Softening Point Asphalt and Their Application in Fe3+ Detection. Appl. Surf. Sci. 2019;467–468:446–455. doi: 10.1016/j.apsusc.2018.10.104. DOI
Liu H., Lv X., Li C., Qian Y., Wang X., Hu L., Wang Y., Lin W., Wang H. Direct Carbonization of Organic Solvents toward Graphene Quantum Dots. Nanoscale. 2020;12:10956–10963. doi: 10.1039/D0NR01903H. PubMed DOI
Xie Y., Kocaefe D., Chen C., Kocaefe Y. Review of Research on Template Methods in preparation of Nanomaterials. J. Nanomater. 2016;2016:2302595. doi: 10.1155/2016/2302595. DOI
Kwon W., Lee G., Do S., Joo T., Rhee S.W. Size-Controlled Soft-Template Synthesis of Carbon Nanodots toward Versatile Photoactive Materials. Small. 2014;10:506–513. doi: 10.1002/smll.201301770. PubMed DOI
Li R., Liu Y., Li Z., Shen J., Yang Y., Cui X., Yang G. Bottom-Up Fabrication of Single-Layered Nitrogen-Doped Graphene Quantum Dots through Intermolecular Carbonization Arrayed in a 2D Plane. Chem. Eur. J. 2016;22:272–278. doi: 10.1002/chem.201503191. PubMed DOI
Liu R., Wu D., Feng X., Müllen K. Bottom-up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology. J. Am. Chem. Soc. 2011;133:15221–15223. doi: 10.1021/ja204953k. PubMed DOI
Gao S., Tang L., Xiang J., Ji R., Lai S.K., Yuan S., Lau S.P. Facile Preparation of Sulphur-Doped Graphene Quantum Dots for Ultra-High Performance Ultraviolet Photodetectors. New J. Chem. 2017;41:10447–10451. doi: 10.1039/C7NJ01989K. DOI
Do S., Kwon W., Rhee S.W. Soft-Template Synthesis of Nitrogen-Doped Carbon Nanodots: Tunable Visible-Light Photoluminescence and Phosphor-Based Light-Emitting Diodes. J. Mater. Chem. C. 2014;2:4221–4226. doi: 10.1039/c4tc00090k. DOI
Li R., Chen J., Zhou X., Li Z., Liu J. Fabrication of Zinc-Histidine-Functionalized Graphene Quantum Dot Framework Amphiphilic Nanoparticles and Application in the Synthesis of Polystyrene Microspheres for Adsorption of Cu2+ by Pickering Emulsion Polymerization. RSC Adv. 2016;6:102534–102541. doi: 10.1039/C6RA23366J. DOI
Ruiyi L., Sili Q., Zhangyi L., Ling L., Zaijun L. Histidine-Functionalized Graphene Quantum Dot-Graphene Micro-Aerogel Based Voltammetric Sensing of Dopamine. Sens. Actuators B Chem. 2017;250:372–382. doi: 10.1016/j.snb.2017.05.001. DOI
Shin Y., Park J., Hyun D., Yang J., Lee H. Generation of Graphene Quantum Dots by the Oxidative Cleavage of Graphene Oxide Using the Oxone Oxidant. New J. Chem. 2015;39:2425–2428. doi: 10.1039/C4NJ02299H. DOI
Nair R.V., Thomas R.T., Sankar V., Muhammad H., Dong M., Pillai S. Rapid, Acid-Free Synthesis of High-Quality Graphene Quantum Dots for Aggregation Induced Sensing of Metal Ions and Bioimaging. ACS Omega. 2017;2:8051–8061. doi: 10.1021/acsomega.7b01262. PubMed DOI PMC
Shin Y., Park J., Hyun D., Yang J., Lee J.H., Kim J.H., Lee H. Acid-Free and Oxone Oxidant-Assisted Solvothermal Synthesis of Graphene Quantum Dots Using Various Natural Carbon Materials as Resources. Nanoscale. 2015;7:5633–5637. doi: 10.1039/C5NR00814J. PubMed DOI
Lu Q., Wu C., Liu D., Wang H., Su W., Li H., Zhang Y., Yao S. A Facile and Simple Method for Synthesis of Graphene Oxide Quantum Dots from Black Carbon. Green Chem. 2017;19:900–904. doi: 10.1039/C6GC03092K. DOI
Chen W., Lv G., Hu W., Li D., Chen S., Dai Z. Synthesis and Applications of Graphene Quantum Dots: A Review. Nanotechnol. Rev. 2018;7:157–185. doi: 10.1515/ntrev-2017-0199. DOI
Sk M.A., Ananthanarayanan A., Huang L., Lim K.H., Chen P. Revealing the Tunable Photoluminescence Properties of Graphene Quantum Dots. J. Mater. Chem. C. 2014;2:6954–6960. doi: 10.1039/C4TC01191K. DOI
Mohanty N., Moore D., Xu Z., Sreeprasad T.S., Nagaraja A., Rodriguez A.A., Berry V. Nanotomy-Based Production of Transferable and Dispersible Graphene Nanostructures of Controlled Shape and Size. Nat. Commun. 2012;3:844. doi: 10.1038/ncomms1834. PubMed DOI
Yan X., Cui X., Li L.S. Synthesis of Large, Stable Colloidal Graphene Quantum Dots with Tunable Size. J. Am. Chem. Soc. 2010;132:5944–5945. doi: 10.1021/ja1009376. PubMed DOI
Lu J., Yeo P.S.E., Gan C.K., Wu P., Loh K.P. Transforming C60 Molecules into Graphene Quantum Dots. Nat. Nanotechnol. 2011;6:247–252. doi: 10.1038/nnano.2011.30. PubMed DOI
Zhao L., Wang Y., Li Y. Antioxidant Activity of Graphene Quantum Dots Prepared in Different Electrolyte Environments. Nanomaterials. 2019;9:1708. doi: 10.3390/nano9121708. PubMed DOI PMC
Zheng A.X., Cong Z.X., Wang J.R., Li J., Yang H.H., Chen G.N. Highly-Efficient Peroxidase-like Catalytic Activity of Graphene Dots for Biosensing. Biosens. Bioelectron. 2013;49:519–524. doi: 10.1016/j.bios.2013.05.038. PubMed DOI
Sekiya R., Uemura Y., Naito H., Naka K., Haino T. Chemical Functionalisation and Photoluminescence of Graphene Quantum Dots. Chem. Eur. J. 2016;22:8198–8206. doi: 10.1002/chem.201504963. PubMed DOI
Li Y., Wang L., Ge J., Wang J., Li Q., Wan W., Zhang B., Liu X., Xue W. Graphene Quantum Dots Modified ZnO + Cu Heterostructure Photocatalysts with Enhanced Photocatalytic Performance. RSC Adv. 2016;6:106508–106515. doi: 10.1039/C6RA15707F. DOI
Hu S., Tian R., Wu L., Zhao Q., Yang J., Liu J., Cao S. Chemical Regulation of Carbon Quantum Dots from Synthesis to Photocatalytic Activity. Chem. Asian J. 2013;8:1035–1041. doi: 10.1002/asia.201300076. PubMed DOI
Sun H., Wu L., Gao N., Ren J., Qu X. Improvement of Photoluminescence of Graphene Quantum Dots with a Biocompatible Photochemical Reduction Pathway and Its Bioimaging Application. ACS Appl. Mater. Interfaces. 2013;5:1174–1179. doi: 10.1021/am3030849. PubMed DOI
Shen J., Zhu Y., Chen C., Yang X., Li C. Facile Preparation and Upconversion Luminescence of Graphene Quantum Dots. Chem. Commun. 2011;47:2580–2582. doi: 10.1039/C0CC04812G. PubMed DOI
Wang X., Sun G., Routh P., Kim D.H., Huang W., Chen P. Heteroatom-Doped Graphene Materials: Syntheses, Properties and Applications. Chem. Soc. Rev. 2014;43:7067–7098. doi: 10.1039/C4CS00141A. PubMed DOI
Zhang Y., Park M., Kim H.Y., Ding B., Park S. A Facile Ultrasonic-Assisted Fabrication of Nitrogen-Doped Carbon Dots/BiOBr up-Conversion Nanocomposites for Visible Light Photocatalytic Enhancements. Sci. Rep. 2017;7:45086. doi: 10.1038/srep45086. PubMed DOI PMC
Prasad K.S., Pallela R., Kim D.M., Shim Y.B. Microwave-Assisted One-Pot Synthesis of Metal-Free Nitrogen and Phosphorus Dual-Doped Nanocarbon for Electrocatalysis and Cell Imaging. Part. Part. Syst. Charact. 2013;30:557–564. doi: 10.1002/ppsc.201300020. DOI
Qian Z., Shan X., Chai L., Chen J., Feng H. Si doped CQDs: A facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl. Mater. Interfaces. 2014;6:6797–6805. doi: 10.1021/am500403n. PubMed DOI
Zhang L., Zhang Z.Y., Liang R.P., Li Y.H., Qiu J.D. Boron-Doped Graphene Quantum Dots for Selective Glucose Sensing Based on the “Abnormal” Aggregation-Induced Photoluminescence Enhancement. Anal. Chem. 2014;86:4423–4430. doi: 10.1021/ac500289c. PubMed DOI
Yao M., Huang J., Deng Z., Jin W., Yuan Y., Nie J., Wang H., Du F., Zhang Y. Transforming Glucose into Fluorescent Graphene Quantum Dots: Via Microwave Radiation for Sensitive Detection of Al3+ ions Based on Aggregation-Induced Enhanced Emission. Analyst. 2020;145:6981–6986. doi: 10.1039/D0AN01639J. PubMed DOI
Moghanlo S.P., Valizadeh H. Microwave-Assisted Preparation of Graphene Quantum Dots Immobilized Nanosilica as an Efficient Heterogeneous Nanocatalyst for the Synthesis of Xanthenes. Org. Commun. 2019;12:14–25. doi: 10.25135/acg.oc.53.18.11.1051. DOI
Alves A.K., Frantz A.C.S., Berutti F.A. Microwave-Assisted Oleothermal Synthesis of Graphene-TiO2 Quantum Dots for Photoelectrochemical Oxygen Evolution Reaction. FlatChem. 2018;12:26–34. doi: 10.1016/j.flatc.2018.12.001. DOI
Qiu H., Sun X., An S., Lan D., Cui J., Zhang Y., He W. Microwave Synthesis of Histidine-Functionalized Graphene Quantum Dots/Ni-Co LDH with Flower Ball Structure for Supercapacitor. J. Colloid Interface Sci. 2020;567:264–273. doi: 10.1016/j.jcis.2020.02.018. PubMed DOI
Van Tam T., Altahtamouni T.M., Le Minh V., Ha H.K.P., Chung N.T.K., Van Thuan D. One-Pot Microwave-Assisted Green Synthesis of Amine-Functionalized Graphene Quantum Dots for High Visible Light Photocatalytic Application. Comptes Rendus Chim. 2019;22:822–828. doi: 10.1016/j.crci.2019.10.005. DOI
Zhang C., Cui Y., Song L., Liu X., Hu Z. Microwave Assisted One-Pot Synthesis of Graphene Quantum Dots as Highly Sensitive Fluorescent Probes for Detection of Iron Ions and PH Value. Talanta. 2016;150:54–60. doi: 10.1016/j.talanta.2015.12.015. PubMed DOI
Zhao P., Li C., Yang M. Microwave-Assisted One-Pot Conversion from Deoiled Asphalt to Green Fluorescent Graphene Quantum Dots and Their Interfacial Properties. J. Dispers. Sci. Technol. 2017;38:769–774. doi: 10.1080/01932691.2016.1194212. DOI
Wu D., Qu C., Wang J., Yang R., Qu L. Highly Sensitive and Selective Fluorescence Sensing and Imaging of Fe3+ Based on a Novel Nitrogen-Doped Graphene Quantum Dots. Luminescence. 2021;36:1592–1599. doi: 10.1002/bio.4062. PubMed DOI
Centeno L., Romero-García J., Alvarado-Canché C., Gallardo-Vega C., Télles-Padilla G., Díaz Barriga-Castro E., Cabrera-Álvarez E.N., Ledezma-Pérez A., de León A. Green Synthesis of Graphene Quantum Dots from Opuntia sp. Extract and Their Application in Phytic Acid Detection. Sens. Bio Sens. Res. 2021;32:100412. doi: 10.1016/j.sbsr.2021.100412. DOI
Thi T., Quyen B., Nhon N.H., Nguyen T., Duong T., Nguyen N., My T., Thien D.V.H., Huynh L., Thanh V. Rapid and Simple Synthesis of Graphene Quantum Dots/Ag Nanocomposites and Its Application for Glucose Detection by Photoluminescence Spectroscopy. Int. J. Sci. Eng. Sci. 2021;5:1–5.
Zhou L., Geng J., Liu B. Graphene Quantum Dots from Polycyclic Aromatic Hydrocarbon for Bioimaging and Sensing of Fe3+ and Hydrogen Peroxide. Part. Part. Syst. Charact. 2013;30:1086–1092. doi: 10.1002/ppsc.201300170. DOI
Pathak P.K., Kumar A., Prasad B.B. Functionalized Nitrogen Doped Graphene Quantum Dots and Bimetallic Au/Ag Core-Shell Decorated Imprinted Polymer for Electrochemical Sensing of Anticancerous Hydroxyurea. Biosens. Bioelectron. 2019;127:10–18. doi: 10.1016/j.bios.2018.11.055. PubMed DOI
Gu S., Hsieh C.T., Yuan C.Y., Gandomi Y.A., Chang J.K., Fu C.C., Yang J.W., Juang R.S. Fluorescence of Functionalized Graphene Quantum Dots Prepared from Infrared-Assisted Pyrolysis of Citric Acid and Urea. J. Lumin. 2020;217:116774. doi: 10.1016/j.jlumin.2019.116774. DOI
Hallaj T., Amjadi M., Manzoori J.L., Shokri R. Chemiluminescence Reaction of Glucose-Derived Graphene Quantum Dots with Hypochlorite, and Its Application to the Determination of Free Chlorine. Microchim. Acta. 2014;182:789–796. doi: 10.1007/s00604-014-1389-0. DOI
Ma C.B., Zhu Z.T., Wang H.X., Huang X., Zhang X., Qi X., Zhang H.L., Zhu Y., Deng X., Peng Y., et al. A General Solid-State Synthesis of Chemically-Doped Fluorescent Graphene Quantum Dots for Bioimaging and Optoelectronic Applications. Nanoscale. 2015;7:10162–10169. doi: 10.1039/C5NR01757B. PubMed DOI
Shehab M., Ebrahim S., Soliman M. Graphene Quantum Dots Prepared from Glucose as Optical Sensor for Glucose. J. Lumin. 2017;184:110–116. doi: 10.1016/j.jlumin.2016.12.006. DOI
Sudarsanakumar C., Thomas S., Mathew S., Arundhathi S., Raj D.R., Prasanth S., Thomas R.K. Selective Sensing of Curcumin Using L-Cysteine Derived Blue Luminescent Graphene Quantum Dots. Mater. Res. Bull. 2019;110:32–38. doi: 10.1016/j.materresbull.2018.10.014. DOI
Van Tam T., Choi W.M. One-Pot Synthesis of Highly Fluorescent Amino-Functionalized Graphene Quantum Dots for Effective Detection of Copper Ions. Curr. Appl. Phys. 2018;18:1255–1260. doi: 10.1016/j.cap.2018.07.002. DOI
Yin Y., Liu Q., Jiang D., Du X., Qian J., Mao H., Wang K. Atmospheric Pressure Synthesis of Nitrogen Doped Graphene Quantum Dots for Fabrication of BiOBr Nanohybrids with Enhanced Visible-Light Photoactivity and Photostability. Carbon. 2016;96:1157–1165. doi: 10.1016/j.carbon.2015.10.068. DOI
Zhu W., Song H., Zhang L., Weng Y., Su Y., Lv Y. Fabrication of Fluorescent Nitrogen-Rich Graphene Quantum Dots by Tin(IV) Catalytic Carbonization of Ethanolamine. RSC Adv. 2015;5:60085–60089. doi: 10.1039/C5RA08336B. DOI
Zhou X., Pan Y., Xu J., Wang A., Wu S., Shen J. The Carbonization of Polyethyleneimine: Facile Fabrication of N-Doped Graphene Oxide and Graphene Quantum Dots. RSC Adv. 2015;5:105855–105861. doi: 10.1039/C5RA25173G. DOI
More M.P., Lohar P.H., Patil A.G., Patil P.O., Deshmukh P.K. Controlled Synthesis of Blue Luminescent Graphene Quantum Dots from Carbonized Citric Acid: Assessment of Methodology, Stability, and Fluorescence in an Aqueous Environment. Mater. Chem. Phys. 2018;220:11–22. doi: 10.1016/j.matchemphys.2018.08.046. DOI
Amjadi M., Shokri R., Hallaj T. A New Turn-off Fluorescence Probe Based on Graphene Quantum Dots for Detection of Au(III) Ion. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016;153:619–624. doi: 10.1016/j.saa.2015.09.037. PubMed DOI
Ke Y., Liu Y.C., Ren W.W., Bai A.M., Li X.Y., Hu Y.J. Preparation of Graphene Quantum Dots with Glycine as Nitrogen Source and Its Interaction with Human Serum Albumin. Luminescence. 2021;36:894–903. doi: 10.1002/bio.4012. PubMed DOI
Yousaf M., Huang H., Li P., Wang C., Yang Y. Fluorine Functionalized Graphene Quantum Dots as Inhibitor against HIAPP Amyloid Aggregation. ACS Chem. Neurosci. 2017;8:1368–1377. doi: 10.1021/acschemneuro.7b00015. PubMed DOI
Hu C., Su T.R., Lin T.J., Chang C.W., Tung K.L. Yellowish and Blue Luminescent Graphene Oxide Quantum Dots Prepared: Via a Microwave-Assisted Hydrothermal Route Using H2O2 and KMnO4 as Oxidizing Agents. New J. Chem. 2018;42:3999–4007. doi: 10.1039/C7NJ03337K. DOI
Vandana M., Ashokkumar S.P., Vijeth H., Yesappa L., Devendrappa H. Synthesis and Characterization of Polypyrrole—Graphene Quantum Dots Nanocomposites for Supercapacitor Application. AIP Conf. Proc. 2019;2115:030535. doi: 10.1063/1.5113374. DOI
Lee B.H., McKinney R.L., Hasan M.T., Naumov A.V. Graphene Quantum Dots as Intracellular Imaging-Based Temperature Sensors. Materials. 2021;14:616. doi: 10.3390/ma14030616. PubMed DOI PMC
Abbas A., Tabish T.A., Bull S.J., Lim T.M., Phan A.N. High Yield Synthesis of Graphene Quantum Dots from Biomass Waste as a Highly Selective Probe for Fe3+ Sensing. Sci. Rep. 2020;10:21262. doi: 10.1038/s41598-020-78070-2. PubMed DOI PMC
Wang R., Xia G., Zhong W., Chen L., Chen L., Wang Y., Min Y., Li K. Direct Transformation of Lignin into Fluorescence-Switchable Graphene Quantum Dots and Their Application in Ultrasensitive Profiling of a Physiological Oxidant. Green Chem. 2019;21:3343–3352. doi: 10.1039/C9GC01012B. DOI
Veeresh S., Ganesh H., Nagaraju Y.S., Vandana M., Ashokkumar S.P., Vijeth H., Prasad M.V.N.A., Devendrappa H. UV-Irradiated Hydrothermal Synthesis of Reduced Graphene Quantum Dots for Electrochemical Applications. Diam. Relat. Mater. 2021;114:108289. doi: 10.1016/j.diamond.2021.108289. DOI
Reagen S., Wu Y., Liu X., Shahni R., Bogenschuetz J., Wu X., Chu Q.R., Oncel N., Zhang J., Hou X., et al. Synthesis of Highly Near-Infrared Fluorescent Graphene Quantum Dots Using Biomass-Derived Materials for In Vitro Cell Imaging and Metal Ion Detection. ACS Appl. Mater. Interfaces. 2021;13:43952–43962. doi: 10.1021/acsami.1c10533. PubMed DOI
Xiong Z., Zou Y., Cao X., Lin Z. Color-Tunable Fluorescent Nitrogen-Doped Graphene Quantum Dots Derived from Pineapple Leaf Fiber Biomass to Detect Hg2+ Chin. J. Anal. Chem. 2021;50:69–76. doi: 10.1016/j.cjac.2021.10.003. DOI
Wang Y., He Q., Zhao X., Yuan J., Zhao H., Wang G., Li M. Synthesis of Corn Straw-Based Graphene Quantum Dots (GQDs) and Their Application in PO43- Detection. J. Environ. Chem. Eng. 2022;10:107150. doi: 10.1016/j.jece.2022.107150. DOI
Yan Y., Manickam S., Lester E., Wu T., Pang C.H. Synthesis of Graphene Oxide and Graphene Quantum Dots from Miscanthus via Ultrasound-Assisted Mechano-Chemical Cracking Method. Ultrason. Sonochem. 2021;73:105519. doi: 10.1016/j.ultsonch.2021.105519. PubMed DOI PMC
Sreeprasad T.S., Rodriguez A.A., Colston J., Graham A., Shishkin E., Pallem V., Berry V. Electron-Tunneling Modulation in Percolating Network of Graphene Quantum Dots: Fabrication, Phenomenological Understanding, and Humidity/Pressure Sensing Applications. Nano Lett. 2013;13:1757–1763. doi: 10.1021/nl4003443. PubMed DOI
Mehata M.S., Biswas S. Synthesis of Fluorescent Graphene Quantum Dots from Graphene Oxide and Their Application in Fabrication of GQDs@AgNPs Nanohybrids and Sensing of H2O2. Ceram. Int. 2021;47:19063–19072. doi: 10.1016/j.ceramint.2021.03.252. DOI
Ghanbari N., Salehi Z., Khodadadi A.A., Shokrgozar M.A., Saboury A.A. Glucosamine-Conjugated Graphene Quantum Dots as Versatile and PH-Sensitive Nanocarriers for Enhanced Delivery of Curcumin Targeting to Breast Cancer. Mater. Sci. Eng. C. 2021;121:111809. doi: 10.1016/j.msec.2020.111809. PubMed DOI
Kim D.J., Yoo J.M., Suh Y., Kim D., Kang I., Moon J., Park M., Kim J., Kang K.S., Hong B.H. Graphene Quantum Dots from Carbonized Coffee Bean Wastes for Biomedical Applications. Nanomaterials. 2021;11:1423. doi: 10.3390/nano11061423. PubMed DOI PMC
Yang S., Sun J., Li X., Zhou W., Wang Z., He P., Ding G., Xie X., Kang Z., Jiang M. Large-Scale Fabrication of Heavy Doped Carbon Quantum Dots with Tunable-Photoluminescence and Sensitive Fluorescence Detection. J. Mater. Chem. A. 2014;2:8660–8667. doi: 10.1039/c4ta00860j. DOI
Khodadadei F., Safarian S., Ghanbari N. Methotrexate-Loaded Nitrogen-Doped Graphene Quantum Dots Nanocarriers as an Efficient Anticancer Drug Delivery System. Mater. Sci. Eng. C. 2017;79:280–285. doi: 10.1016/j.msec.2017.05.049. PubMed DOI
Iannazzo D., Pistone A., Ferro S., De Luca L., Monforte A.M., Romeo R., Buemi M.R., Pannecouque C. Graphene Quantum Dots Based Systems as HIV Inhibitors. Bioconjug. Chem. 2018;29:3084–3093. doi: 10.1021/acs.bioconjchem.8b00448. PubMed DOI
Tajik S., Dourandish Z., Zhang K., Beitollahi H. Graphene and Carbon Quantum Dots: A review on syntheses, biological and sensing applications for neurotransmitter determination. Synth. Charact. Biol. Sens. 2020:15406–15429. doi: 10.1039/D0RA00799D. PubMed DOI PMC
Jing S., Zhao Y., Sun R.C., Zhong L., Peng X. Facile and High-Yield Synthesis of Carbon Quantum Dots from Biomass-Derived Carbons at Mild Condition. ACS Sustain. Chem. Eng. 2019;7:7833–7843. doi: 10.1021/acssuschemeng.9b00027. DOI
Rajender G., Goswami U., Giri P.K. Solvent Dependent Synthesis of Edge-Controlled Graphene Quantum Dots with High Photoluminescence Quantum Yield and Their Application in Confocal Imaging of Cancer Cells. J. Colloid Interface Sci. 2019;541:387–398. doi: 10.1016/j.jcis.2019.01.099. PubMed DOI
Bucher E.S., Wightman R.M., Hill C., Carolina N. Electrochemical Analysis of Neurotransmitters. Annu. Rev. Anal. Chem. 2015;8:239–261. doi: 10.1146/annurev-anchem-071114-040426. PubMed DOI PMC
Zuo P., Lu X., Sun Z., Guo Y., He H. A Review on Syntheses, Properties, Characterization and Bioanalytical Applications of Fluorescent Carbon Dots. Microchim. Acta. 2016;183:519–542. doi: 10.1007/s00604-015-1705-3. DOI
Thambiraj S., Shankaran D.R. Green Synthesis of Highly Fluorescent Carbon Quantum Dots from Sugarcane Bagasse Pulp. Appl. Surf. Sci. 2016;390:435–443. doi: 10.1016/j.apsusc.2016.08.106. DOI
Wu J., Lin M., Cong X., Liu H., Tan P. Raman Spectroscopy of Graphene-Based Materials and Its Applications in Related Devices. Chem. Soc. Rev. 2018;47:1822–1873. doi: 10.1039/C6CS00915H. PubMed DOI
Dervishi E., Ji Z., Htoon H., Sykora M., Doorn S.K. Raman spectroscopy of bottom-up synthesized graphene quantum dots: Size and structure dependence. Nanoscale. 2019;11:16571–16581. doi: 10.1039/C9NR05345J. PubMed DOI
Das P., Ganguly S., Saravanan A., Margel S., Gedanken A., Srinivasan S., Rajabzadeh A.R. Naturally Derived Carbon Dots In Situ Confined Self-Healing and Breathable Hydrogel Monolith for Anomalous Diffusion-Driven Phytomedicine Release. ACS Appl. Bio Mater. 2022;5:5617–5633. doi: 10.1021/acsabm.2c00664. PubMed DOI