Eco-Friendly and Sustainable Pathways to Photoluminescent Carbon Quantum Dots (CQDs)

. 2023 Jan 30 ; 13 (3) : . [epub] 20230130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36770515

Carbon quantum dots (CQDs), a new family of photoluminescent 0D NPs, have recently received a lot of attention. They have enormous future potential due to their unique properties, which include low toxicity, high conductivity, and biocompatibility and accordingly can be used as a feasible replacement for conventional materials deployed in various optoelectronic, biomedical, and energy applications. The most recent trends and advancements in the synthesizing and setup of photoluminescent CQDs using environmentally friendly methods are thoroughly discussed in this review. The eco-friendly synthetic processes are emphasized, with a focus on biomass-derived precursors. Modification possibilities for creating newer physicochemical properties among different CQDs are also presented, along with a brief conceptual overview. The extensive amount of writings on them found in the literature explains their exceptional competence in a variety of fields, making these nanomaterials promising alternatives for real-world applications. Furthermore, the benefits, drawbacks, and opportunities for CQDs are discussed, with an emphasis on their future prospects in this emerging research field.

Zobrazit více v PubMed

Varma R.S. Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials. ACS Sustain. Chem. Eng. 2016;4:5866–5878. doi: 10.1021/acssuschemeng.6b01623. PubMed DOI PMC

Varma R.S. Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications. ACS Sustain. Chem. Eng. 2019;7:6458–6470. doi: 10.1021/acssuschemeng.8b06550. DOI

Varma R.S. Greener Approach to Nanomaterials and Their Sustainable Applications. Curr. Opin. Chem. Eng. 2012;1:123–128. doi: 10.1016/j.coche.2011.12.002. DOI

Varma R.S. Greener and Sustainable Chemistry. Appl. Sci. 2014;4:493–497. doi: 10.3390/app4040493. DOI

Iravani S., Varma R.S. Biofactories: Engineered Nanoparticles: Via Genetically Engineered Organisms. Green Chem. 2019;21:4583–4603. doi: 10.1039/C9GC01759C. DOI

Mohammadinejad R., Shavandi A., Raie D.S., Sangeetha J., Soleimani M., Shokrian Hajibehzad S., Thangadurai D., Hospet R., Popoola J.O., Arzani A., et al. Plant Molecular Farming: Production of Metallic Nanoparticles and Therapeutic Proteins Using Green Factories. Green Chem. 2019;21:1845–1865. doi: 10.1039/C9GC00335E. DOI

Mohammadinejad R., Karimi S., Iravani S., Varma R.S. Plant-Derived Nanostructures: Types and Applications. Green Chem. 2015;18:20–52. doi: 10.1039/C5GC01403D. DOI

Iravani S., Varma R.S. Plant-Derived Edible Nanoparticles and MiRNAs: Emerging Frontier for Therapeutics and Targeted Drug-Delivery. ACS Sustain. Chem. Eng. 2019;7:8055–8069. doi: 10.1021/acssuschemeng.9b00954. DOI

Zahir N., Magri P., Luo W., Gaumet J.J., Pierrat P. Recent Advances on Graphene Quantum Dots for Electrochemical Energy Storage Devices. Energy Environ. Mater. 2021;5:201–214. doi: 10.1002/eem2.12167. DOI

Facure M.H.M., Schneider R., Mercante L.A., Correa D.S. A Review on Graphene Quantum Dots and Their Nanocomposites: From Laboratory Synthesis towards Agricultural and Environmental Applications. Environ. Sci. Nano. 2020;7:3710–3734. doi: 10.1039/D0EN00787K. DOI

Liu Q., Sun J., Gao K., Chen N., Sun X., Ti D., Bai C., Cui R., Qu L. Graphene Quantum Dots for Energy Storage and Conversion: From Fabrication to Applications. Mater. Chem. Front. 2020;4:421–436. doi: 10.1039/C9QM00553F. DOI

Bak S., Kim D., Lee H. Graphene Quantum Dots and Their Possible Energy Applications: A Review. Curr. Appl. Phys. 2016;16:1192–1201. doi: 10.1016/j.cap.2016.03.026. DOI

Matsui T., Sai H., Bidiville A., Hsu H.J., Matsubara K. Progress and Limitations of Thin-Film Silicon Solar Cells. Sol. Energy. 2018;170:486–498. doi: 10.1016/j.solener.2018.05.077. DOI

Gao Z., Zhao K. Minimal Realization of Linear System Based on New Smith-Mcmillan Normal Form of Transfer Function Matrix. Adv. Syst. Sci. Appl. 2010;10:531–537.

Mhatre V.H., Kcm J.-A.L. Genetic Changes NIH Public Access. Bone. 2012;23:1–7. doi: 10.1038/jid.2014.371. DOI

Pan D., Zhang J., Li Z., Wu M. Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Adv. Mater. 2010;22:734–738. doi: 10.1002/adma.200902825. PubMed DOI

Shaker M., Riahifar R., Li Y. A Review on the Superb Contribution of Carbon and Graphene Quantum Dots to Electrochemical Capacitors’ Performance: Synthesis and Application. FlatChem. 2020;22:100171. doi: 10.1016/j.flatc.2020.100171. DOI

Peng J., Gao W., Gupta B.K., Liu Z., Romero-Aburto R., Ge L., Song L., Alemany L.B., Zhan X., Gao G., et al. Graphene Quantum Dots Derived from Carbon Fibers. Nano Lett. 2012;12:844–849. doi: 10.1021/nl2038979. PubMed DOI

Bressi V., Ferlazzo A., Iannazzo D., Espro C. Graphene Quantum Dots by Eco-Friendly Green Synthesis for Electrochemical Sensing: Recent Advances and Future Perspectives. Nanomaterials. 2021;11:1120. doi: 10.3390/nano11051120. PubMed DOI PMC

Sharma R.K., Gulati S., Mehta S. Preparation of Gold Nanoparticles Using Tea: A Green Chemistry Experiment. J. Chem. Educ. 2012;89:1316–1318. doi: 10.1021/ed2002175. DOI

Sharma R.K., Gulati S., Sachdeva S. One Pot and Solvent-Free Synthesis of 2,9,16,23-Tetrachlorometal(II) Phthalocyanines. Green Chem. Lett. Rev. 2012;5:83–87. doi: 10.1080/17518253.2011.581701. DOI

Pant P., Bansal R., Gulati S., Kumar S., Kodwani R. Porous and Chelated Nanostructured Multifunctional Materials: Recoverable and Reusable Sorbents for Extraction of Metal Ions and Catalysts for Diverse Organic Reactions. J. Nanostruct. Chem. 2016;6:145–157. doi: 10.1007/s40097-016-0190-5. DOI

Sharma R.K., Sharma S., Gulati S., Pandey A. Fabrication of a Novel Nano-Composite Carbon Paste Sensor Based on Silica-Nanospheres Functionalized with Isatin Thiosemicarbazone for Potentiometric Monitoring of Cu2+ Ions in Real Samples. Anal. Methods. 2013;5:1414–1426. doi: 10.1039/c3ay26319c. DOI

Kumar S., Diwan A., Singh P., Gulati S., Choudhary D., Mongia A., Shukla S., Gupta A. Functionalized Gold Nanostructures: Promising Gene Delivery Vehicles in Cancer Treatment. RSC Adv. 2019;9:23894–23907. doi: 10.1039/C9RA03608C. PubMed DOI PMC

Iravani S., Varma R.S. Green Synthesis, Biomedical and Biotechnological Applications of Carbon and Graphene Quantum Dots. A Review. Environ. Chem. Lett. 2020;18:703–727. doi: 10.1007/s10311-020-00984-0. PubMed DOI PMC

Shaik S.A., Sengupta S., Varma R.S., Gawande M.B., Goswami A. Syntheses of N-Doped Carbon Quantum Dots (NCQDs) from Bioderived Precursors: A Timely Update. ACS Sustain. Chem. Eng. 2021;9:3–49. doi: 10.1021/acssuschemeng.0c04727. DOI

Jouyandeh M., Mousavi Khadem S.S., Habibzadeh S., Esmaeili A., Abida O., Vatanpour V., Rabiee N., Bagherzadeh M., Iravani S., Reza Saeb M., et al. Quantum Dots for Photocatalysis: Synthesis and Environmental Applications. Green Chem. 2021;23:4931–4954. doi: 10.1039/D1GC00639H. DOI

Gawande M.B., Moores A., Varma R.S. ACS Sustainable Chemistry & Engineering Virtual Special Issue on N-Doped Carbon Materials: Synthesis and Sustainable Applications. ACS Sustain. Chem. Eng. 2021;9:3975–3976. doi: 10.1021/acssuschemeng.1c01349. DOI

Sharma K., Raizada P., Hasija V., Singh P., Bajpai A., Nguyen V.H., Rangabhashiyam S., Kumar P., Nadda A.K., Kim S.Y., et al. ZnS-Based Quantum Dots as Photocatalysts for Water Purification. J. Water Process Eng. 2021;43:102217. doi: 10.1016/j.jwpe.2021.102217. DOI

Zheng X.T., Ananthanarayanan A., Luo K.Q., Chen P. Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small. 2015;11:1620–1636. doi: 10.1002/smll.201402648. PubMed DOI

Roy P., Periasamy A.P., Chuang C., Liou Y.R., Chen Y.F., Joly J., Liang C.T., Chang H.T. Plant Leaf-Derived Graphene Quantum Dots and Applications for White LEDs. New J. Chem. 2014;38:4946–4951. doi: 10.1039/C4NJ01185F. DOI

Wang Z., Yu J., Zhang X., Li N., Liu B., Li Y., Wang Y., Wang W., Li Y., Zhang L., et al. Large-Scale and Controllable Synthesis of Graphene Quantum Dots from Rice Husk Biomass: A Comprehensive Utilization Strategy. ACS Appl. Mater. Interfaces. 2016;8:1434–1439. doi: 10.1021/acsami.5b10660. PubMed DOI

Suryawanshi A., Biswal M., Mhamane D., Gokhale R., Patil S., Guin D., Ogale S. Large Scale Synthesis of Graphene Quantum Dots (GQDs) from Waste Biomass and Their Use as an Efficient and Selective Photoluminescence on-off-on Probe for Ag+ Ions. Nanoscale. 2014;6:11664–11670. doi: 10.1039/C4NR02494J. PubMed DOI

Kang Z., Lee S.-T. Carbon Dots: Advances in Nanocarbon Applications. Nanoscale. 2019;11:19214–19224. doi: 10.1039/C9NR05647E. PubMed DOI

Das P., Ganguly S., Ahmed S.R., Sherazee M., Margel S., Gedanken A., Srinivasan S., Rajabzadeh A.R. Carbon Dot Biopolymer-Based Flexible Functional Films for Antioxidant and Food Monitoring Applications. ACS Appl. Polym. Mater. 2022;4:9323–9340. doi: 10.1021/acsapm.2c01579. DOI

Du X., Zhang M., Ma Y., Wang X., Liu Y., Huang H., Kang Z. Size-Dependent Antibacterial of Carbon Dots by Selective Absorption and Differential Oxidative Stress of Bacteria. J. Colloid Interface Sci. 2023;634:44–53. doi: 10.1016/j.jcis.2022.12.025. PubMed DOI

Ponomarenko L.A., Schedin F., Katsnelson M.I., Yang R., Hill E.W., Novoselov K.S., Geim A.K. Chaotic Dirac Billiard in Graphene Quantum Dots. Science. 2008;320:356–358. doi: 10.1126/science.1154663. PubMed DOI

Li X., Rui M., Song J., Shen Z., Zeng H. Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Adv. Funct. Mater. 2015;25:4929–4947. doi: 10.1002/adfm.201501250. DOI

Zheng P., Wu N. Fluorescence and Sensing Applications of Graphene Oxide and Graphene Quantum Dots: A Review. Chem. Asian J. 2017;12:2343–2353. doi: 10.1002/asia.201700814. PubMed DOI PMC

Yan X., Cui X., Li B., Li L.S. Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics. Nano Lett. 2010;10:1869–1873. doi: 10.1021/nl101060h. PubMed DOI

Wang Y., Li X., Song J., Xiao L., Zeng H., Sun H. All-Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics. Adv. Mater. 2015;27:7101–7108. doi: 10.1002/adma.201503573. PubMed DOI

Wang Y., Li X., Zhao X., Xiao L., Zeng H., Sun H. Nonlinear Absorption and Low-Threshold Multiphoton Pumped Stimulated Emission from All-Inorganic Perovskite Nanocrystals. Nano Lett. 2016;16:448–453. doi: 10.1021/acs.nanolett.5b04110. PubMed DOI

Hardman R. A Toxicologic Review of Quantum Dots: Toxicity Depends on Physicochemical and Environmental Factors. Environ. Health Perspect. 2006;114:165–172. doi: 10.1289/ehp.8284. PubMed DOI PMC

Geys J., Nemmar A., Verbeken E., Smolders E., Ratoi M., Hoylaerts M.F., Nemery B., Hoet P.H.M. Acute Toxicity and Prothrombotic Effects of Quantum Dots: Impact of Surface Charge. Environ. Health Perspect. 2008;116:1607–1613. doi: 10.1289/ehp.11566. PubMed DOI PMC

Xu X., Ray R., Gu Y., Ploehn H.J., Gearheart L., Raker K., Scrivens W.A. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J. Am. Chem. Soc. 2004;126:12736–12737. doi: 10.1021/ja040082h. PubMed DOI

Dong Y., Shao J., Chen C., Li H., Wang R., Chi Y., Lin X., Chen G. Blue Luminescent Graphene Quantum Dots and Graphene Oxide Prepared by Tuning the Carbonization Degree of Citric Acid. Carbon. 2012;50:4738–4743. doi: 10.1016/j.carbon.2012.06.002. DOI

Fang X., Li M., Guo K., Li J., Pan M., Bai L., Luoshan M., Zhao X. Graphene Quantum Dots Optimization of Dye-Sensitized Solar Cells. Electrochim. Acta. 2014;137:634–638. doi: 10.1016/j.electacta.2014.06.075. DOI

Chung S., Revia R.A., Zhang M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. Adv. Mater. 2021;33:1904362. doi: 10.1002/adma.201904362. PubMed DOI PMC

Prabhu S.A., Kavithayeni V., Suganthy R., Geetha K. Graphene Quantum Dots Synthesis and Energy Application: A Review. Carbon Lett. 2021;31:1–12. doi: 10.1007/s42823-020-00154-w. DOI

Ghosh D., Sarkar K., Devi P., Kim K.H., Kumar P. Current and Future Perspectives of Carbon and Graphene Quantum Dots: From Synthesis to Strategy for Building Optoelectronic and Energy Devices. Renew. Sustain. Energy Rev. 2021;135:110391. doi: 10.1016/j.rser.2020.110391. DOI

Varma R.S. Journey on Greener Pathways: From the Use of Alternate Energy Inputs and Benign Reaction Media to Sustainable Applications of Nano-Catalysts in Synthesis and Environmental Remediation. Green Chem. 2014;16:2027–2041. doi: 10.1039/c3gc42640h. DOI

Sharma R.K., Gulati S., Puri A. Green Chemistry Solutions to Water Pollution. Elsevier Inc.; Amsterdam, The Netherlands: 2014.

Cue B.W., Zhang J. Green Process Chemistry in the Pharmaceutical Industry. Green Chem. Lett. Rev. 2009;2:193–211. doi: 10.1080/17518250903258150. DOI

Malik P., Shankar R., Malik V., Sharma N., Mukherjee T.K. Green Chemistry Based Benign Routes for Nanoparticle Synthesis. J. Nanoparticles. 2014;2014:1–14. doi: 10.1155/2014/302429. DOI

Mahesh S., Lekshmi C.L., Renuka K.D. New Paradigms for the Synthesis of Graphene Quantum Dots from Sustainable Bioresources. New J. Chem. 2017;41:8706–8710. doi: 10.1039/C7NJ00544J. DOI

Tade R.S., Nangare S.N., Patil A.G., Pandey A., Deshmukh P.K., Patil D.R., Agrawal T.N., Mutalik S., Patil A.M., More M.P., et al. Recent Advancement in Bio-Precursor Derived Graphene Quantum Dots: Synthesis, Characterization and Toxicological Perspective. Nanotechnology. 2020;31:292001. doi: 10.1088/1361-6528/ab803e. PubMed DOI

Zhang J., Ma Y.Q., Li N., Zhu J.L., Zhang T., Zhang W., Liu B. Preparation of Graphene Quantum Dots and Their Application in Cell Imaging. J. Nanomater. 2016;2016:9245865. doi: 10.1155/2016/9245865. DOI

Zhu S., Song Y., Wang J., Wan H., Zhang Y., Ning Y., Yang B. Photoluminescence Mechanism in Graphene Quantum Dots: Quantum Confinement Effect and Surface/Edge State. Nano Today. 2017;13:10–14. doi: 10.1016/j.nantod.2016.12.006. DOI

Ye R., Xiang C., Lin J., Peng Z., Huang K., Yan Z., Cook N.P., Samuel E.L.G., Hwang C.C., Ruan G., et al. Coal as an Abundant Source of Graphene Quantum Dots. Nat. Commun. 2013;4:2943. doi: 10.1038/ncomms3943. PubMed DOI

Chingombe P., Saha B., Wakeman R.J. Surface Modification and Characterisation of a Coal-Based Activated Carbon. Carbon. 2005;43:3132–3143. doi: 10.1016/j.carbon.2005.06.021. DOI

Kawano T., Kubota M., Onyango M.S., Watanabe F., Matsuda H. Preparation of Activated Carbon from Petroleum Coke by KOH Chemical Activation for Adsorption Heat Pump. Appl. Therm. Eng. 2008;28:865–871. doi: 10.1016/j.applthermaleng.2007.07.009. DOI

Xie X., Goodell B. Thermal Degradation and Conversion of Plant Biomass into High Value Carbon Products. ACS Symp. Ser. 2014;1158:147–158. doi: 10.1021/bk-2014-1158.ch008. DOI

Schmidt L.D., Dauenhauer P.J. Chemical Engineering: Hybrid Routes to Biofuels. Nature. 2007;447:914–915. doi: 10.1038/447914a. PubMed DOI

Tilman D., Hill J., Lehman C. Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass. Science. 2006;314:1598–1600. doi: 10.1126/science.1133306. PubMed DOI

Yang S., Yang Y., He P., Wang G., Ding G., Xie X. Insights into the Oxidation Mechanism of Sp2-Sp3 Hybrid Carbon Materials: Preparation of a Water-Soluble 2D Porous Conductive Network and Detectable Molecule Separation. Langmuir. 2017;33:913–919. doi: 10.1021/acs.langmuir.6b03937. PubMed DOI

Zhu C., Yang S., Wang G., Mo R., He P., Sun J., Di Z., Kang Z., Yuan N., Ding J., et al. A New Mild, Clean and Highly Efficient Method for the Preparation of Graphene Quantum Dots without by-Products. J. Mater. Chem. B. 2015;3:6871–6876. doi: 10.1039/C5TB01093D. PubMed DOI

Zhou X., Zhang Y., Wang C., Wu X., Yang Y., Zheng B., Wu H., Guo S., Zhang J. Photo-Fenton Reaction of Graphene Oxide: A New Strategy to Prepare Graphene Quantum Dots for DNA Cleavage. ACS Nano. 2012;6:6592–6599. doi: 10.1021/nn301629v. PubMed DOI

Kumar V.B., Tang J., Lee K.J., Pol V.G., Gedanken A. In Situ Sonochemical Synthesis of Luminescent Sn@C-Dots and a Hybrid Sn@C-Dots@Sn Anode for Lithium-Ion Batteries. RSC Adv. 2016;6:66256–66265. doi: 10.1039/C6RA09926B. DOI

Chen W., Shen J., Lv G., Li D., Hu Y., Zhou C., Liu X., Dai Z. Green Synthesis of Graphene Quantum Dots from Cotton Cellulose. ChemistrySelect. 2019;4:2898–2902. doi: 10.1002/slct.201803512. DOI

Zhuo S., Shao M., Lee S. Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis. ACS Nano. 2012;6:1059–1064. doi: 10.1021/nn2040395. PubMed DOI

Zhu Y., Wang G., Jiang H., Chen L., Zhang X. One-Step Ultrasonic Synthesis of Graphene Quantum Dots with High Quantum Yield and Their Application in Sensing Alkaline Phosphatase. Chem. Commun. 2015;51:948–951. doi: 10.1039/C4CC07449A. PubMed DOI

Sarkar S., Gandla D., Venkatesh Y., Bangal P.R., Ghosh S., Yang Y., Misra S. Graphene Quantum Dots from Graphite by Liquid Exfoliation Showing Excitation-Independent Emission, Fluorescence Upconversion and Delayed Fluorescence. Phys. Chem. Chem. Phys. 2016;18:21278–21287. doi: 10.1039/C6CP01528J. PubMed DOI

Wen J., Li M., Xiao J., Liu C., Li Z., Xie Y., Ning P., Cao H., Zhang Y. Novel Oxidative Cutting Graphene Oxide to Graphene Quantum Dots for Electrochemical Sensing Application. Mater. Today Commun. 2016;8:127–133. doi: 10.1016/j.mtcomm.2016.07.006. DOI

Kanwal S., Jahan S., Mansoor F. An Ultrasonic-Assisted Synthesis of Leather-Derived Luminescent Graphene Quantum Dots: Catalytic Reduction and Switch on-off Probe for Nitro-Explosives. RSC Adv. 2020;10:22959–22965. doi: 10.1039/D0RA03715J. PubMed DOI PMC

Ali J., Siddiqui G.U.D., Yang Y.J., Lee K.T., Um K., Choi K.H. Direct Synthesis of Graphene Quantum Dots from Multilayer Graphene Flakes through Grinding Assisted Co-Solvent Ultrasonication for All-Printed Resistive Switching Arrays. RSC Adv. 2016;6:5068–5078. doi: 10.1039/C5RA21699K. DOI

Gao H., Xue C., Hu G., Zhu K. Production of Graphene Quantum Dots by Ultrasound-Assisted Exfoliation in Supercritical CO2/H2O Medium. Ultrason. Sonochem. 2017;37:120–127. doi: 10.1016/j.ultsonch.2017.01.001. PubMed DOI

Lu L., Zhu Y., Shi C., Pei Y.T. Large-Scale Synthesis of Defect-Selective Graphene Quantum Dots by Ultrasonic-Assisted Liquid-Phase Exfoliation. Carbon. 2016;109:373–383. doi: 10.1016/j.carbon.2016.08.023. DOI

Sandeep Kumar G., Roy R., Sen D., Ghorai U.K., Thapa R., Mazumder N., Saha S., Chattopadhyay K.K. Amino-Functionalized Graphene Quantum Dots: Origin of Tunable Heterogeneous Photoluminescence. Nanoscale. 2014;6:3384–3391. doi: 10.1039/c3nr05376h. PubMed DOI

Zhang Y., Li K., Ren S., Dang Y., Liu G., Zhang R., Zhang K., Long X., Jia K. Coal-Derived Graphene Quantum Dots Produced by Ultrasonic Physical Tailoring and Their Capacity for Cu(II) Detection. ACS Sustain. Chem. Eng. 2019;7:9793–9799. doi: 10.1021/acssuschemeng.8b06792. DOI

Ding H., Zhang F., Zhao C., Lv Y., Ma G., Wei W., Tian Z. Beyond a Carrier: Graphene Quantum Dots as a Probe for Programmatically Monitoring Anti-Cancer Drug Delivery, Release, and Response. ACS Appl. Mater. Interfaces. 2017;9:27396–27401. doi: 10.1021/acsami.7b08824. PubMed DOI

Gu S., Hsieh C.T., Chiang Y.M., Tzou D.Y., Chen Y.F., Gandomi Y.A. Optimization of Graphene Quantum Dots by Chemical Exfoliation from Graphite Powders and Carbon Nanotubes. Mater. Chem. Phys. 2018;215:104–111. doi: 10.1016/j.matchemphys.2018.05.016. DOI

Wang N., Li L., Zhou N., Chen S. Cage Breaking of C60 Into Photoluminescent Graphene Oxide Quantum Dots: An Efficient Peroxidase Mimic. Phys. Status Solidi Basic Res. 2018;255:2–5. doi: 10.1002/pssb.201700535. DOI

Liu F., Sun Y., Zheng Y., Tang N., Li M., Zhong W., Du Y. Gram-Scale Synthesis of High-Purity Graphene Quantum Dots with Multicolor Photoluminescence. RSC Adv. 2015;5:103428–103432. doi: 10.1039/C5RA19219F. DOI

Wang L., Li W., Wu B., Li Z., Wang S., Liu Y., Pan D., Wu M. Facile Synthesis of Fluorescent Graphene Quantum Dots from Coffee Grounds for Bioimaging and Sensing. Chem. Eng. J. 2016;300:75–82. doi: 10.1016/j.cej.2016.04.123. DOI

Tian R., Zhong S., Wu J., Jiang W., Shen Y., Jiang W., Wang T. Solvothermal Method to Prepare Graphene Quantum Dots by Hydrogen Peroxide. Opt. Mater. 2016;60:204–208. doi: 10.1016/j.optmat.2016.07.032. DOI

Xin Q., Shah H., Xie W., Wang Y., Jia X., Nawaz A., Song M., Gong J.R. Preparation of Blue- and Green-Emissive Nitrogen-Doped Graphene Quantum Dots from Graphite and Their Application in Bioimaging. Mater. Sci. Eng. C. 2021;119:111642. doi: 10.1016/j.msec.2020.111642. PubMed DOI

Huang H., Yang S., Li Q., Yang Y., Wang G., You X., Mao B., Wang H., Ma Y., He P., et al. Electrochemical cutting in weak aqueous electrolytes: The strategy for efficient and controllable preparation of graphene quantum dots. Langmuir. 2018;34:250–258. doi: 10.1021/acs.langmuir.7b03425. PubMed DOI

Lu J., Yang J.X., Wang J., Lim A., Wang S., Loh K.P. One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano. 2009;3:2367–2375. doi: 10.1021/nn900546b. PubMed DOI

Nirala N.R., Khandelwal G., Kumar B., Vinita, Prakash R., Kumar V. One Step Electro-Oxidative Preparation of Graphene Quantum Dots from Wood Charcoal as a Peroxidase Mimetic. Talanta. 2017;173:36–43. doi: 10.1016/j.talanta.2017.05.061. PubMed DOI

Li Q., Zhang S., Dai L., Li L.S. Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction. J. Am. Chem. Soc. 2012;134:18932–18935. doi: 10.1021/ja309270h. PubMed DOI

Li Y., Hu Y., Zhao Y., Shi G., Deng L., Hou Y., Qu L. An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics. Adv. Mater. 2011;23:776–780. doi: 10.1002/adma.201003819. PubMed DOI

Li H., He X., Kang Z., Huang H., Liu Y., Liu J., Lian S., Tsang C.H.A., Yang X., Lee S.T. Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew. Chem. Int. Ed. 2010;49:4430–4434. doi: 10.1002/anie.200906154. PubMed DOI

Ananthanarayanan A., Wang X., Routh P., Sana B., Lim S., Kim D.H., Lim K.H., Li J., Chen P. Facile Synthesis of Graphene Quantum Dots from 3D Graphene and Their Application for Fe3+ Sensing. Adv. Funct. Mater. 2014;24:3021–3026. doi: 10.1002/adfm.201303441. DOI

Sun J., Yang S., Wang Z., Shen H., Xu T., Sun L., Li H., Chen W., Jiang X., Ding G., et al. Ultra-High Quantum Yield of Graphene Quantum Dots: Aromatic-Nitrogen Doping and Photoluminescence Mechanism. Part. Part. Syst. Charact. 2015;32:434–440. doi: 10.1002/ppsc.201400189. DOI

Ghanbari N., Salehi Z., Khodadadi A.A., Shokrgozar M.A., Saboury A.A., Farzaneh F. Tryptophan-Functionalized Graphene Quantum Dots with Enhanced Curcumin Loading Capacity and PH-Sensitive Release. J. Drug Deliv. Sci. Technol. 2021;61:102137. doi: 10.1016/j.jddst.2020.102137. DOI

Li Y., Liu H., Liu X.Q., Li S., Wang L., Ma N., Qiu D. Free-Radical-Assisted Rapid Synthesis of Graphene Quantum Dots and Their Oxidizability Studies. Langmuir. 2016;32:8641–8649. doi: 10.1021/acs.langmuir.6b02422. PubMed DOI

Hu X., Ma X.Y., Tian J., Huang Z. Rapid and Facile Synthesis of Graphene Quantum Dots with High Antioxidant Activity. Inorg. Chem. Commun. 2020;122:108288. doi: 10.1016/j.inoche.2020.108288. DOI

Zhou C., Jiang W., Via B.K. Facile Synthesis of Soluble Graphene Quantum Dots and Its Improved Property in Detecting Heavy Metal Ions. Colloids Surf. B Biointerfaces. 2014;118:72–76. doi: 10.1016/j.colsurfb.2014.03.038. PubMed DOI

Chen W., Li F., Wu C., Guo T. Optical Properties of Fluorescent Zigzag Graphene Quantum Dots Derived from Multi-Walled Carbon Nanotubes. Appl. Phys. Lett. 2014;104:063109. doi: 10.1063/1.4863963. DOI

Wang C.C., Lu S.Y. Carbon Black-Derived Graphene Quantum Dots Composited with Carbon Aerogel as a Highly Efficient and Stable Reduction Catalyst for the Iodide/Tri-Iodide Couple. Nanoscale. 2015;7:1209–1215. doi: 10.1039/C4NR06118G. PubMed DOI

Piyasena P., Dussault C., Koutchma T., Ramaswamy H.S., Awuah G.B. Radio Frequency Heating of Foods: Principles, Applications and Related Properties—A Review. Crit. Rev. Food Sci. Nutr. 2003;43:587–606. doi: 10.1080/10408690390251129. PubMed DOI

Zheng B., Chen Y., Li P., Wang Z., Cao B., Qi F., Liu J., Qiu Z., Zhang W. Ultrafast Ammonia-Driven, Microwave-Assisted Synthesis of Nitrogen-Doped Graphene Quantum Dots and Their Optical Properties. Nanophotonics. 2017;6:259–267. doi: 10.1515/nanoph-2016-0102. DOI

Tak K., Sharma R., Dave V., Jain S., Sharma S. Clitoria Ternatea Mediated Synthesis of Graphene Quantum Dots for the Treatment of Alzheimer’s Disease. ACS Chem. Neurosci. 2020;11:3741–3748. doi: 10.1021/acschemneuro.0c00273. PubMed DOI

Li L.L., Ji J., Fei R., Wang C.Z., Lu Q., Zhang J.R., Jiang L.P., Zhu J.J. A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots. Adv. Funct. Mater. 2012;22:2971–2979. doi: 10.1002/adfm.201200166. DOI

Fresco-Cala B., Soriano M.L., Sciortino A., Cannas M., Messina F., Cardenas S. One-Pot Synthesis of Graphene Quantum Dots and Simultaneous Nanostructured Self-Assembly: Via a Novel Microwave-Assisted Method: Impact on Triazine Removal and Efficiency Monitoring. RSC Adv. 2018;8:29939–29946. doi: 10.1039/C8RA04286A. PubMed DOI PMC

Gu S., Hsieh C.T., Ashraf Gandomi Y., Chang J.K., Li J., Li J., Zhang H., Guo Q., Lau K.C., Pandey R. Microwave Growth and Tunable Photoluminescence of Nitrogen-Doped Graphene and Carbon Nitride Quantum Dots. J. Mater. Chem. C. 2019;7:5468–5476. doi: 10.1039/C9TC00233B. DOI

Hai X., Mao Q.X., Wang W.J., Wang X.F., Chen X.W., Wang J.H. An Acid-Free Microwave Approach to Prepare Highly Luminescent Boron-Doped Graphene Quantum Dots for Cell Imaging. J. Mater. Chem. B. 2015;3:9109–9114. doi: 10.1039/C5TB01954K. PubMed DOI

Kumawat M.K., Srivastava R., Thakur M., Gurung R.B. Graphene Quantum Dots from Mangifera Indica: Application in near-Infrared Bioimaging and Intracellular Nanothermometry. ACS Sustain. Chem. Eng. 2017;5:1382–1391. doi: 10.1021/acssuschemeng.6b01893. DOI

Vijaya P.M., Kumar M.P., Takahashi C., Kundu S., Narayanan T.N., Pattanayak D.K. Boron-Doped Graphene Quantum Dots: An Efficient Photoanode for a Dye Sensitized Solar Cell. New J. Chem. 2019;43:14313–14319. doi: 10.1039/c9nj00052f. DOI

Nguyen H.Y., Le X.H., Dao N.T., Pham N.T., Vu T.H.H., Nguyen N.H., Pham T.N. Microwave-Assisted Synthesis of Graphene Quantum Dots and Nitrogen-Doped Graphene Quantum Dots: Raman Characterization and Their Optical Properties. Adv. Nat. Sci. Nanosci. Nanotechnol. 2019;10:025005. doi: 10.1088/2043-6254/ab1b73. DOI

Qu D., Zheng M., Zhang L., Zhao H., Xie Z., Jing X., Haddad R.E., Fan H., Sun Z. Formation Mechanism and Optimization of Highly Luminescent N-Doped Graphene Quantum Dots. Sci. Rep. 2014;4:5294. doi: 10.1038/srep05294. PubMed DOI PMC

Ren Q., Ga L., Ai J. Rapid Synthesis of Highly Fluorescent Nitrogen-Doped Graphene Quantum Dots for Effective Detection of Ferric Ions and as Fluorescent Ink. ACS Omega. 2019;4:15842–15848. doi: 10.1021/acsomega.9b01612. PubMed DOI PMC

Kumawat M.K., Thakur M., Gurung R.B., Srivastava R. Graphene Quantum Dots for Cell Proliferation, Nucleus Imaging, and Photoluminescent Sensing Applications. Sci. Rep. 2017;7:15858. doi: 10.1038/s41598-017-16025-w. PubMed DOI PMC

Shin Y., Lee J., Yang J., Park J., Lee K., Kim S., Park Y., Lee H. Mass Production of Graphene Quantum Dots by One-Pot Synthesis Directly from Graphite in High Yield. Small. 2014;10:866–870. doi: 10.1002/smll.201302286. PubMed DOI

Li W., Li M., Liu Y., Pan D., Li Z., Wang L., Wu M. Three Minute Ultrarapid Microwave-Assisted Synthesis of Bright Fluorescent Graphene Quantum Dots for Live Cell Staining and White LEDs. ACS Appl. Nano Mater. 2018;1:1623–1630. doi: 10.1021/acsanm.8b00114. DOI

Umrao S., Jang M.H., Oh J.H., Kim G., Sahoo S., Cho Y.H., Srivastva A., Oh I.K. Microwave Bottom-up Route for Size-Tunable and Switchable Photoluminescent Graphene Quantum Dots Using Acetylacetone: New Platform for Enzyme-Free Detection of Hydrogen Peroxide. Carbon. 2015;81:514–524. doi: 10.1016/j.carbon.2014.09.084. DOI

Zhuang Q., Wang Y., Ni Y. Solid-Phase Synthesis of Graphene Quantum Dots from the Food Additive Citric Acid under Microwave Irradiation and Their Use in Live-Cell Imaging. Luminescence. 2016;31:746–753. doi: 10.1002/bio.3019. PubMed DOI

Zeng Z., Chen S., Tan T.T.Y., Xiao F.X. Graphene Quantum Dots (GQDs) and Its Derivatives for Multifarious Photocatalysis and Photoelectrocatalysis. Catal. Today. 2018;315:171–183. doi: 10.1016/j.cattod.2018.01.005. DOI

Ozhukil Valappil M., Pillai V.K., Alwarappan S. Spotlighting Graphene Quantum Dots and beyond: Synthesis, Properties and Sensing Applications. Appl. Mater. Today. 2017;9:350–371. doi: 10.1016/j.apmt.2017.09.002. DOI

Tang L., Ji R., Cao X., Lin J., Jiang H., Li X., Teng K.S., Luk C.M., Zeng S., Hao J., et al. Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots. ACS Nano. 2012;6:5102–5110. doi: 10.1021/nn300760g. PubMed DOI

Tang L., Ji R., Li X., Teng K.S., Lau S.P. Size-Dependent Structural and Optical Characteristics of Glucose-Derived Graphene Quantum Dots. Part. Part. Syst. Charact. 2013;30:523–531. doi: 10.1002/ppsc.201200131. DOI

Chen S., Hai X., Xia C., Chen X.W., Wang J.H. Preparation of Excitation-Independent Photoluminescent Graphene Quantum Dots with Visible-Light Excitation/Emission for Cell Imaging. Chem. Eur. J. 2013;19:15918–15923. doi: 10.1002/chem.201302207. PubMed DOI

Sun H., Ji H., Ju E., Guan Y., Ren J., Qu X. Synthesis of Fluorinated and Nonfluorinated Graphene Quantum Dots through a New Top-down Strategy for Long-Time Cellular Imaging. Chem. Eur. J. 2015;21:3791–3797. doi: 10.1002/chem.201406345. PubMed DOI

Agarwal S., Sadeghi N., Tyagi I., Gupta V.K., Fakhri A. Adsorption of Toxic Carbamate Pesticide Oxamyl from Liquid Phase by Newly Synthesized and Characterized Graphene Quantum Dots Nanomaterials. J. Colloid Interface Sci. 2016;478:430–438. doi: 10.1016/j.jcis.2016.06.029. PubMed DOI

Hou X., Li Y., Zhao C. Microwave-Assisted Synthesis of Nitrogen-Doped Multi-Layer Graphene Quantum Dots with Oxygen-Rich Functional Groups. Aust. J. Chem. 2016;69:357–360. doi: 10.1071/CH15431. DOI

Ben Aoun S. Nanostructured Carbon Electrode Modified with N-Doped Graphene Quantum Dots—Chitosan Nanocomposite: A Sensitive Electrochemical Dopamine Sensor. R. Soc. Open Sci. 2017;4:171199. doi: 10.1098/rsos.171199. PubMed DOI PMC

Luo Z., Qi G., Chen K., Zou M., Yuwen L., Zhang X., Huang W., Wang L. Microwave-Assisted Preparation of White Fluorescent Graphene Quantum Dots as a Novel Phosphor for Enhanced White-Light-Emitting Diodes. Adv. Funct. Mater. 2016;26:2739–2744. doi: 10.1002/adfm.201505044. DOI

Luo Z., Yang D., Yang C., Wu X., Hu Y., Zhang Y., Yuwen L., Yeow E.K.L., Weng L., Huang W., et al. Graphene Quantum Dots Modified with Adenine for Efficient Two-Photon Bioimaging and White Light-Activated Antibacteria. Appl. Surf. Sci. 2018;434:155–162. doi: 10.1016/j.apsusc.2017.10.121. DOI

Jénnifer Gómez I., Vázquez Sulleiro M., Dolečková A., Pizúrová N., Medalová J., Bednařík A., Preisler J., Nečas D., Zajíčková L. Structure Elucidation of Multicolor Emissive Graphene Quantum Dots towards Cell Guidance. Mater. Chem. Front. 2022;6:145–154. doi: 10.1039/D1QM01126J. DOI

Chaudhary P., Verma A., Mishra A., Yadav D., Pal K., Yadav B.C., Ranjith Kumar E., Thapa K.B., Mishra S., Dwivedi D.K. Preparation of Carbon Quantum Dots Using Bike Pollutant Soot: Evaluation of Structural, Optical and Moisture Sensing Properties. Phys. E Low Dimens. Syst. Nanostruct. 2022;139:115174. doi: 10.1016/j.physe.2022.115174. DOI

Rajamanikandan S., Biruntha M., Ramalingam G. Blue Emissive Carbon Quantum Dots (CQDs) from Bio-Waste Peels and Its Antioxidant Activity. J. Clust. Sci. 2022;33:1045–1053. doi: 10.1007/s10876-021-02029-0. DOI

Tyagi A., Tripathi K.M., Singh N., Choudhary S., Gupta R.K. Green Synthesis of Carbon Quantum Dots from Lemon Peel Waste: Applications in Sensing and Photocatalysis. RSC Adv. 2016;6:72423–72432. doi: 10.1039/C6RA10488F. DOI

Kang S., Kim K.M., Jung K., Son Y., Mhin S., Ryu J.H., Shim K.B., Lee B., Han H.S., Song T. Graphene Oxide Quantum Dots Derived from Coal for Bioimaging: Facile and Green Approach. Sci. Rep. 2019;9:4101. doi: 10.1038/s41598-018-37479-6. PubMed DOI PMC

Zhang Y.P., Ma J.M., Yang Y.S., Ru J.X., Liu X.Y., Ma Y., Guo H.C. Synthesis of Nitrogen-Doped Graphene Quantum Dots (N-GQDs) from Marigold for Detection of Fe3+ Ion and Bioimaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019;217:60–67. doi: 10.1016/j.saa.2019.03.044. PubMed DOI

Gupta G.K., Sagar P., Srivastava M., Singh A.K., Singh J., Srivastava S.K., Srivastava A. Excellent Supercapacitive Performance of Graphene Quantum Dots Derived from a Bio-Waste Marigold Flower (Tagetes Erecta) Int. J. Hydrogen Energy. 2021;46:38416–38424. doi: 10.1016/j.ijhydene.2021.09.094. DOI

Adolfsson K.H., Hassanzadeh S., Hakkarainen M. Valorization of Cellulose and Waste Paper to Graphene Oxide Quantum Dots. RSC Adv. 2015;5:26550–26558. doi: 10.1039/C5RA01805F. DOI

Liu Q., Zhang J., He H., Huang G., Xing B., Jia J., Zhang C. Green Preparation of High Yield Fluorescent Graphene Quantum Dots from Coal-Tar-Pitch by Mild Oxidation. Nanomaterials. 2018;8:844. doi: 10.3390/nano8100844. PubMed DOI PMC

Jlassi K., Mallick S., Eribi A., Chehimi M.M., Ahmad Z., Touati F., Krupa I. Facile Preparation of N-S Co-Doped Graphene Quantum Dots (GQDs) from Graphite Waste for Efficient Humidity Sensing. Sens. Actuators B Chem. 2021;328:129058. doi: 10.1016/j.snb.2020.129058. DOI

Mohan A.N., Manoj B. Biowaste Derived Graphene Quantum Dots Interlaced with SnO2 Nanoparticles-a Dynamic Disinfection Agent against: Pseudomonas Aeruginosa. New J. Chem. 2019;43:13681–13689. doi: 10.1039/C9NJ00379G. DOI

Ding Z., Li F., Wen J., Wang X., Sun R. Gram-Scale Synthesis of Single-Crystalline Graphene Quantum Dots Derived from Lignin Biomass. Green Chem. 2018;20:1383–1390. doi: 10.1039/C7GC03218H. DOI

Khose R.V., Bangde P., Bondarde M.P., Dhumal P.S., Bhakare M.A., Chakraborty G., Ray A.K., Dandekar P., Some S. Waste Derived Approach towards Wealthy Fluorescent N-Doped Graphene Quantum Dots for Cell Imaging and H2O2 Sensing Applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022;266:120453. doi: 10.1016/j.saa.2021.120453. PubMed DOI

Wang Q., Li H., Chen L., Huang X. Monodispersed Hard Carbon Spherules with Uniform Nanopores. Carbon. 2001;39:2211–2214. doi: 10.1016/S0008-6223(01)00040-9. DOI

Ortiz Balbuena J., Tutor De Ureta P., Rivera Ruiz E., Mellor Pita S. Enfermedad de Vogt-Koyanagi-Harada. Med. Clin. 2016;146:93–94. doi: 10.1016/j.medcli.2015.04.005. PubMed DOI

Lai C.W., Hsiao Y.H., Peng Y.K., Chou P.T. Facile Synthesis of Highly Emissive Carbon Dots from Pyrolysis of Glycerol; Gram Scale Production of Carbon Dots/MSiO2 for Cell Imaging and Drug Release. J. Mater. Chem. 2012;22:14403–14409. doi: 10.1039/c2jm32206d. DOI

Bourlinos A.B., Stassinopoulos A., Anglos D., Zboril R., Karakassides M., Giannelis E.P. Surface Functionalized Carbogenic Quantum Dots. Small. 2008;4:455–458. doi: 10.1002/smll.200700578. PubMed DOI

Deng Y., Zhao D., Chen X., Wang F., Song H., Shen D. Long Lifetime Pure Organic Phosphorescence Based on Water Soluble Carbon Dots. Chem. Commun. 2013;49:5751–5753. doi: 10.1039/c3cc42600a. PubMed DOI

Click M. Manuscript Click Here to View Linked References. Brain. 2010;2:617–638. doi: 10.1016/j.actpsy.2011.12.005. DOI

Jia X., Li J., Wang E. One-Pot Green Synthesis of Optically PH-Sensitive Carbon Dots with Upconversion Luminescence. Nanoscale. 2012;4:5572–5575. doi: 10.1039/c2nr31319g. PubMed DOI

Kalita H., Mohapatra J., Pradhan L., Mitra A., Bahadur D., Aslam M. Efficient Synthesis of Rice Based Graphene Quantum Dots and Their Fluorescent Properties. RSC Adv. 2016;6:23518–23524. doi: 10.1039/C5RA25706A. DOI

Mahesh S., Lekshmi C.L., Renuka K.D., Joseph K. Simple and Cost-Effective Synthesis of Fluorescent Graphene Quantum Dots from Honey: Application as Stable Security Ink and White-Light Emission. Part. Part. Syst. Charact. 2016;33:70–74. doi: 10.1002/ppsc.201500103. DOI

Zhu S., Zhang J., Tang S., Qiao C., Wang L., Wang H., Liu X., Li B., Li Y., Yu W., et al. Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to up-Conversion Bioimaging Applications. Adv. Funct. Mater. 2012;22:4732–4740. doi: 10.1002/adfm.201201499. DOI

Bayat A., Saievar-Iranizad E. Synthesis of Green-Photoluminescent Single Layer Graphene Quantum Dots: Determination of HOMO and LUMO Energy States. J. Lumin. 2017;192:180–183. doi: 10.1016/j.jlumin.2017.06.055. DOI

Naik J.P., Sutradhar P., Saha M. Molecular Scale Rapid Synthesis of Graphene Quantum Dots (GQDs) J. Nanostruct. Chem. 2017;7:85–89. doi: 10.1007/s40097-017-0222-9. DOI

Li X., Lau S.P., Tang L., Ji R., Yang P. Sulphur Doping: A Facile Approach to Tune the Electronic Structure and Optical Properties of Graphene Quantum Dots. Nanoscale. 2014;6:5323–5328. doi: 10.1039/C4NR00693C. PubMed DOI

Alizadeh T., Shokri M. A New Humidity Sensor Based upon Graphene Quantum Dots Prepared via Carbonization of Citric Acid. Sens. Actuators B Chem. 2016;222:728–734. doi: 10.1016/j.snb.2015.08.122. DOI

Amjadi M., Manzoori J.L., Hallaj T. Chemiluminescence of Graphene Quantum Dots and Its Application to the Determination of Uric Acid. J. Lumin. 2014;153:73–78. doi: 10.1016/j.jlumin.2014.03.020. DOI

Arvand M., Hemmati S. Magnetic Nanoparticles Embedded with Graphene Quantum Dots and Multiwalled Carbon Nanotubes as a Sensing Platform for Electrochemical Detection of Progesterone. Sens. Actuators B Chem. 2017;238:346–356. doi: 10.1016/j.snb.2016.07.066. DOI

Diao J., Wang T., Li L. Graphene Quantum Dots as Nanoprobes for Fluorescent Detection of Propofol in Emulsions. R. Soc. Open Sci. 2019;6:181753. doi: 10.1098/rsos.181753. PubMed DOI PMC

Jian X., Liu X., Yang H.M., Guo M.M., Song X.L., Dai H.Y., Liang Z.H. Graphene Quantum Dots Modified Glassy Carbon Electrode via Electrostatic Self-Assembly Strategy and Its Application. Electrochim. Acta. 2016;190:455–462. doi: 10.1016/j.electacta.2016.01.045. DOI

Tashkhourian J., Dehbozorgi A. Determination of Dopamine in the Presence of Ascorbic and Uric Acids by Fluorometric Method Using Graphene Quantum Dots. Spectrosc. Lett. 2016;49:319–325. doi: 10.1080/00387010.2016.1144074. DOI

Teymourinia H., Salavati-Niasari M., Amiri O., Safardoust-Hojaghan H. Synthesis of Graphene Quantum Dots from Corn Powder and Their Application in Reduce Charge Recombination and Increase Free Charge Carriers. J. Mol. Liq. 2017;242:447–455. doi: 10.1016/j.molliq.2017.07.052. DOI

Teymourinia H., Salavati-Niasari M., Amiri O., Farangi M. Facile Synthesis of Graphene Quantum Dots from Corn Powder and Their Application as down Conversion Effect in Quantum Dot-Dye-Sensitized Solar Cell. J. Mol. Liq. 2018;251:267–272. doi: 10.1016/j.molliq.2017.12.059. DOI

Van Tam T., Trung N.B., Kim H.R., Chung J.S., Choi W.M. One-Pot Synthesis of N-Doped Graphene Quantum Dots as a Fluorescent Sensing Platform for Fe3+ Ions Detection. Sens. Actuators B Chem. 2014;202:568–573. doi: 10.1016/j.snb.2014.05.045. DOI

Ananthanarayanan A., Wang Y., Routh P., Sk M.A., Than A., Lin M., Zhang J., Chen J., Sun H., Chen P. Nitrogen and Phosphorus Co-Doped Graphene Quantum Dots: Synthesis from Adenosine Triphosphate, Optical Properties, and Cellular Imaging. Nanoscale. 2015;7:8159–8165. doi: 10.1039/C5NR01519G. PubMed DOI

Gu J., Zhang X., Pang A., Yang J. Facile Synthesis and Photoluminescence Characteristics of Blue-Emitting Nitrogen-Doped Graphene Quantum Dots. Nanotechnology. 2016;27:165704. doi: 10.1088/0957-4484/27/16/165704. PubMed DOI

Kaur M., Mehta S.K., Kansal S.K. A Fluorescent Probe Based on Nitrogen Doped Graphene Quantum Dots for Turn off Sensing of Explosive and Detrimental Water Pollutant, TNP in Aqueous Medium. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017;180:37–43. doi: 10.1016/j.saa.2017.02.035. PubMed DOI

Liu H., Wang H., Qian Y., Zhuang J., Hu L., Chen Q., Zhou S. Nitrogen-Doped Graphene Quantum Dots as Metal-Free Photocatalysts for Near-Infrared Enhanced Reduction of 4-Nitrophenol. ACS Appl. Nano Mater. 2019;2:7043–7050. doi: 10.1021/acsanm.9b01549. DOI

Wang R., Fan H., Jiang W., Ni G., Qu S. Amino-Functionalized Graphene Quantum Dots Prepared Using High-Softening Point Asphalt and Their Application in Fe3+ Detection. Appl. Surf. Sci. 2019;467–468:446–455. doi: 10.1016/j.apsusc.2018.10.104. DOI

Liu H., Lv X., Li C., Qian Y., Wang X., Hu L., Wang Y., Lin W., Wang H. Direct Carbonization of Organic Solvents toward Graphene Quantum Dots. Nanoscale. 2020;12:10956–10963. doi: 10.1039/D0NR01903H. PubMed DOI

Xie Y., Kocaefe D., Chen C., Kocaefe Y. Review of Research on Template Methods in preparation of Nanomaterials. J. Nanomater. 2016;2016:2302595. doi: 10.1155/2016/2302595. DOI

Kwon W., Lee G., Do S., Joo T., Rhee S.W. Size-Controlled Soft-Template Synthesis of Carbon Nanodots toward Versatile Photoactive Materials. Small. 2014;10:506–513. doi: 10.1002/smll.201301770. PubMed DOI

Li R., Liu Y., Li Z., Shen J., Yang Y., Cui X., Yang G. Bottom-Up Fabrication of Single-Layered Nitrogen-Doped Graphene Quantum Dots through Intermolecular Carbonization Arrayed in a 2D Plane. Chem. Eur. J. 2016;22:272–278. doi: 10.1002/chem.201503191. PubMed DOI

Liu R., Wu D., Feng X., Müllen K. Bottom-up Fabrication of Photoluminescent Graphene Quantum Dots with Uniform Morphology. J. Am. Chem. Soc. 2011;133:15221–15223. doi: 10.1021/ja204953k. PubMed DOI

Gao S., Tang L., Xiang J., Ji R., Lai S.K., Yuan S., Lau S.P. Facile Preparation of Sulphur-Doped Graphene Quantum Dots for Ultra-High Performance Ultraviolet Photodetectors. New J. Chem. 2017;41:10447–10451. doi: 10.1039/C7NJ01989K. DOI

Do S., Kwon W., Rhee S.W. Soft-Template Synthesis of Nitrogen-Doped Carbon Nanodots: Tunable Visible-Light Photoluminescence and Phosphor-Based Light-Emitting Diodes. J. Mater. Chem. C. 2014;2:4221–4226. doi: 10.1039/c4tc00090k. DOI

Li R., Chen J., Zhou X., Li Z., Liu J. Fabrication of Zinc-Histidine-Functionalized Graphene Quantum Dot Framework Amphiphilic Nanoparticles and Application in the Synthesis of Polystyrene Microspheres for Adsorption of Cu2+ by Pickering Emulsion Polymerization. RSC Adv. 2016;6:102534–102541. doi: 10.1039/C6RA23366J. DOI

Ruiyi L., Sili Q., Zhangyi L., Ling L., Zaijun L. Histidine-Functionalized Graphene Quantum Dot-Graphene Micro-Aerogel Based Voltammetric Sensing of Dopamine. Sens. Actuators B Chem. 2017;250:372–382. doi: 10.1016/j.snb.2017.05.001. DOI

Shin Y., Park J., Hyun D., Yang J., Lee H. Generation of Graphene Quantum Dots by the Oxidative Cleavage of Graphene Oxide Using the Oxone Oxidant. New J. Chem. 2015;39:2425–2428. doi: 10.1039/C4NJ02299H. DOI

Nair R.V., Thomas R.T., Sankar V., Muhammad H., Dong M., Pillai S. Rapid, Acid-Free Synthesis of High-Quality Graphene Quantum Dots for Aggregation Induced Sensing of Metal Ions and Bioimaging. ACS Omega. 2017;2:8051–8061. doi: 10.1021/acsomega.7b01262. PubMed DOI PMC

Shin Y., Park J., Hyun D., Yang J., Lee J.H., Kim J.H., Lee H. Acid-Free and Oxone Oxidant-Assisted Solvothermal Synthesis of Graphene Quantum Dots Using Various Natural Carbon Materials as Resources. Nanoscale. 2015;7:5633–5637. doi: 10.1039/C5NR00814J. PubMed DOI

Lu Q., Wu C., Liu D., Wang H., Su W., Li H., Zhang Y., Yao S. A Facile and Simple Method for Synthesis of Graphene Oxide Quantum Dots from Black Carbon. Green Chem. 2017;19:900–904. doi: 10.1039/C6GC03092K. DOI

Chen W., Lv G., Hu W., Li D., Chen S., Dai Z. Synthesis and Applications of Graphene Quantum Dots: A Review. Nanotechnol. Rev. 2018;7:157–185. doi: 10.1515/ntrev-2017-0199. DOI

Sk M.A., Ananthanarayanan A., Huang L., Lim K.H., Chen P. Revealing the Tunable Photoluminescence Properties of Graphene Quantum Dots. J. Mater. Chem. C. 2014;2:6954–6960. doi: 10.1039/C4TC01191K. DOI

Mohanty N., Moore D., Xu Z., Sreeprasad T.S., Nagaraja A., Rodriguez A.A., Berry V. Nanotomy-Based Production of Transferable and Dispersible Graphene Nanostructures of Controlled Shape and Size. Nat. Commun. 2012;3:844. doi: 10.1038/ncomms1834. PubMed DOI

Yan X., Cui X., Li L.S. Synthesis of Large, Stable Colloidal Graphene Quantum Dots with Tunable Size. J. Am. Chem. Soc. 2010;132:5944–5945. doi: 10.1021/ja1009376. PubMed DOI

Lu J., Yeo P.S.E., Gan C.K., Wu P., Loh K.P. Transforming C60 Molecules into Graphene Quantum Dots. Nat. Nanotechnol. 2011;6:247–252. doi: 10.1038/nnano.2011.30. PubMed DOI

Zhao L., Wang Y., Li Y. Antioxidant Activity of Graphene Quantum Dots Prepared in Different Electrolyte Environments. Nanomaterials. 2019;9:1708. doi: 10.3390/nano9121708. PubMed DOI PMC

Zheng A.X., Cong Z.X., Wang J.R., Li J., Yang H.H., Chen G.N. Highly-Efficient Peroxidase-like Catalytic Activity of Graphene Dots for Biosensing. Biosens. Bioelectron. 2013;49:519–524. doi: 10.1016/j.bios.2013.05.038. PubMed DOI

Sekiya R., Uemura Y., Naito H., Naka K., Haino T. Chemical Functionalisation and Photoluminescence of Graphene Quantum Dots. Chem. Eur. J. 2016;22:8198–8206. doi: 10.1002/chem.201504963. PubMed DOI

Li Y., Wang L., Ge J., Wang J., Li Q., Wan W., Zhang B., Liu X., Xue W. Graphene Quantum Dots Modified ZnO + Cu Heterostructure Photocatalysts with Enhanced Photocatalytic Performance. RSC Adv. 2016;6:106508–106515. doi: 10.1039/C6RA15707F. DOI

Hu S., Tian R., Wu L., Zhao Q., Yang J., Liu J., Cao S. Chemical Regulation of Carbon Quantum Dots from Synthesis to Photocatalytic Activity. Chem. Asian J. 2013;8:1035–1041. doi: 10.1002/asia.201300076. PubMed DOI

Sun H., Wu L., Gao N., Ren J., Qu X. Improvement of Photoluminescence of Graphene Quantum Dots with a Biocompatible Photochemical Reduction Pathway and Its Bioimaging Application. ACS Appl. Mater. Interfaces. 2013;5:1174–1179. doi: 10.1021/am3030849. PubMed DOI

Shen J., Zhu Y., Chen C., Yang X., Li C. Facile Preparation and Upconversion Luminescence of Graphene Quantum Dots. Chem. Commun. 2011;47:2580–2582. doi: 10.1039/C0CC04812G. PubMed DOI

Wang X., Sun G., Routh P., Kim D.H., Huang W., Chen P. Heteroatom-Doped Graphene Materials: Syntheses, Properties and Applications. Chem. Soc. Rev. 2014;43:7067–7098. doi: 10.1039/C4CS00141A. PubMed DOI

Zhang Y., Park M., Kim H.Y., Ding B., Park S. A Facile Ultrasonic-Assisted Fabrication of Nitrogen-Doped Carbon Dots/BiOBr up-Conversion Nanocomposites for Visible Light Photocatalytic Enhancements. Sci. Rep. 2017;7:45086. doi: 10.1038/srep45086. PubMed DOI PMC

Prasad K.S., Pallela R., Kim D.M., Shim Y.B. Microwave-Assisted One-Pot Synthesis of Metal-Free Nitrogen and Phosphorus Dual-Doped Nanocarbon for Electrocatalysis and Cell Imaging. Part. Part. Syst. Charact. 2013;30:557–564. doi: 10.1002/ppsc.201300020. DOI

Qian Z., Shan X., Chai L., Chen J., Feng H. Si doped CQDs: A facile and general preparation strategy, bioimaging application, and multifunctional sensor. ACS Appl. Mater. Interfaces. 2014;6:6797–6805. doi: 10.1021/am500403n. PubMed DOI

Zhang L., Zhang Z.Y., Liang R.P., Li Y.H., Qiu J.D. Boron-Doped Graphene Quantum Dots for Selective Glucose Sensing Based on the “Abnormal” Aggregation-Induced Photoluminescence Enhancement. Anal. Chem. 2014;86:4423–4430. doi: 10.1021/ac500289c. PubMed DOI

Yao M., Huang J., Deng Z., Jin W., Yuan Y., Nie J., Wang H., Du F., Zhang Y. Transforming Glucose into Fluorescent Graphene Quantum Dots: Via Microwave Radiation for Sensitive Detection of Al3+ ions Based on Aggregation-Induced Enhanced Emission. Analyst. 2020;145:6981–6986. doi: 10.1039/D0AN01639J. PubMed DOI

Moghanlo S.P., Valizadeh H. Microwave-Assisted Preparation of Graphene Quantum Dots Immobilized Nanosilica as an Efficient Heterogeneous Nanocatalyst for the Synthesis of Xanthenes. Org. Commun. 2019;12:14–25. doi: 10.25135/acg.oc.53.18.11.1051. DOI

Alves A.K., Frantz A.C.S., Berutti F.A. Microwave-Assisted Oleothermal Synthesis of Graphene-TiO2 Quantum Dots for Photoelectrochemical Oxygen Evolution Reaction. FlatChem. 2018;12:26–34. doi: 10.1016/j.flatc.2018.12.001. DOI

Qiu H., Sun X., An S., Lan D., Cui J., Zhang Y., He W. Microwave Synthesis of Histidine-Functionalized Graphene Quantum Dots/Ni-Co LDH with Flower Ball Structure for Supercapacitor. J. Colloid Interface Sci. 2020;567:264–273. doi: 10.1016/j.jcis.2020.02.018. PubMed DOI

Van Tam T., Altahtamouni T.M., Le Minh V., Ha H.K.P., Chung N.T.K., Van Thuan D. One-Pot Microwave-Assisted Green Synthesis of Amine-Functionalized Graphene Quantum Dots for High Visible Light Photocatalytic Application. Comptes Rendus Chim. 2019;22:822–828. doi: 10.1016/j.crci.2019.10.005. DOI

Zhang C., Cui Y., Song L., Liu X., Hu Z. Microwave Assisted One-Pot Synthesis of Graphene Quantum Dots as Highly Sensitive Fluorescent Probes for Detection of Iron Ions and PH Value. Talanta. 2016;150:54–60. doi: 10.1016/j.talanta.2015.12.015. PubMed DOI

Zhao P., Li C., Yang M. Microwave-Assisted One-Pot Conversion from Deoiled Asphalt to Green Fluorescent Graphene Quantum Dots and Their Interfacial Properties. J. Dispers. Sci. Technol. 2017;38:769–774. doi: 10.1080/01932691.2016.1194212. DOI

Wu D., Qu C., Wang J., Yang R., Qu L. Highly Sensitive and Selective Fluorescence Sensing and Imaging of Fe3+ Based on a Novel Nitrogen-Doped Graphene Quantum Dots. Luminescence. 2021;36:1592–1599. doi: 10.1002/bio.4062. PubMed DOI

Centeno L., Romero-García J., Alvarado-Canché C., Gallardo-Vega C., Télles-Padilla G., Díaz Barriga-Castro E., Cabrera-Álvarez E.N., Ledezma-Pérez A., de León A. Green Synthesis of Graphene Quantum Dots from Opuntia sp. Extract and Their Application in Phytic Acid Detection. Sens. Bio Sens. Res. 2021;32:100412. doi: 10.1016/j.sbsr.2021.100412. DOI

Thi T., Quyen B., Nhon N.H., Nguyen T., Duong T., Nguyen N., My T., Thien D.V.H., Huynh L., Thanh V. Rapid and Simple Synthesis of Graphene Quantum Dots/Ag Nanocomposites and Its Application for Glucose Detection by Photoluminescence Spectroscopy. Int. J. Sci. Eng. Sci. 2021;5:1–5.

Zhou L., Geng J., Liu B. Graphene Quantum Dots from Polycyclic Aromatic Hydrocarbon for Bioimaging and Sensing of Fe3+ and Hydrogen Peroxide. Part. Part. Syst. Charact. 2013;30:1086–1092. doi: 10.1002/ppsc.201300170. DOI

Pathak P.K., Kumar A., Prasad B.B. Functionalized Nitrogen Doped Graphene Quantum Dots and Bimetallic Au/Ag Core-Shell Decorated Imprinted Polymer for Electrochemical Sensing of Anticancerous Hydroxyurea. Biosens. Bioelectron. 2019;127:10–18. doi: 10.1016/j.bios.2018.11.055. PubMed DOI

Gu S., Hsieh C.T., Yuan C.Y., Gandomi Y.A., Chang J.K., Fu C.C., Yang J.W., Juang R.S. Fluorescence of Functionalized Graphene Quantum Dots Prepared from Infrared-Assisted Pyrolysis of Citric Acid and Urea. J. Lumin. 2020;217:116774. doi: 10.1016/j.jlumin.2019.116774. DOI

Hallaj T., Amjadi M., Manzoori J.L., Shokri R. Chemiluminescence Reaction of Glucose-Derived Graphene Quantum Dots with Hypochlorite, and Its Application to the Determination of Free Chlorine. Microchim. Acta. 2014;182:789–796. doi: 10.1007/s00604-014-1389-0. DOI

Ma C.B., Zhu Z.T., Wang H.X., Huang X., Zhang X., Qi X., Zhang H.L., Zhu Y., Deng X., Peng Y., et al. A General Solid-State Synthesis of Chemically-Doped Fluorescent Graphene Quantum Dots for Bioimaging and Optoelectronic Applications. Nanoscale. 2015;7:10162–10169. doi: 10.1039/C5NR01757B. PubMed DOI

Shehab M., Ebrahim S., Soliman M. Graphene Quantum Dots Prepared from Glucose as Optical Sensor for Glucose. J. Lumin. 2017;184:110–116. doi: 10.1016/j.jlumin.2016.12.006. DOI

Sudarsanakumar C., Thomas S., Mathew S., Arundhathi S., Raj D.R., Prasanth S., Thomas R.K. Selective Sensing of Curcumin Using L-Cysteine Derived Blue Luminescent Graphene Quantum Dots. Mater. Res. Bull. 2019;110:32–38. doi: 10.1016/j.materresbull.2018.10.014. DOI

Van Tam T., Choi W.M. One-Pot Synthesis of Highly Fluorescent Amino-Functionalized Graphene Quantum Dots for Effective Detection of Copper Ions. Curr. Appl. Phys. 2018;18:1255–1260. doi: 10.1016/j.cap.2018.07.002. DOI

Yin Y., Liu Q., Jiang D., Du X., Qian J., Mao H., Wang K. Atmospheric Pressure Synthesis of Nitrogen Doped Graphene Quantum Dots for Fabrication of BiOBr Nanohybrids with Enhanced Visible-Light Photoactivity and Photostability. Carbon. 2016;96:1157–1165. doi: 10.1016/j.carbon.2015.10.068. DOI

Zhu W., Song H., Zhang L., Weng Y., Su Y., Lv Y. Fabrication of Fluorescent Nitrogen-Rich Graphene Quantum Dots by Tin(IV) Catalytic Carbonization of Ethanolamine. RSC Adv. 2015;5:60085–60089. doi: 10.1039/C5RA08336B. DOI

Zhou X., Pan Y., Xu J., Wang A., Wu S., Shen J. The Carbonization of Polyethyleneimine: Facile Fabrication of N-Doped Graphene Oxide and Graphene Quantum Dots. RSC Adv. 2015;5:105855–105861. doi: 10.1039/C5RA25173G. DOI

More M.P., Lohar P.H., Patil A.G., Patil P.O., Deshmukh P.K. Controlled Synthesis of Blue Luminescent Graphene Quantum Dots from Carbonized Citric Acid: Assessment of Methodology, Stability, and Fluorescence in an Aqueous Environment. Mater. Chem. Phys. 2018;220:11–22. doi: 10.1016/j.matchemphys.2018.08.046. DOI

Amjadi M., Shokri R., Hallaj T. A New Turn-off Fluorescence Probe Based on Graphene Quantum Dots for Detection of Au(III) Ion. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016;153:619–624. doi: 10.1016/j.saa.2015.09.037. PubMed DOI

Ke Y., Liu Y.C., Ren W.W., Bai A.M., Li X.Y., Hu Y.J. Preparation of Graphene Quantum Dots with Glycine as Nitrogen Source and Its Interaction with Human Serum Albumin. Luminescence. 2021;36:894–903. doi: 10.1002/bio.4012. PubMed DOI

Yousaf M., Huang H., Li P., Wang C., Yang Y. Fluorine Functionalized Graphene Quantum Dots as Inhibitor against HIAPP Amyloid Aggregation. ACS Chem. Neurosci. 2017;8:1368–1377. doi: 10.1021/acschemneuro.7b00015. PubMed DOI

Hu C., Su T.R., Lin T.J., Chang C.W., Tung K.L. Yellowish and Blue Luminescent Graphene Oxide Quantum Dots Prepared: Via a Microwave-Assisted Hydrothermal Route Using H2O2 and KMnO4 as Oxidizing Agents. New J. Chem. 2018;42:3999–4007. doi: 10.1039/C7NJ03337K. DOI

Vandana M., Ashokkumar S.P., Vijeth H., Yesappa L., Devendrappa H. Synthesis and Characterization of Polypyrrole—Graphene Quantum Dots Nanocomposites for Supercapacitor Application. AIP Conf. Proc. 2019;2115:030535. doi: 10.1063/1.5113374. DOI

Lee B.H., McKinney R.L., Hasan M.T., Naumov A.V. Graphene Quantum Dots as Intracellular Imaging-Based Temperature Sensors. Materials. 2021;14:616. doi: 10.3390/ma14030616. PubMed DOI PMC

Abbas A., Tabish T.A., Bull S.J., Lim T.M., Phan A.N. High Yield Synthesis of Graphene Quantum Dots from Biomass Waste as a Highly Selective Probe for Fe3+ Sensing. Sci. Rep. 2020;10:21262. doi: 10.1038/s41598-020-78070-2. PubMed DOI PMC

Wang R., Xia G., Zhong W., Chen L., Chen L., Wang Y., Min Y., Li K. Direct Transformation of Lignin into Fluorescence-Switchable Graphene Quantum Dots and Their Application in Ultrasensitive Profiling of a Physiological Oxidant. Green Chem. 2019;21:3343–3352. doi: 10.1039/C9GC01012B. DOI

Veeresh S., Ganesh H., Nagaraju Y.S., Vandana M., Ashokkumar S.P., Vijeth H., Prasad M.V.N.A., Devendrappa H. UV-Irradiated Hydrothermal Synthesis of Reduced Graphene Quantum Dots for Electrochemical Applications. Diam. Relat. Mater. 2021;114:108289. doi: 10.1016/j.diamond.2021.108289. DOI

Reagen S., Wu Y., Liu X., Shahni R., Bogenschuetz J., Wu X., Chu Q.R., Oncel N., Zhang J., Hou X., et al. Synthesis of Highly Near-Infrared Fluorescent Graphene Quantum Dots Using Biomass-Derived Materials for In Vitro Cell Imaging and Metal Ion Detection. ACS Appl. Mater. Interfaces. 2021;13:43952–43962. doi: 10.1021/acsami.1c10533. PubMed DOI

Xiong Z., Zou Y., Cao X., Lin Z. Color-Tunable Fluorescent Nitrogen-Doped Graphene Quantum Dots Derived from Pineapple Leaf Fiber Biomass to Detect Hg2+ Chin. J. Anal. Chem. 2021;50:69–76. doi: 10.1016/j.cjac.2021.10.003. DOI

Wang Y., He Q., Zhao X., Yuan J., Zhao H., Wang G., Li M. Synthesis of Corn Straw-Based Graphene Quantum Dots (GQDs) and Their Application in PO43- Detection. J. Environ. Chem. Eng. 2022;10:107150. doi: 10.1016/j.jece.2022.107150. DOI

Yan Y., Manickam S., Lester E., Wu T., Pang C.H. Synthesis of Graphene Oxide and Graphene Quantum Dots from Miscanthus via Ultrasound-Assisted Mechano-Chemical Cracking Method. Ultrason. Sonochem. 2021;73:105519. doi: 10.1016/j.ultsonch.2021.105519. PubMed DOI PMC

Sreeprasad T.S., Rodriguez A.A., Colston J., Graham A., Shishkin E., Pallem V., Berry V. Electron-Tunneling Modulation in Percolating Network of Graphene Quantum Dots: Fabrication, Phenomenological Understanding, and Humidity/Pressure Sensing Applications. Nano Lett. 2013;13:1757–1763. doi: 10.1021/nl4003443. PubMed DOI

Mehata M.S., Biswas S. Synthesis of Fluorescent Graphene Quantum Dots from Graphene Oxide and Their Application in Fabrication of GQDs@AgNPs Nanohybrids and Sensing of H2O2. Ceram. Int. 2021;47:19063–19072. doi: 10.1016/j.ceramint.2021.03.252. DOI

Ghanbari N., Salehi Z., Khodadadi A.A., Shokrgozar M.A., Saboury A.A. Glucosamine-Conjugated Graphene Quantum Dots as Versatile and PH-Sensitive Nanocarriers for Enhanced Delivery of Curcumin Targeting to Breast Cancer. Mater. Sci. Eng. C. 2021;121:111809. doi: 10.1016/j.msec.2020.111809. PubMed DOI

Kim D.J., Yoo J.M., Suh Y., Kim D., Kang I., Moon J., Park M., Kim J., Kang K.S., Hong B.H. Graphene Quantum Dots from Carbonized Coffee Bean Wastes for Biomedical Applications. Nanomaterials. 2021;11:1423. doi: 10.3390/nano11061423. PubMed DOI PMC

Yang S., Sun J., Li X., Zhou W., Wang Z., He P., Ding G., Xie X., Kang Z., Jiang M. Large-Scale Fabrication of Heavy Doped Carbon Quantum Dots with Tunable-Photoluminescence and Sensitive Fluorescence Detection. J. Mater. Chem. A. 2014;2:8660–8667. doi: 10.1039/c4ta00860j. DOI

Khodadadei F., Safarian S., Ghanbari N. Methotrexate-Loaded Nitrogen-Doped Graphene Quantum Dots Nanocarriers as an Efficient Anticancer Drug Delivery System. Mater. Sci. Eng. C. 2017;79:280–285. doi: 10.1016/j.msec.2017.05.049. PubMed DOI

Iannazzo D., Pistone A., Ferro S., De Luca L., Monforte A.M., Romeo R., Buemi M.R., Pannecouque C. Graphene Quantum Dots Based Systems as HIV Inhibitors. Bioconjug. Chem. 2018;29:3084–3093. doi: 10.1021/acs.bioconjchem.8b00448. PubMed DOI

Tajik S., Dourandish Z., Zhang K., Beitollahi H. Graphene and Carbon Quantum Dots: A review on syntheses, biological and sensing applications for neurotransmitter determination. Synth. Charact. Biol. Sens. 2020:15406–15429. doi: 10.1039/D0RA00799D. PubMed DOI PMC

Jing S., Zhao Y., Sun R.C., Zhong L., Peng X. Facile and High-Yield Synthesis of Carbon Quantum Dots from Biomass-Derived Carbons at Mild Condition. ACS Sustain. Chem. Eng. 2019;7:7833–7843. doi: 10.1021/acssuschemeng.9b00027. DOI

Rajender G., Goswami U., Giri P.K. Solvent Dependent Synthesis of Edge-Controlled Graphene Quantum Dots with High Photoluminescence Quantum Yield and Their Application in Confocal Imaging of Cancer Cells. J. Colloid Interface Sci. 2019;541:387–398. doi: 10.1016/j.jcis.2019.01.099. PubMed DOI

Bucher E.S., Wightman R.M., Hill C., Carolina N. Electrochemical Analysis of Neurotransmitters. Annu. Rev. Anal. Chem. 2015;8:239–261. doi: 10.1146/annurev-anchem-071114-040426. PubMed DOI PMC

Zuo P., Lu X., Sun Z., Guo Y., He H. A Review on Syntheses, Properties, Characterization and Bioanalytical Applications of Fluorescent Carbon Dots. Microchim. Acta. 2016;183:519–542. doi: 10.1007/s00604-015-1705-3. DOI

Thambiraj S., Shankaran D.R. Green Synthesis of Highly Fluorescent Carbon Quantum Dots from Sugarcane Bagasse Pulp. Appl. Surf. Sci. 2016;390:435–443. doi: 10.1016/j.apsusc.2016.08.106. DOI

Wu J., Lin M., Cong X., Liu H., Tan P. Raman Spectroscopy of Graphene-Based Materials and Its Applications in Related Devices. Chem. Soc. Rev. 2018;47:1822–1873. doi: 10.1039/C6CS00915H. PubMed DOI

Dervishi E., Ji Z., Htoon H., Sykora M., Doorn S.K. Raman spectroscopy of bottom-up synthesized graphene quantum dots: Size and structure dependence. Nanoscale. 2019;11:16571–16581. doi: 10.1039/C9NR05345J. PubMed DOI

Das P., Ganguly S., Saravanan A., Margel S., Gedanken A., Srinivasan S., Rajabzadeh A.R. Naturally Derived Carbon Dots In Situ Confined Self-Healing and Breathable Hydrogel Monolith for Anomalous Diffusion-Driven Phytomedicine Release. ACS Appl. Bio Mater. 2022;5:5617–5633. doi: 10.1021/acsabm.2c00664. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...