Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

. 2023 ; 14 () : 165-174. [epub] 20230130

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36761674

Carbon quantum dots as a novel type of carbon nanomaterials have attracted the attention of many researchers because of their unique optical, antibacterial, and anticancer properties as well as their biocompatibility. In this study, for the first time, carbon quantum dots were prepared from o-phenylenediamine dissolved in toluene by a solvothermal route. Subsequently, the prepared carbon quantum dots were encapsulated into polyurethane films by a swelling-encapsulation-shrink method. Analyses of the results obtained by different characterization methods (AFM, TEM, EDS, FTIR, photoluminescence, and EPR) indicate the significant influence of the precursor on structural, chemical, and optical properties. Antibacterial and cytotoxicity tests showed that these dots did not have any antibacterial potential, because of the low extent of reactive oxygen species production, and showed low dark cytotoxicity. By investigating the cellular uptake, it was established that these dots penetrated the HeLa cells and could be used as probes for bioimaging.

Zobrazit více v PubMed

Wang X, Feng Y, Dong P, Huang J. Front Chem (Lausanne, Switz) 2019;7:671. doi: 10.3389/fchem.2019.00671. PubMed DOI PMC

Iravani S, Varma R S. Environ Chem Lett. 2020;18:703–727. doi: 10.1007/s10311-020-00984-0. PubMed DOI PMC

Kim H H, Lee Y J, Park C, Yu S, Won S O, Seo W-S, Park C, Choi W K. Part Part Syst Charact. 2018;35(7):1800080. doi: 10.1002/ppsc.201800080. DOI

Qu D, Sun Z. Mater Chem Front. 2020;4:400–420. doi: 10.1039/c9qm00552h. DOI

Marković Z M, Labudová M, Danko M, Matijašević D, Mičušík M, Nádaždy V, Kováčová M, Kleinová A, Špitalský Z, Pavlović V, et al. ACS Sustainable Chem Eng. 2020;8(43):16327–16338. doi: 10.1021/acssuschemeng.0c06260. DOI

Kundelev E V, Tepliakov N V, Leonov M Y, Maslov V G, Baranov A V, Fedorov A V, Rukhlenko I D, Rogach A L. J Phys Chem Lett. 2019;10:5111–5116. doi: 10.1021/acs.jpclett.9b01724. PubMed DOI

Janus Ł, Radwan-Pragłowska J, Piątkowski M, Bogdał D. Materials. 2020;13(15):3313. doi: 10.3390/ma13153313. PubMed DOI PMC

Tepliakov N V, Kundelev E V, Khavlyuk P D, Xiong Y, Leonov M Y, Zhu W, Baranov A V, Fedorov A V, Rogach A L, Rukhlenko I D. ACS Nano. 2019;13:10737–10744. doi: 10.1021/acsnano.9b05444. PubMed DOI

Wang Y, Hu A. J Mater Chem C. 2014;2:6921–6939. doi: 10.1039/c4tc00988f. DOI

Tajik S, Dourandish Z, Zhang K, Beitollahi H, Le Q V, Jang H W, Shokouhimehr M. RSC Adv. 2020;10:15406–15429. doi: 10.1039/d0ra00799d. PubMed DOI PMC

Nallayagari A R, Sgreccia E, Pizzoferrato R, Cabibbo M, Kaciulis S, Bolli E, Pasquini L, Knauth P, Di Vona M L. J Nanostruct Chem. 2022;12(4):565–580. doi: 10.1007/s40097-021-00431-8. DOI

Meziani M J, Dong X, Zhu L, Jones L P, LeCroy G E, Yang F, Wang S, Wang P, Zhao Y, Yang L, et al. ACS Appl Mater Interfaces. 2016;8(17):10761–10766. doi: 10.1021/acsami.6b01765. PubMed DOI PMC

Desmond L J, Phan A N, Gentile P. Environ Sci: Nano. 2021;8:848–862. doi: 10.1039/d1en00017a. DOI

Marković Z M, Jovanović S P, Mašković P Z, Mojsin M M, Stevanović M J, Danko M, Mičušík M, Jovanović D J, Kleinová A, Špitalský Z, et al. J Photochem Photobiol, B. 2019;200:111647. doi: 10.1016/j.jphotobiol.2019.111647. PubMed DOI

Marković Z M, Ristić B Z, Arsikin K M, Klisić D G, Harhaji-Trajković L M, Todorović-Marković B M, Kepić D P, Kravić-Stevović T K, Jovanović S P, Milenković M M, et al. Biomaterials. 2012;33:7084–7092. doi: 10.1016/j.biomaterials.2012.06.060. PubMed DOI

Ristić B Z, Milenković M M, Dakić I R, Todorović-Marković B M, Milosavljević M S, Budimir M D, Paunović V G, Dramićanin M D, Marković Z M, Trajković V S. Biomaterials. 2014;35:4428–4435. doi: 10.1016/j.biomaterials.2014.02.014. PubMed DOI

Marković Z M, Jovanović S P, Mašković P Z, Danko M, Mičušík M, Pavlović V B, Milivojević D D, Kleinová A, Špitalský Z, Todorović Marković B M. RSC Adv. 2018;8(55):31337–31347. doi: 10.1039/c8ra04664f. PubMed DOI PMC

Kováčová M, Marković Z M, Humpolíček P, Mičušík M, Švajdlenková H, Kleinová A, Danko M, Kubát P, Vajďák J, Capáková Z, et al. ACS Biomater Sci Eng. 2018;4(12):3983–3993. doi: 10.1021/acsbiomaterials.8b00582. PubMed DOI

Stanković N K, Bodik M, Šiffalovič P, Kotlar M, Mičušik M, Špitalsky Z, Danko M, Milivojević D D, Kleinova A, Kubat P, et al. ACS Sustainable Chem Eng. 2018;6(3):4154–4163. doi: 10.1021/acssuschemeng.7b04566. DOI

Chong Y, Ge C, Fang G, Tian X, Ma X, Wen T, Wamer W G, Chen C, Chai Z, Yin J-J. ACS Nano. 2016;10(9):8690–8699. doi: 10.1021/acsnano.6b04061. PubMed DOI

Ge J, Lan M, Zhou B, Liu W, Guo L, Wang H, Jia Q, Niu G, Huang X, Zhou H, et al. Nat Commun. 2014;5(1):4596. doi: 10.1038/ncomms5596. PubMed DOI PMC

Pandey S, Bodas D. Adv Colloid Interface Sci. 2020;278:102137. doi: 10.1016/j.cis.2020.102137. PubMed DOI

Molkenova A, Toleshova A, Song S-J, Kang M S, Abduraimova A, Han D-W, Atabaev T S. Mater Lett. 2020;261:127012. doi: 10.1016/j.matlet.2019.127012. DOI

Zmejkoski D Z, Marković Z M, Mitić D D, Zdravković N M, Kozyrovska N O, Bugárová N, Todorović Marković B M. J Biomed Mater Res, Part B. 2022;110:1796–1805. doi: 10.1002/jbm.b.35037. PubMed DOI

Travlou N A, Giannakoudakis D A, Algarra M, Labella A M, Rodríguez-Castellón E, Bandosz T J. Carbon. 2018;135:104–111. doi: 10.1016/j.carbon.2018.04.018. PubMed DOI

Dong X, Liang W, Meziani M J, Sun Y-P, Yang L. Theranostics. 2020;10(2):671–686. doi: 10.7150/thno.39863. PubMed DOI PMC

Chatzimitakos T, Stalikas C. Antimicrobial properties of carbon quantum dots. In: Rajendran S, Nguyen T A, Shukla R K, et al., editors. Nanotoxicity: prevention and antibacterial applications of nanomaterials micro and nano technologies. Netherlands: Elsevier; 2020. pp. 301–315. DOI

Varghese M, Balachandran M. J Environ Chem Eng. 2021;9:106821. doi: 10.1016/j.jece.2021.106821. DOI

Wu X, Abbas K, Yang Y, Li Z, Tedesco A C, Bi H. Pharmaceuticals. 2022;15:487. doi: 10.3390/ph15040487. PubMed DOI PMC

IR Spectrum Table & Chart. [ Jul 4; 2022 ]. Available from: https://www.sigmaaldrich.com/RS/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table.

An Y, Lin X, Zhou Y, Li Y, Zheng Y, Wu C, Xu K, Chai X, Liu C. RSC Adv. 2021;11:26915–26919. doi: 10.1039/d1ra02298a. PubMed DOI PMC

Gao Y, Jiao Y, Lu W, Liu Y, Han H, Gong X, Xian M, Shuang S, Dong C. J Mater Chem B. 2018;6(38):6099–6107. doi: 10.1039/c8tb01580e. PubMed DOI

Hua X-W, Bao Y-W, Wu F-G. ACS Appl Mater Interfaces. 2018;10(13):10664–10677. doi: 10.1021/acsami.7b19549. PubMed DOI

Ding H, Wei J-S, Zhang P, Zhou Z-Y, Gao Q-Y, Xiong H-M. Small. 2018;14(22):1800612. doi: 10.1002/smll.201800612. PubMed DOI

Kumar P, Dua S, Kaur R, Kumar M, Bhatt G. RSC Adv. 2022;12:4714–4759. doi: 10.1039/d1ra08452f. PubMed DOI PMC

Langer M, Paloncýová M, Medveď M, Pykal M, Nachtigallová D, Shi B, Aquino A J A, Lischka H, Otyepka M. Appl Mater Today. 2021;22:100924. doi: 10.1016/j.apmt.2020.100924. DOI

Inagaki M, Toyoda M, Soneda Y, Morishita T. Carbon. 2018;132:104–140. doi: 10.1016/j.carbon.2018.02.024. DOI

Hendrickson J B, Cram D J, Hammond G S. Organic chemistry. 3rd ed. New York, USA: McGraw-Hill; 1970.

Xing T, Zheng Y, Li L H, Cowie B C C, Gunzelmann D, Qiao S Z, Huang S, Chen Y. ACS Nano. 2014;8:6856–6862. doi: 10.1021/nn501506p. PubMed DOI

Bianco G V, Sacchetti A, Grande M, D’Orazio A, Milella A, Bruno G. Sci Rep. 2022;12:8703. doi: 10.1038/s41598-022-12696-2. PubMed DOI PMC

Li P, Poon Y F, Li W, Zhu H-Y, Yeap S H, Cao Y, Qi X, Zhou C, Lamrani M, Beuerman R W, et al. Nat Mater. 2011;10(2):149–156. doi: 10.1038/nmat2915. PubMed DOI

Bing W, Sun H, Yan Z, Ren J, Qu X. Small. 2016;12:4713–4718. doi: 10.1002/smll.201600294. PubMed DOI

Park H Y, Sin D D. Stress-induced premature senescence: Another Mechanism involved in the process of accelerated aging in chronic obstructive pulmonary disease. In: Rahman I, Bagchi D, editors. Inflammation, Advancing Age and Nutrition. 1st ed. London, UK: Elsevier; 2014. pp. 193–194. DOI

Rieske P, Krynska B, Azizi S A. Differentiation. 2005;73(9-10):474–483. doi: 10.1111/j.1432-0436.2005.00050.x. PubMed DOI

Gohda E, Nagao T, Yamamoto I. Biochem Pharmacol. 2000;60:1531–1537. doi: 10.1016/s0006-2952(00)00464-0. PubMed DOI

Honda E, Munakata H. Int J Biochem Cell Biol. 2004;36:1635–1644. doi: 10.1016/j.biocel.2004.01.023. PubMed DOI

Mizuno S, Matsumoto K, Li M-Y, Nakamura T. FASEB J. 2005;19(6):1–18. doi: 10.1096/fj.04-1535fje. PubMed DOI

Hiramatsu K, Matsumoto Y, Miyazaki M, Tsubouchi H, Yamamoto I, Gohda E. Biol Pharm Bull. 2005;28:619–624. doi: 10.1248/bpb.28.619. PubMed DOI

Aldeek F, Mustin C, Balan L, Roques-Carmes T, Fontaine-Aupart M-P, Schneider R. Biomaterials. 2011;32(23):5459–5470. doi: 10.1016/j.biomaterials.2011.04.019. PubMed DOI

Nečas D, Klapetek P. Cent Eur J Phys. 2012;10:181–188. doi: 10.2478/s11534-011-0096-2. DOI

Li W, Li L, Xiao H, Qi R, Huang Y, Xie Z, Jing X, Zhang H. RSC Adv. 2013;3:13417–13421. doi: 10.1039/c3ra40932e. DOI

Khan R, Idris M, Tuncel D. Org Biomol Chem. 2015;13:10496–10504. doi: 10.1039/c5ob01435b. PubMed DOI

ISO 22196:2007 Plastics — Measurement of antibacterial activity on plastics surfaces. [ Jul 4; 2022 ]. Available from: https://www.iso.org/standard/40759.html.

Hansen M B, Nielsen S E, Berg K. J Immunol Methods. 1989;119(2):203–210. doi: 10.1016/0022-1759(89)90397-9. PubMed DOI

ISO 10993-5:2009 Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. [ Jan 16; 2023 ]. Available from: https://www.iso.org/standard/36406.html.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...