IoT PCR for pandemic disease detection and its spread monitoring
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32288256
PubMed Central
PMC7125887
DOI
10.1016/j.snb.2019.127098
PII: S0925-4005(19)31297-3
Knihovny.cz E-zdroje
- Klíčová slova
- Dengue fever, Infectious diseases, IoT, PCR,
- Publikační typ
- časopisecké články MeSH
During infectious disease outbreaks, the centers for disease control need to monitor particular areas. Considerable effort has been invested in the development of portable, user-friendly, and cost-effective systems for point-of-care (POC) diagnostics, which could also create an Internet of Things (IoT) for healthcare via a global network. However, at present IoT based on a functional POC instrument is not available. Here we show a fast, user-friendly, and affordable IoT system based on a miniaturized polymerase chain reaction device. We demonstrated the system's capability by amplification of complementary deoxyribonucleic acid (cDNA) of the dengue fever virus. The resulting data were then automatically uploaded via a Bluetooth interface to an Android-based smartphone and then wirelessly sent to a global network, instantly making the test results available anywhere in the world. The IoT system presented here could become an essential tool for healthcare centers to tackle infectious disease outbreaks identified either by DNA or ribonucleic acid.
Air Force Military Medical University 169 Changle West Road Xi'an Shaanxi 710032 PR China
Czech Technical University Prague Technická 2 166 27 Praha 6 Czech Republic
Institute for Infocomm Research ASTAR 1 Fusionopolis Way 21 01 Connexis 138632 Singapore
School of Life Science Northwesstern Polytechnical University Xi'an 710072 PR China
Zobrazit více v PubMed
WHO . WHO; 2014. A Global Brief on Vector-borne Diseases.
Bhatt S., Gething P.W., Brady O.J., Messina J.P., Farlow A.W., Moyes C.L. The global distribution and burden of dengue. Nature. 2013;496:504–507. PubMed PMC
Brady O.J., Gething P.W., Bhatt S., Messina J.P., Brownstein J.S., Hoen A.G. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 2012;6:1–15. e1760. PubMed PMC
Xiao J.-P., He J.-F., Deng A.-P., Lin H.-L., Song T., Peng Z.-Q. Characterizing a large outbreak of dengue fever in Guangdong Province, China. Infect. Dis. Poverty. 2016;5:1–8. 44. PubMed PMC
Lai Y.-L., Chung Y.-K., Tan H.-C., Yap H.-F., Yap G., Ooi E.-E. Cost-effective real-time reverse transcriptase PCR (RT-PCR) to screen for dengue virus followed by rapid single-tube multiplex RT-PCR for serotyping of the virus. J. Clin. Microbiol. 2007;45:935–941. PubMed PMC
Daudé É., Mazumdar S., Solanki V. Widespread fear of dengue transmission but poor practices of dengue prevention: a study in the slums of Delhi, India. PLoS One. 2017;12:1–12. e0171543. PubMed PMC
Tran B.X., Thu Vu G., Hoang Nguyen L., Tuan Le Nguyen A., Thanh Tran T., Thanh Nguyen B. Cost-of-illness and the health-related quality of life of patients in the dengue fever outbreak in Hanoi in 2017. Int. J. Environ. Res. Public Health. 2018;15:1–9. 1174. PubMed PMC
Parhizgari N., Gouya M.M., Mostafavi E. Emerging and re-emerging infectious diseases in Iran. Iran. J. Microbiol. 2017;9:122–142. PubMed PMC
Humphrey J.M., Cleton N.B., Reusken C.B.E.M., Glesby M.J., Koopmans M.P.G., Abu-Raddad L.J. Dengue in the Middle East and North Africa: a systematic review. PLoS Negl. Trop. Dis. 2016;10:1–31. e0005194. PubMed PMC
Stewart-Ibarra A.M., Ryan S.J., Kenneson A., King C.A., Abbott M., Barbachano-Guerrero A. The burden of dengue fever and Chikungunya in southern coastal Ecuador: epidemiology, clinical presentation, and phylogenetics from the first two years of a prospective study. Am. J. Trop. Med. Hyg. 2018;98:1444–1459. PubMed PMC
Khetarpal N., Khanna I. Dengue fever: causes, complications, and vaccine strategies. J. Immunol. Res. 2016;2016:1–14. 6803098. PubMed PMC
Firouzi F., Rahmani A.M., Mankodiya K., Badaroglu M., Merrett G.V., Wong P. Internet-of-things and big data for smarter healthcare: from device to architecture, applications and analytics. Future Gener. Comput. Syst. 2018;78:583–586.
Houng H.-S.H., Chung-Ming Chen R., Vaughn D.W., Kanesa-thasan N. Development of a fluorogenic RT-PCR system for quantitative identification of dengue virus serotypes 1–4 using conserved and serotype-specific 3’ noncoding sequences. J. Virol. Methods. 2001;95:19–32. PubMed
Mansuy J.M. Mobile laboratories for Ebola and other pathogens. Lancet Infect. Dis. 2015;15:1–14. 6803098. PubMed
Catherwood P.A., Steele D., Little M., McComb S., McLaughlin J. A community-based IoT personalized wireless healthcare solution trial. IEEE J. Transl. Eng. Health. 2018;6:1–13. 2800313. PubMed PMC
Darshan K.R., Anandakumar K.R. A comprehensive review on usage of internet of things (IoT) in healthcare system. 2015 International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT) 2015:132–136.
Laplante P.A., Laplante N. The internet of things in healthcare potential applications and challenges. IT Prof. 2016;18:2–4.
Manogaran G., Lopez D., Thota C., Abbas K.M., Pyne S., Sundarasekar R. Big data analytics in healthcare internet of things. In: Qudrat-Ullah H., Tsasis P., editors. Innovative Healthcare Systems for the 21st Century. Springer International Publishing; Cham: 2017. pp. 263–284.
Wang L.-J., Chang Y.-C., Sun R., Li L. A multichannel smartphone optical biosensor for high-throughput point-of-care diagnostics. Biosens. Bioelectron. 2017;87:686–692. PubMed
Palmer C.J., King S.D., Cuadrado R.R., Perez E., Baum M., Ager A.L. Evaluation of the MRL diagnostics dengue fever virus IgM capture ELISA and the PanBio rapid immunochromatographic test for diagnosis of dengue fever in Jamaica. J. Clin. Microbiol. 1999;37:1600–1601. PubMed PMC
Deraney R.N., Mace C.R., Rolland J.P., Schonhorn J.E. Multiplexed, patterned-paper immunoassay for detection of malaria and dengue fever. Anal. Chem. 2016;88:6161–6165. PubMed
Shu P.-Y., Chen L.-K., Chang S.-F., Yueh Y.-Y., Chow L., Chien L.-J. Comparison of capture immunoglobulin m (IgM) and IgG enzyme-linked immunosorbent assay (ELISA) and nonstructural protein NS1 serotype-specific IgG ELISA for differentiation of primary and secondary dengue virus infections. Clin. Diagn. Lab. Immunol. 2003;10:622–630. PubMed PMC
Kong Y.Y., Thay C.H., Tin T.C., Devi S. Rapid detection, serotyping and quantitation of dengue viruses by TaqMan real-time one-step RT-PCR. J. Virol. Methods. 2006;138:123–130. PubMed
Novak L., Neuzil P., Pipper J., Zhang Y., Lee S. An integrated fluorescence detection system for lab-on-a-chip applications. Lab Chip. 2007;7:27–29. PubMed
Pipper J., Zhang Y., Neuzil P., Hsieh T.-M. Clockwork PCR including sample preparation. Angew. Chem. Int. Ed. 2008;47:3900–3904. PubMed
Nayak S., Blumenfeld N.R., Laksanasopin T., Sia S.K. Point-of-care diagnostics: recent developments in a connected age. Anal. Chem. 2017;89:102–123. PubMed PMC
Zarei M. Portable biosensing devices for point-of-care diagnostics: recent developments and applications. Trends Anal. Chem. 2017;91:26–41.
Neuzil P., Campos C.D.M., Wong C.C., Soon J.B.W., Reboud J., Manz A. From chip-in-a-lab to lab-on-a-chip: towards a single handheld electronic system for multiple application-specific lab-on-a-chip (ASLOC) Lab Chip. 2014;14:2168–2176. PubMed
Wang S., Lifson M.A., Inci F., Liang L.-G., Sheng Y.-F., Demirci U. Advances in addressing technical challenges of point-of-care diagnostics in resource-limited settings. Expert Rev. Mol. Diagn. 2016;16:449–459. PubMed PMC
Romeo A., Leung T.S., Sánchez S. Smart biosensors for multiplexed and fully integrated point-of-care diagnostics. Lab Chip. 2016;16:1957–1961. PubMed
Ahrberg C.D., Manz A., Neuzil P. Palm-sized device for point-of-care Ebola detection. Anal. Chem. 2016;88:4803–4807. PubMed
Neuzil P., Zhang C., Pipper J., Oh S., Zhuo L. Ultra fast miniaturized real-time PCR: 40 cycles in less than six minutes. Nucleic Acids Res. 2006;34:1–9. e77. PubMed PMC
Neuzil P., Novak L., Pipper J., Lee S., Ng L.F.P., Zhang C. Rapid detection of viral RNA by a pocket-size real-time PCR system. Lab Chip. 2010;10:2632–2634. PubMed
Balram K.C., Westly D.A., Davanco M., Grutter K.E., Li Q., Michels T. The nanolithography toolbox. J. Res. Natl. Inst. Stand. Technol. 2016;121:1–12. PubMed PMC
Pipper J., Inoue M., Ng L.F.P., Neuzil P., Zhang Y., Novak L. Catching bird flu in a droplet. Nat. Med. 2007;13:1259–1263. PubMed PMC
Ahrberg C.D., Neuzil P. Doubling throughput of a real-time PCR. Sci. Rep. 2015;5:1–9. 12595. PubMed PMC
Kim S.C., Clark I.C., Shahi P., Abate A.R. Single-cell RT-PCR in microfluidic droplets with integrated chemical lysis. Anal. Chem. 2018;90:1273–1279. PubMed PMC
Fox B.C., Devonshire A.S., Baradez M.-O., Marshall D., Foy C.A. Comparison of reverse transcription–quantitative polymerase chain reaction methods and platforms for single cell gene expression analysis. Anal. Biochem. 2012;427:178–186. PubMed
Eastburn D.J., Sciambi A., Abate A.R. Ultrahigh-throughput mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic drops. Anal. Chem. 2013;85:8016–8021. PubMed
Neuzil P., Pipper J., Hsieh T.M. Disposable real-time microPCR device: lab-on-a-chip at a low cost. Mol. Biosyst. 2006;2:292–298. PubMed
SPEED: an integrated, smartphone-operated, handheld digital PCR Device for point-of-care testing
PCR Multiplexing Based on a Single Fluorescent Channel Using Dynamic Melting Curve Analysis
The vision of point-of-care PCR tests for the COVID-19 pandemic and beyond
Recent advances in lab-on-a-chip technologies for viral diagnosis