PCR past, present and future
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
32815744
PubMed Central
PMC7439763
DOI
10.2144/btn-2020-0057
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, PCR, RNA virus diagnoses, digital PCR, microfluidics, point-of-care diagnostics, portable systems, reverse transcription PCR,
- MeSH
- Betacoronavirus genetika izolace a purifikace MeSH
- COVID-19 MeSH
- design vybavení MeSH
- klinické laboratorní techniky přístrojové vybavení metody MeSH
- koronavirové infekce diagnóza virologie MeSH
- lidé MeSH
- mikrofluidní analytické techniky přístrojové vybavení metody MeSH
- pandemie MeSH
- polymerázová řetězová reakce přístrojové vybavení metody MeSH
- SARS-CoV-2 MeSH
- testování na COVID-19 MeSH
- virová pneumonie diagnóza virologie MeSH
- vyšetření u lůžka MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
PCR has become one of the most valuable techniques currently used in bioscience, diagnostics and forensic science. Here we review the history of PCR development and the technologies that have evolved from the original PCR method. Currently, there are two main areas of PCR utilization in bioscience: high-throughput PCR systems and microfluidics-based PCR devices for point-of-care (POC) applications. We also discuss the commercialization of these techniques and conclude with a look into their modifications and use in innovative areas of biomedicine. For example, real-time reverse transcription PCR is the gold standard for SARS-CoV-2 diagnoses. It could also be used for POC applications, being a key component of the sample-to-answer system.
Zobrazit více v PubMed
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74(12), 5463–5467 (1977). PubMed PMC
Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51(Pt. 1), 263–273 (1986). PubMed
Saiki RK, Scharf S, Faloona F. et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science 230(4732), 1350–1354 (1985). PubMed
Hurd C, Cavanagh G, Schuh A, Ouwehand W, Metcalfe P. Genotyping for platelet-specific antigens: techniques for the detection of single nucleotide polymorphisms. Vox Sang. 83(1), 1–12 (2002). PubMed
Chamberlain JS, Gibbs RA, Rainer JE, Nguyen PN, Thomas C. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 16(23), 11141–11156 (1988). PubMed PMC
Butler JM, Buel E, Crivellente F, McCord BR. Forensic DNA typing by capillary electrophoresis using the ABI Prism 310 and 3100 genetic analyzers for STR analysis. Electrophoresis 25(10–11), 1397–1412 (2004). PubMed
Kloosterman AD, Budowle B, Daselaar P. PCR-amplification and detection of the human D1S80 VNTR locus. Int. J. Legal Med. 105(5), 257–264 (1993). PubMed
Saiki RK, Gelfand DH, Stoffel S. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239(4839), 487–491 (1988). PubMed
Bartlett JM, Stirling D. A short history of the polymerase chain reaction. : PCR Protocols. Bartlett JMS, Stirling D (). Humana Press, NY, USA, 3–6, Methods in Molecular Biology, Vol. 226. (2003). PubMed
Schiffman M, Bauer H, Lorincz A. et al. Comparison of Southern blot hybridization and polymerase chain reaction methods for the detection of human papillomavirus DNA. J. Clin. Microbiol. 29(3), 573–577 (1991). PubMed PMC
Embury SH, Scharf SJ, Saiki RK. et al. Rapid prenatal diagnosis of sickle cell anemia by a new method of DNA analysis. N. Engl. J. Med. 316(11), 656–661 (1987). PubMed
Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA. Analysis of enzymatically amplified β-globin and HLA-DQα DNA with allele-specific oligonucleotide probes. Nature 324(6093), 163–166 (1986). PubMed
Saiki RK, Chang C-A, Levenson CH. et al. Diagnosis of sickle cell anemia and β-thalassemia with enzymatically amplified DNA and nonradioactive allele-specific oligonucleotide probes. N. Engl. J. Med. 319(9), 537–541 (1988). PubMed
Lebo RV, Saiki RK, Swanson K, Montano MA, Erlich HA, Golbus MS. Prenatal diagnosis of alpha-thalassemia by polymerase chain reaction and dual restriction enzyme analysis. Hum. Genet. 85(3), 293–299 (1990). PubMed
Beggs AH, Koenig M, Boyce FM, Kunkel LM. Detection of 98% of DMD/BMD gene deletions by polymerase chain reaction. Hum. Genet. 86(1), 45–48 (1990). PubMed
Cassol SA, Poon MC, Pal R. et al. Primer-mediated enzymatic amplification of cytomegalovirus (CMV) DNA. Application to the early diagnosis of CMV infection in marrow transplant recipients. J. Clin. Invest. 83(4), 1109–1115 (1989). PubMed PMC
Olive DM. Detection of enterotoxigenic Escherichia coli after polymerase chain reaction amplification with a thermostable DNA polymerase. J. Clin. Microbiol. 27(2), 261–265 (1989). PubMed PMC
Zeldis JB, Lee JH, Mamish D. et al. Direct method for detecting small quantities of hepatitis B virus DNA in serum and plasma using the polymerase chain reaction. J. Clin. Invest. 84(5), 1503–1508 (1989). PubMed PMC
Kwok S, Mack DH, Mullis KB. et al. Identification of human immunodeficiency virus sequences by using in vitro enzymatic amplification and oligomer cleavage detection. J. Virol. 61(5), 1690–1694 (1987). PubMed PMC
Ou CY, Kwok S, Mitchell SW. et al. DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science 239(4837), 295–297 (1988). PubMed
Wormser GP, Joline C, Bittker S, Forseter G, Kwok S, Sninsky JJ. Polymerase chain reaction for seronegative health care workers with parenteral exposure to HIV-infected patients. N. Engl. J. Med. 321(24), 1681–1682 (1989). PubMed
Mellars G, Jenkins PV, Perry DJ. Multiplex PCR for detection of the prothrombin 3′-UTR (G20210A) polymorphism and the factor V leiden mutation. : Hemostasis and Thrombosis Protocols. Pasi KJ, Perry DJ (). Humana Press, NY, USA, 287–289, Methods in Molecular Biology, Vol. 31 (1999). PubMed
Stahlberg A, Krzyzanowski PM, Egyud M, Filges S, Stein L, Godfrey TE. Simple multiplexed PCR-based barcoding of DNA for ultrasensitive mutation detection by next-generation sequencing. Nat. Protoc. 12(4), 664–682 (2017). PubMed
Hickman MP, Grisedale KS, Bintz BJ. et al. Recovery of whole mitochondrial genome from compromised samples via multiplex PCR and massively parallel sequencing. Future Sci. OA 4(9), FSO336 (2018). PubMed PMC
Boehnke M, Arnheim N, Li H, Collins FS. Fine-structure genetic mapping of human chromosomes using the polymerase chain reaction on single sperm: experimental design considerations. Am. J. Hum. Genet. 45(1), 21–32 (1989). PubMed PMC
Jeffreys AJ, Wilson V, Neumann R, Keyte J. Amplification of human minisatellites by the polymerase chain reaction: towards DNA fingerprinting of single cells. Nucleic Acids Res. 16(23), 10953–10971 (1988). PubMed PMC
Encyclopedia of Forensic Sciences (2nd Edition). Siegel JA, Saukko PJ, Houck MM (). Academic Press, MA, USA: (2013).
Ladas I, Yu F, Leong KW. et al. Enhanced detection of microsatellite instability using pre-PCR elimination of wild-type DNA homo-polymers in tissue and liquid biopsies. Nucleic Acids Res. 46(12), e74 (2018). PubMed PMC
Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11(9), 1026–1030 (1993). PubMed
Becker-Andre M, Hahlbrock K. Absolute mRNA quantification using the polymerase chain reaction (PCR). A novel approach by a PCR aided transcript titration assay (PATTY). Nucleic Acids Res. 17(22), 9437–9446 (1989). PubMed PMC
Chelly J, Kaplan JC, Maire P, Gautron S, Kahn A. Transcription of the dystrophin gene in human muscle and non-muscle tissue. Nature 333(6176), 858–860 (1988). PubMed
Bustin SA, Benes V, Garson JA. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55(4), 611–622 (2009). PubMed
Quan P-L, Sauzade M, Brouzes E. dPCR: a technology review. Sensors 18(4), 1271 (2018). PubMed PMC
Shin Y, Kim J, Lee TY. A solid phase-bridge based DNA amplification technique with fluorescence signal enhancement for detection of cancer biomarkers. Sensor Actuat. B-Chem. 199, 220–225 (2014).
Kopp MU, de Mello AJ, Manz A. Chemical amplification: continuous-flow PCR on a chip. Science 280(5366), 1046–1048 (1998). PubMed
Northrup MA, Ching MT, White RM, Watson RT. DNA amplification with a microfabricated reaction chamber. Presented at: Transducer ‘93: the 7th International Conference on Solid-State Sensors and Actuators. Yokohama, Japan, 7–10 June 1993.
Streets AM, Huang Y. Microfluidics for biological measurements with single-molecule resolution. Curr. Opin. Biotech. 25, 69–77 (2014). PubMed
Rival A, Jary D, Delattre C. et al. An EWOD-based microfluidic chip for single-cell isolation, mRNA purification and subsequent multiplex qPCR. Lab Chip 14(19), 3739–3749 (2014). PubMed
Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 50(8), 96 (2018). PubMed PMC
Shao H, Chung J, Lee K. et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat. Commun. 6, 6999 (2015). PubMed PMC
Farrar JS, Wittwer CT. Extreme PCR: efficient and specific DNA amplification in 15–60 seconds. Clin. Chem. 61(1), 145 (2015). PubMed
Neuzil P, Pipper J, Hsieh TM. Disposable real-time microPCR device: lab-on-a-chip at a low cost. Mol. Biosyst. 2(6–7), 292–298 (2006). PubMed
Ahrberg CD, Ilic BR, Manz A, Neužil P. Handheld real-time PCR device. Lab Chip 16(3), 586–592 (2016). PubMed PMC
Ahrberg CD, Manz A, Neuźil P. Palm-sized device for point-of-care Ebola detection. Anal. Chem. 88(9), 4803–4807 (2016). PubMed
Vogelstein B, Kinzler KW. Digital PCR. Proc. Natl Acad. Sci. USA 96(16), 9236–9241 (1999). PubMed PMC
Madic J, Zocevic A, Senlis V. et al. Three-color crystal digital PCR. Biomol. Detect. Quant. 10, 34–46 (2016). PubMed PMC
Hindson CM, Chevillet JR, Briggs HA. et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 10, 1003 (2013). PubMed PMC
Li H, Zhang H, Xu Y. et al. Versatile digital polymerase chain reaction chip design, fabrication and image processing. Sens. Actuators B Chem. 283, 677–684 (2019).
Zhu Q, Xu Y, Qiu L. et al. A scalable self-priming fractal branching microchannel net chip for digital PCR. Lab Chip 17(9), 1655–1665 (2017). PubMed
Thompson AM, Gansen A, Paguirigan AL, Kreutz JE, Radich JP, Chiu DT. Self-digitization microfluidic chip for absolute quantification of mRNA in single cells. Anal. Chem. 86(24), 12308–12314 (2014). PubMed PMC
Guiducci C, Spiga FM. Another transistor-based revolution: on-chip qPCR. Nat. Methods 10, 617 (2013). PubMed
Notomi T, Okayama H, Masubuchi H. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28(12), E63 (2000). PubMed PMC
Toldra A, Jauset-Rubio M, Andree KB. et al. Detection and quantification of the toxic marine microalgae Karlodinium veneficum and Karlodinium armiger using recombinase polymerase amplification and enzyme-linked oligonucleotide assay. Anal. Chim. Acta 1039, 140–148 (2018). PubMed
Zhou W, Hu L, Ying L, Zhao Z, Chu PK, Yu X-F. A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat. Commun. 9(1), 1–11 (2018). PubMed PMC
Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14(10), 2986–3012 (2019). PubMed PMC
Wang Q, Zhang B, Xu X, Long F, Wang J. CRISPR-typing PCR (ctPCR), a new Cas9-based DNA detection method. Sci. Rep. 8(1), 1–13 (2018). PubMed PMC
Metzker ML. Sequencing technologies—the next generation. Nat. Rev. Genet. 11(1), 31–46 (2009). PubMed
Voelkerding KV, Dames SA, Durtschi JD. Next-generation sequencing: from basic research to diagnostics. Clin. Chem. 55(4), 641–658 (2009). PubMed
Quail MA, Smith M, Coupland P. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom. 13(1), 341 (2012). PubMed PMC
Sidstedt M, Rådström P, Hedman J. PCR inhibition in qPCR, dPCR and MPS – mechanisms and solutions. Anal. Bioanal. Chem. 412, 2009–2023 (2020). PubMed PMC
Das A, Spackman E, Pantin-Jackwood MJ, Suarez DL. Removal of real-time reverse transcription polymerase chain reaction (RT-PCR) inhibitors associated with cloacal swab samples and tissues for improved diagnosis of Avian influenza virus by RT-PCR. J. Vet. Diagn. Invest. 21(6), 771–778 (2009). PubMed
Hu Q, Liu Y, Yi S, Huang D. A comparison of four methods for PCR inhibitor removal. Forensic Sci. Int. Genet. 16, 94–97 (2015). PubMed
Kermekchiev MB, Kirilova LI, Vail EE, Barnes WM. Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic Acids Res. 37(5), e40–e40 (2009). PubMed PMC
Strien J, Sanft J, Mall G. Enhancement of PCR amplification of moderate GC-containing and highly GC-rich DNA sequences. Mol. Biotechnol. 54(3), 1048–1054 (2013). PubMed
Green MR, Sambrook J. Polymerase chain reaction (PCR) amplification of GC-rich templates. Cold Spring Harb. Protoc. 2019(2), pdb. prot095141 (2019). PubMed
Ahrberg CD, Manz A, Neuzil P. Palm-sized device for point-of-care ebola detection. Anal. Chem. 88(9), 4803–4807 (2016). PubMed
Jain M, Olsen HE, Paten B, Akeson M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17(1), 239 (2016). PubMed PMC
Tian H, Sun Y, Liu C, Duan X, Tang W, Li Z. Precise quantitation of microRNA in a single cell with droplet digital PCR based on ligation reaction. Anal. Chem. 88(23), 11384–11389 (2016). PubMed
Rhein J, Bahr NC, Hemmert AC. et al. Diagnostic performance of a multiplex PCR assay for meningitis in an HIV-infected population in Uganda. Diagn. Micr. Infec. Dis. 84(3), 268–273 (2016). PubMed PMC
Hiltunen J, Liedert C, Hiltunen M. et al. Roll-to-roll fabrication of integrated PDMS-paper microfluidics for nucleic acid amplification. Lab Chip 18(11), 1552–1559 (2018). PubMed
Cornelis S, Fauvart M, Gansemans Y. et al. Multiplex STR amplification sensitivity in a silicon microchip. Sci. Rep. 8(1), 9853 (2018). PubMed PMC
Kanwar N, Michael J, Doran K, Montgomery E, Selvarangan R. Comparison of the ID Now influenza A & B 2, Cobas influenza A/B and Xpert Xpress Flu point-of-care nucleic acid amplification tests for influenza A/B virus detection in children. J. Clin. Microbiol. 58(3), e01611–e01619 (2020). PubMed PMC
Melchers WJ, Kuijpers J, Sickler JJ, Rahamat-Langendoen J. Lab-in-a-tube: real-time molecular point-of-care diagnostics for influenza A and B using the cobas® Liat® system. J. Med. Virol. 89(8), 1382–1386 (2017). PubMed
US Food and Drug Administration. Coronavirus disease 2019 (COVID-19) emergency use authorizations for medical devices. http://www.fda.gov/medical-devices/emergency-use-authorizations-medical-devices/coronavirus-disease-2019-covid-19-emergency-use-authorizations-medical-devices PubMed
Gou T, Hu J, Wu W. et al. Smartphone-based mobile digital PCR device for DNA quantitative analysis with high accuracy. Biosens. Bioelectron. 120, 144–152 (2018). PubMed
Zhu H, Podesva P, Liu X. et al. IoT PCR for pandemic disease detection and its spread monitoring. Sens. Actuators B Chem. 303, 127098 (2020). PubMed PMC
Sorek N, Ashkenazi S, Livni G, Ben-Zvi H. Neisseria meningitidis and cytomegalovirus simultaneous detection in the filmarray meningitis/encephalitis panel and its clinical relevance. IDCases 17, e00516 (2019). PubMed PMC
Cornelis S, Tytgat O, Fauvart M. et al. Silicon μPCR chip for forensic STR profiling with HyBeacon probe melting curves. Sci. Rep. 9(1), 7341–7312 (2019). PubMed PMC
SPEED: an integrated, smartphone-operated, handheld digital PCR Device for point-of-care testing
Rapid non-invasive prenatal screening test for trisomy 21 based on digital droplet PCR
Two fingerprinting sets for Humulus lupulus based on KASP and microsatellite markers
Determination of Advantages and Limitations of qPCR Duplexing in a Single Fluorescent Channel
PCR Multiplexing Based on a Single Fluorescent Channel Using Dynamic Melting Curve Analysis