Two fingerprinting sets for Humulus lupulus based on KASP and microsatellite markers
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
35421090
PubMed Central
PMC9009645
DOI
10.1371/journal.pone.0257746
PII: PONE-D-21-27320
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genotyp MeSH
- Humulus * genetika MeSH
- mikrosatelitní repetice genetika MeSH
- polymerázová řetězová reakce MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Verification of clonal identity of hop (Humulus lupulus L.) cultivars within breeding programs and germplasm collections is vital to conserving genetic resources. Accurate and economic DNA-based tools are needed in dioecious hop to confirm identity and parentage, neither of which can be reliably determined from morphological observations. In this study, we developed two fingerprinting sets for hop: a 9-SSR fingerprinting set containing high-core repeats that can be run in a single PCR reaction and a kompetitive allele specific PCR (KASP) assay of 25 single nucleotide polymorphisms (SNPs). The SSR set contains a sex-linked primer pair, HI-AGA7, that was used to genotype 629 hop accessions from the US Department of Agriculture (USDA) National Clonal Germplasm Repository (NCGR), the USDA Forage Seed and Cereal Research (FSCR), and the University of Nebraska-Lincoln (UNL) collections. The SSR set identified unique genotypes except for 89 sets of synonymous samples. These synonyms included: cultivars with different designations, the same cultivars from different sources, heat-treated clones, and clonal variants. Population structure analysis clustered accessions into wild North American (WNA) and cultivated groups. Diversity was slightly higher in the cultivated samples due to larger sample size. Parentage and sib-ship analyses were used to identify true-to-type cultivars. The HI-AGA7 marker generated two male- and nine female-specific alleles among the cultivated and WNA samples. The SSR and KASP fingerprinting sets were compared in 190 samples consisting of cultivated and WNA accession for their ability to confirm identity and assess diversity and population structure. The SSR fingerprinting set distinguished cultivars, selections and WNA accessions while the KASP assays were unable to distinguish the WNA samples and had lower diversity estimates than the SSR set. Both fingerprinting sets are valuable tools for identity confirmation and parentage analysis in hop for different purposes. The 9-SSR assay is cost efficient when genotyping a small number of wild and cultivated hop samples (<96) while the KASP assay is easy to interpret and cost efficient for genotyping a large number of cultivated samples (multiples of 96).
Department of Plant Pathology Kansas State University Manhattan Kansas United States of America
Hop Research Institute Co Ltd Žatec Czech Republic
Midwest Hops Producers Plattsmouth Nebraska United States of America
The New Zealand Institute for Plant and Food Research Limited Palmerston North New Zealand
USDA ARS Forage Seed and Cereal Research Unit Corvallis Oregon United States of America
USDA ARS National Clonal Germplasm Repository Corvallis Oregon United States of America
Zobrazit více v PubMed
Small E. A numerical and nomenclatural analysis of morpho-geographic taxa of Humulus. Syst Bot. 1978;3(1):37–76. 10.2307/2418532. DOI
Small E. A numerical analysis of morpho-geographic groups of cultivars of Humulus lupulus based on samples of cones. Can J Bot. 1981. Mar 1;59(3):311–24. 10.1139/b81-044. DOI
Bassil NV, Gilmore B, Oliphant JM, Hummer KE, Henning JA, et al.. Genic SSRs for European and North American hop (Humulus lupulus L.). Genet Resour Crop Evol. 2008. Nov 1;55(7):959. 10.1007/s10722-007-9303-9. DOI
Haunold A. Cytology, sex expression, and growth of a tetraploid × diploid cross in hop (Humulus lupulus L.). Crop Sci Madison. 1971. Nov;Vol.11(6):pp.868–871. 10.2135/cropsci1971.0011183X001100060031x. DOI
Jakse J, Stajner N, Luthar Z, Jeltsch J-M, Javornik B, et al.. Development of transcript-associated microsatellite markers for diversity and linkage mapping studies in hop (Humulus lupulus L.). Mol Breed. 2011. Aug;28(2):227–39. 10.1007/s11032-010-9476-3. DOI
Henning JA, Coggins J, Peterson M, et al.. Simple SNP-based minimal marker genotyping for Humulus lupulus L. identification and variety validation. BMC Res Notes. 2015. Dec;8(1):542. doi: 10.1186/s13104-015-1492-2 . PubMed DOI PMC
Jakse J, Stajner N, Kozjak P, Cerenak A, Javornik B, et al.. Trinucleotide microsatellite repeat is tightly linked to male sex in hop (Humulus lupulus L.). Mol Breed. 2008. Feb;21(2):139–48. 10.1007/s11032-007-9114-x. DOI
Mafakheri M, Kordrostami M, Rahimi M, Matthews PD, et al.. Evaluating genetic diversity and structure of a wild hop (Humulus lupulus L.) germplasm using morphological and molecular characteristics. Euphytica. 2020. Apr;216(4):58. 10.1007/s10681-020-02592-z. DOI
National Agricultural Statistics Service. 2019 [cited 2020 Oct 27]. In: National hop report 12/18/2019 [Internet]. Available from: https://downloads.usda.library.cornell.edu/usda-esmis/files/s7526c41m/7m01cc012/kd17dk83t/hopsan20.pdf.
Brewers Association. 2021 [cited 2021 Aug 13]. In: National Beer Sales & Production Data [Internet]. Available from: https://www.brewersassociation.org/statistics-and-data/national-beer-stats/.
Barth-Haas Group. 2016 [cited 2021 Aug 13]. In: The Barth Report 2016/2017 [Internet]. Available from: http://www.johnihaas.com/wp-content/uploads/2017/08/barthbericht20162017en.pdf.
Teghtmeyer S. Hops. J Agric Food Inf. 2018. Jan 2;19(1):9. 10.1080/10496505.2018.1403248. DOI
Pigg K. Aroma Hops Breeding Program develops, grows new Strata Hop. The Daily Barometer. 2017. Nov 6. [cited 2021 Aug 13]. Available from: https://dailybaro.orangemedianetwork.com/7625/daily-barometer-news/aroma-hops-breeding-program-develops-grows-new-strata-hop/.
Rodger Erin. Cornell AgriTech launches hops breeding program. Cornell Chronicle. 2021. Jun 10. [cited 2021 Aug 13]. Available from: https://news.cornell.edu/stories/2021/06/cornell-agritech-launches-hops-breeding-program.
Alberts L. Zatec, cradle of Saaz hops and landmark of commercial hop cultivation. Brew Hist. 2020. Jan 1;181:43–50.
Hornsey I. Brewing. Cambridge, UK: The Royal Society of Chemistry; 1999.
Darby P. The history of hop breeding and development. Brew Hist. 2005. Dec 1;121: 94–112.
Peredo EL, Revilla MÁ, Reed BM, Javornik B, Cires E, Fernández Prieto JA, et al.. The influence of European and American wild germplasm in hop (Humulus lupulus L.) cultivars. Genet Resour Crop Evol. 2010. Apr;57(4):575–86. 10.1007/s10722-009-9495-2. DOI
Korbecka-Glinka G, Skomra U, Olszak-Przybys H, et al.. Cultivar identification in dry hop cones and pellets using microsatellite loci. Eur Food Res Technol. 2016. Sep;242(9):1599–605. 10.1007/s00217-016-2715-z. DOI
McAdam EL, Vaillancourt RE, Koutoulis A, Whittock SP, et al.. Quantitative genetic parameters for yield, plant growth and cone chemical traits in hop (Humulus lupulus L.). BMC Genet. 2014. Feb 13;15(1):22. doi: 10.1186/1471-2156-15-22 PubMed DOI PMC
Skomra U, Bocianowski J, Agacka-Mołdoch M, et al.. Agro-morphological differentiation between European hop (Humulus lupulus L.) cultivars in relation to their origin. J Food Agric Environ. 2013. Jan 1;11:1123–8.
Li Y-C, Korol AB, Fahima T, Beiles A, Nevo E, et al.. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol. 2002;11(12):2453–65. doi: 10.1046/j.1365-294x.2002.01643.x PubMed DOI
Robinson AJ, Love CG, Batley J, Barker G, Edwards D et al.. Simple sequence repeat marker loci discovery using SSR primer. Bioinformatics. 2004. Jun 12;20(9):1475–6. doi: 10.1093/bioinformatics/bth104 . PubMed DOI
Palumbo F, Barcaccia G. Rediscovery of landraces as a resource for the future.In: Grillo O, editor. Critical Aspects on the Use of Microsatellite Markers for Assessing Genetic Identity of Crop Plant Varieties and Authenticity of their Food Derivatives. UK: IntechOpen; 2018. pp129–160. 10.5772/intechopen.70756. DOI
Henning JA, Gent DH, Twomey MC, Townsend MS, Pitra NJ, Matthews PD, et al.. Genotyping-by-sequencing of a bi-parental mapping population segregating for downy mildew resistance in hop (Humulus lupulus L.). Euphytica. 2016. Apr;208(3):545–59. 10.1007/s10681-015-1600-3. DOI
Howard EL, Whittock SP, Jakše J, Carling J, Matthews PD, Probasco G, et al.. High-throughput genotyping of hop (Humulus lupulus L.) utilizing diversity arrays technology (DArT). Theor Appl Genet. 2011. May 1;122(7):1265–80. doi: 10.1007/s00122-011-1529-4 . PubMed DOI
Matthews PD, Coles MC, Pitra NJ, et al.. Next generation sequencing for a plant of great tradition: Application of NGS to SNP detection and validation in hops (Humulus lupulus L.). BrewingScience. 2013;66:185–91.
Yamauchi H, Mukouzaka Y, Taniguchi T, Nakashima K, Furukubo S, Harada M, et al.. Newly developed SNP-based identification method of hop varieties. J Am Soc Brew Chem. 2014. Sep 1;72(4):239–45. 10.1094/ASBCJ-2014-1006-01. DOI
Brady JL, Scott NS, Thomas MR, et al.. DNA typing of hops (Humulus lupulus) through application of RAPD and microsatellite marker sequences converted to sequence tagged sites (STS). Euphytica. 1996;(3):277–284. 10.1007/BF00033088. DOI
Hadonou AM, Walden R, Darby P, et al.. Isolation and characterization of polymorphic microsatellites for assessment of genetic variation of hops (Humulus lupulus L.). Mol Ecol Notes. 2004;4(2):280–282. 10.1111/j.1471-8286.2004.00641.x. DOI
Jakše J, Bandelj D, Javornik B, et al.. Eleven new microsatellites for hop (Humulus lupulus L.). Mol Ecol Notes. 2002;2(4):544–546. 10.1046/j.1471-8286.2002.00309.x. DOI
Stajner N, Jakse J, Kozjak P, Javornik B, et al.. The isolation and characterization of microsatellites in hop (Humulus lupulus L.). Plant Sci. 2005. Jan 1;168(1):213–21. 10.1016/j.plantsci.2004.07.031. DOI
Koelling J, Coles MC, Matthews PD, Schwekendiek A, et al.. Development of new microsatellite markers (SSRs) for Humulus lupulus. Mol Breed. 2012. Jun;30(1):479–84. 10.1007/s11032-011-9637-z. DOI
Stajner N, Satovic Z, Cerenak A, Javornik B, et al.. Genetic structure and differentiation in hop (Humulus lupulus L.) as inferred from microsatellites. Euphytica. 2008. May;161(1–2):301–11. 10.1007/s10681-007-9429-z. DOI
Čerenak A, Jakše J, Javornik B, et al.. Identification and differentiation of hop varieties using simple sequence repeat markers. J Am Soc Brew Chem. 2004. Jan 1;62(1):1–7. 10.1094/ASBCJ-62-0001. DOI
Murakami A, Darby P, Javornik B, Pais MSS, Seigner E, Lutz A, et al.. Microsatellite DNA analysis of wild hops, Humulus lupulus L. Genet Resour Crop Evol. 2006. Dec 1;53(8):1553–62. 10.1007/s10722-005-7765-1. DOI
Henning JA, Townsend MS, Gent DH, Bassil N, Matthews P, Buck E, et al.. QTL mapping of powdery mildew susceptibility in hop (Humulus lupulus L.). Euphytica. 2011. Aug;180(3):411–20. 10.1007/s10681-011-0403-4. DOI
Cerenak A, Satovic Z, Javornik B, et al.. Genetic mapping of hop (Humulus lupulus L.) applied to the detection of QTLs for alpha-acid content. Genome. 2006. May 1;49(5):485–94. doi: 10.1139/g06-007 PubMed DOI
Patzak J, Nesvadba V, Henychová A, Krofta K, et al.. Assessment of the genetic diversity of wild hops (Humulus lupulus L.) in Europe using chemical and molecular analyses. Biochem Syst Ecol. 2010. Apr 1;38(2):136–45. 10.1007/s10722-005-7765-1. DOI
Seefelder S, Ehrmaier H, Schweizer G, Seigner E, et al.. Genetic diversity and phylogenetic relationships among accessions of hop, Humulus lupulus, as determined by amplified fragment length polymorphism fingerprinting compared with pedigree data. Plant Breed. 2000;119(3):257–63. 10.1046/j.1439-0523.2000.00500.x. DOI
McAdam EL, Freeman JS, Whittock SP, Buck EJ, Jakse J, Cerenak A, et al.. Quantitative trait loci in hop (Humulus lupulus L.) reveal complex genetic architecture underlying variation in sex, yield and cone chemistry. BMC Genomics. 2013. May 30;14:360. doi: 10.1186/1471-2164-14-360 . PubMed DOI PMC
Rodolfi M, Silvanini A, Chiancone B, Marieschi M, Fabbri A, Bruni R, et al.. Identification and genetic structure of wild Italian Humulus lupulus L. and comparison with European and American hop cultivars using nuclear microsatellite markers. Genet Resour Crop Evol. 2018;65(5):1405–22. 10.1007/s10722-018-0622-9. DOI
Hill ST, Coggins J, Liston A, Hendrix D, Henning JA, et al.. Genomics of the hop pseudo-autosomal regions. Euphytica. 2016. May 1;209(1):171–9. 10.1007/s10681-016-1655-9. DOI
Zhang D, Easterling KA, Pitra NJ, Coles MC, Buckler ES, Bass HW, et al.. Non‐Mendelian single‐nucleotide polymorphism inheritance and atypical meiotic configurations are prevalent in hop. Plant Genome. 2017. Nov;10(3). doi: 10.3835/plantgenome2017.04.0032 . PubMed DOI
Van Holle A, Muylle H, Ruttink T, Van Landschoot A, Haesaert G, Naudts D, et al.. Single nucleotide polymorphisms and biochemical markers as complementary tools to characterize hops (Humulus lupulus L.) in Brewing Practice. J Agric Food Chem. 2019. Apr 3;67(13):3761–71. doi: 10.1021/acs.jafc.9b00816 PubMed DOI
Jiang P, Song T, Jiang W, Wang D, Pu B, Luan C, et al.. SNP-based kompetitive allele specific PCR (KASPTM) method for the qualification and quantification of hop varieties. J Am Soc Brew Chem. 2018. Jul 3;76(3):185–9. 10.1080/03610470.2018.1483702. DOI
Henning J, Hill S, Darby P, Hendrix D, et al.. QTL examination of a bi-parental mapping population segregating for “short-stature” in hop (Humulus lupulus L.). Euphytica. 2017. Mar;213(3):1–15. 10.1007/s10681-017-1848-x. DOI
Henning JA, Gent DH, Townsend MS, Woods JL, Hill ST, Hendrix D, et al.. QTL analysis of resistance to powdery mildew in hop (Humulus lupulus L.). Euphytica. 2017. Apr;213(4):1–13. 10.1007/s10681-017-1849-9. DOI
Henning JA, Gent DH, Twomey MC, Townsend MS, Pitra NJ, Matthews PD, et al.. Precision QTL mapping of downy mildew resistance in hop (Humulus lupulus L.). Euphytica. 2015. Apr;202(3):487–98. 10.1007/s10681-015-1356-9. DOI
Padgitt-Cobb L.K., Kingan S.B. & Henning J.A, et al.. Genomic analysis of powdery mildew resistance in a hop (Humulus lupulus L.) bi-parental population segregating for “R6-locus”. Euphytica 216, 10 (2020). 10.1007/s10681-019-2543-x. DOI
Zhang D, Pitra NJ, Coles MC, Buckler ES, Matthews PD, et al.. Non-Mendelian inheritance of SNP markers reveals extensive chromosomal translocations in dioecious hops (Humulus lupulus L.). bioRxiv. 2016. Aug 16;069849. 10.1101/069849. DOI
Gilmore B, Bassil N, Hummer K, et al.. DNA extraction protocols from dormant buds of twelve woody plant genera. J Am Pom Soc. 2011;65(4):pp.201–6.
Schuelke M. An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol. 2000. Feb;18(2):233–4. doi: 10.1038/72708 PubMed DOI
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al.. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLOS ONE. 2011. May 4;6(5):e19379. doi: 10.1371/journal.pone.0019379 PubMed DOI PMC
Padgitt-Cobb LK, Kingan SB, Wells J, Elser J, Kronmiller B, Moore D, et al.. A draft phased assembly of the diploid Cascade hop (Humulus lupulus) genome. Plant Genome. 2021;14(1):e20072. doi: 10.1002/tpg2.20072 PubMed DOI
Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al.. TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline. PLOS ONE. 2014. Feb 28;9(2):e90346. doi: 10.1371/journal.pone.0090346 PubMed DOI PMC
Fujii H, Ogata T, Shimada T, Endo T, Iketani H, Shimizu T, et al.. Minimal marker: an algorithm and computer program for the identification of minimal sets of discriminating DNA markers for efficient variety identification. J Bioinform Comput Biol. 2013. Apr;11(2):1250022. doi: 10.1142/S0219720012500229 . PubMed DOI
Paradis E, Claude J, Strimmer K, et al.. APE: Analyses of phylogenetics and evolution in R language. Bioinforma Oxf Engl. 2004. Jan 22;20(2):289–90. doi: 10.1093/bioinformatics/btg412 PubMed DOI
Kamvar ZN, Tabima JF, Grünwald NJ, et al.. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2:e281. doi: 10.7717/peerj.281 . PubMed DOI PMC
Kamvar ZN, Brooks JC, Grünwald NJ, et al.. Novel R tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet. 2015;6:208. doi: 10.3389/fgene.2015.00208 . PubMed DOI PMC
Bruvo R, Michiels NK, D’Souza TG, Schulenburg H, et al.. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol. 2004. Jul;13(7):2101–6. doi: 10.1111/j.1365-294X.2004.02209.x . PubMed DOI
Metzger MJ, Villalba A, Carballal MJ, Iglesias D, Sherry J, Reinisch C, et al.. Widespread transmission of independent cancer lineages within multiple bivalve species. Nature. 2016. Jun;534(7609):705–9. doi: 10.1038/nature18599 PubMed DOI PMC
Simpson EH. Measurement of Diversity. Nature. 1949. Apr;163(4148):688–688. 10.1038/163688a0. DOI
Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978. Jul;89(3):583–90. doi: 10.1093/genetics/89.3.583 . PubMed DOI PMC
Rousset F. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour. 2008;8(1):103–6. doi: 10.1111/j.1471-8286.2007.01931.x . PubMed DOI
R Core Team. R: A language and environment for statistical computing, Viennam Austria. 2018.
Chae SS, Warde WD. Effect of using principal coordinates and principal components on retrieval of clusters. Comput Stat Data Anal. 2006. Mar 10;50(6):1407–17. 10.1016/j.csda.2005.01.013. DOI
Chae S-S, Il K. Cluster analysis using principal coordinates for binary data. Commun Stat Appl Methods. 2005. Dec 1;12:683–96. 10.5351/CKSS.2005.12.3.683. DOI
Kassambara A, Mundt F. factoextra: Extract and visualize the results of multivariate data analyses version 1.0.7 from CRAN [Internet]. [cited 2021 Aug 16]. Available from: https://rdrr.io/cran/factoextra/.
Charrad M, Ghazzali N, Boiteau V, Niknafs A, et al.. NbClust: An R package for determining the relevant number of clusters in a data Set. J Stat Softw. 2014. Nov 3;61(1):1–36. 10.18637/jss.v061.i06. DOI
Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K, et al.. cluster: Cluster analysis basics and extensions. 2019. R package Version 2.1.0.
Frichot E, François O. LEA: An R package for landscape and ecological association studies. Methods Ecol Evol. 2015;6(8):925–9. 10.1111/2041-210X.12382. DOI
Frichot E, Mathieu F, Trouillon T, Bouchard G, François O, et al.. Fast and Efficient Estimation of Individual Ancestry Coefficients. Genetics. 2014. Apr 1;196(4):973–83. doi: 10.1534/genetics.113.160572 PubMed DOI PMC
Rodzen JA, Famula TR, May B, et al.. Estimation of parentage and relatedness in the polyploid white sturgeon (Acipenser transmontanus) using a dominant marker approach for duplicated microsatellite loci. Aquaculture. 2004. Apr 5;232(1):165–82. 10.1016/S0044-8486(03)00450-2. DOI
Wang J, Scribner KT. Parentage and sibship inference from markers in polyploids. Mol Ecol Resour. 2014. May;14(3):541–53. doi: 10.1111/1755-0998.12210 . PubMed DOI
Jones OR, Wang J. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour. 2010;10(3):551–5. doi: 10.1111/j.1755-0998.2009.02787.x . PubMed DOI
Prevosti A, Ocaña J, Alonso G, et al.. Distances between populations of Drosophila subobscura, based on chromosome arrangement frequencies. Theor Appl Genet. 1975. Jun 1;45(6):231–41. doi: 10.1007/BF00831894 . PubMed DOI
Brownstein MJ, Carpten JD, Smith JR, et al.. Modulation of non-templated nucleotide addition by Taq DNA polymerase: Primer modifications that facilitate genotyping. BioTechniques. 1996. Jun 1;20(6):1004–10. doi: 10.2144/96206st01 PubMed DOI
Agriculture Research Service. 2018 [cited 2020 Oct 27]. In: Hop Cultivar Descriptions 6/26/2018 [Internet]. Available from: https://www.ars.usda.gov/pacific-west-area/corvallis-or/forage-seed-and-cereal-research/people/john-henning/cultindex/.
Patzak J, Henychová A. Evaluation of genetic variability within actual hop (Humulus lupulus L.) cultivars by an enlarged set of molecular markers. Czech J Genet Plant Breed. 2018. May 28;54(No. 2):86–91. 10.17221/175/2016-CJGPB. DOI
Jakse J, Satovic Z, Javornik B, et al.. Microsatellite variability among wild and cultivated hops (Humulus lupulus L.). Genome. 2004. Oct;47(5):889–99. doi: 10.1139/g04-054 . PubMed DOI
Patzak J, Vrba L, Matousek J, et al.. New STS molecular markers for assessment of genetic diversity and DNA fingerprinting in hop (Humulus lupulus L.). Genome. 2007. Jan;50(1):15–25. doi: 10.1139/g06-128 . PubMed DOI
Salmon ES. Thirty-first report on the trial of new varieties of hops, 1947. J Inst Brew. 1949;55(1):29–38. 10.1002/j.2050-0416.1949.tb01384.x. DOI
Nesvadba V, Charvátová J, Henychová A, Patzak J, et al.. Evaluation of original historical clones of hops (Humulus lupulus L.). KVASNY PRUMYSL. 2020. Dec 15;66(6):382–91. 10.18832/kp2019.66.382. DOI
Cipriani G, Marrazzo MT, Di Gaspero G, Pfeiffer A, Morgante M, Testolin R et al.. A set of microsatellite markers with long core repeat optimized for grape (Vitisspp.) genotyping. BMC Plant Biol. 2008. Dec 16;8(1):127. 10.1186/1471-2229-8-127. PubMed DOI PMC
Zurn JD, Nyberg A, Montanari S, Postman J, Neale D, Bassil N, et al.. A new SSR fingerprinting set and its comparison to existing SSR-and SNP-based genotyping platforms to manage Pyrus germplasm resources. Tree Genet Genomes. 2020. Sep 9;16(5):72. 10.1007/s11295-020-01467-7. DOI
Weeks DE, Conley YP, Ferrell RE, Mah TS, Gorin MB, et al.. A tale of two genotypes: consistency between two high-throughput genotyping centers. Genome Res. 2002. Mar;12(3):430–5. doi: 10.1101/gr.211502 . PubMed DOI PMC
Lauerman LH. Advances in PCR technology. Anim Health Res Rev. 2004. Dec;5(2):247–8. doi: 10.1079/ahrr200477 . PubMed DOI
Zhu H, Zhang H, Xu Y, Laššáková S, Korabečná M, Neužil P, et al.. PCR past, present and future. BioTechniques. 2020. Aug 20;69(4):317–25. doi: 10.2144/btn-2020-0057 . PubMed DOI PMC
Bassil N, Bidani A, Nyberg A, Hummer K, Rowland LJ, et al.. Microsatellite markers confirm identity of blueberry (Vaccinium spp.) plants in the USDA-ARS National Clonal Germplasm Repository collection. Genet Resour Crop Evol. 2020. Feb 1;67(2):393–409. 10.1007/s10722-019-00873-8. DOI
Akin M, Nyberg A, Postman J, Mehlenbacher S, Bassil N, et al.. A multiplexed microsatellite fingerprinting set for hazelnut cultivar identification. Eur J Hortic Sci. 2017. Jan 12;81:327–38. 10.17660/eJHS.2016/81.6.6. DOI
Freixas-Coutin JA, An S, Postman J, Bassil NV, Yates B, Shukla M, et al.. Development of a reliable Corylus sp. reference database through the implementation of a DNA fingerprinting test. Planta. 2019. Jun 1;249(6):1863–74. doi: 10.1007/s00425-019-03131-4 . PubMed DOI
Zurn JD, Carter KA, Yin MH, Worthington M, Clark JR, Finn CE, et al.. Validating blackberry seedling pedigrees and developing an improved multiplexed microsatellite fingerprinting set. J Am Soc Hortic Sci. 2018. Sep 1;143(5):381–90. 10.21273/JASHS04474-18. DOI
Pachakkil B, Yamanaka S, Girma G, Matsumoto R, Tamiru-Oli M, Bhattacharjee R, et al.. Simple sequence repeat-based mini-core collection for white Guinea yam (Dioscorea rotundata) germplasm. Crop Sci. 2021;61(2):1268–79. 10.1002/csc2.20431. DOI
Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M, Meneghetti S, et al.. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor Appl Genet. 2010. Nov;121(8):1569–85. doi: 10.1007/s00122-010-1411-9 . PubMed DOI
Govan CL, Simpson DW, Johnson AW, Tobutt KR, Sargent DJ, et al.. A reliable multiplexed microsatellite set for genotyping Fragaria and its use in a survey of 60 F. × ananassa cultivars. Mol Breed. 2008. Nov 1;22(4):649–61. 10.1007/s11032-008-9206-2. DOI
Marra FP, Caruso T, Costa F, Di Vaio C, Mafrica R, Marchese A, et al.. Genetic relationships, structure and parentage simulation among the olive tree (Olea europaea L. subsp. europaea) cultivated in Southern Italy revealed by SSR markers. Tree Genet Genomes. 2013. Aug;9(4):961–73. 10.1007/s11295-013-0609-9. DOI
Nashima K, Hosaka F, Shimajiri Y, Matsumura M, Tarora K, Urasaki N, et al.. SSR marker development and genetic identification of pitaya (Hylocereus spp.) collected in Okinawa Prefecture, Japan. Hortic J. 2021;90(1):23–30. 10.2503/hortj.UTD-220. DOI
Karlsson Strese E-M, Lundström M, Hagenblad J, Leino MW, et al.. Genetic diversity in remnant Swedish hop (Humulus lupulus L.) yards from the 15th to 18th Century. Econ Bot. 2014. Sep;68(3):231–45. 10.1007/s12231-014-9273-8. DOI
Zhao M-H, Li X, Zhang X-X, Zhang H, Zhao X-Y, et al.. Mutation mechanism of leaf color in plants: A review. Forests. 2020. Aug;11(8):851. 10.3390/f11080851. DOI
Haas FB, Fernandez-Pozo N, Meyberg R, Perroud P-F, Göttig M, Stingl N, et al.. Single Nucleotide Polymorphism Charting of P. patens Reveals Accumulation of Somatic Mutations During in vitro Culture on the Scale of Natural Variation by Selfing. Front Plant Sci. 2020;11:813. doi: 10.3389/fpls.2020.00813 . PubMed DOI PMC
Sterling C, Palagi J, Evans J, et al.. Polymorphic microsatellite markers identified for genotyping of Sassafras albidum; 2020. [cited 2020 Dec 23]; Repository: Sewanee DSpace Repository [Internet]. Available from: https://dspace.sewanee.edu/handle/11005/21681.
Han E-K, Cho W-B, Choi G, Yang S, Choi H-J, Song G-P, et al.. New polymorphic microsatellite markers for Sarcandra glabra (Chloranthaceae), an evergreen broad-leaved shrub endangered in South Korea. J For Res. 2020. Sep 2;25(5):364–8. 10.1080/13416979.2020.1783052. DOI
Bassil N, Postman JD. Identification of European and Asian pears using EST-SSRs from Pyrus. Genet Resour Crop Evol. 2010. Mar 1;57(3):357–70. 10.1007/s10722-009-9474-7. DOI
Patzak J, Matoušek J. Development and evaluation of expressed sequence tag-derived microsatellite markers for hop genotyping. Biol Plant. 2011. Oct 15;55(4):761. 10.1007/s10535-011-0183-7. DOI
Lin M, Cai S, Wang S, Liu S, Zhang G, Bai G, et al.. Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theor Appl Genet. 2015. Jul 1;128(7):1385–95. doi: 10.1007/s00122-015-2513-1 PubMed DOI
Tan C-T, Yu H, Yang Y, Xu X, Chen M, Rudd JC, et al.. Development and validation of KASP markers for the greenbug resistance gene Gb7 and the Hessian fly resistance gene H32 in wheat. Theor Appl Genet. 2017. Sep 1;130(9):1867–84. doi: 10.1007/s00122-017-2930-4 . PubMed DOI
Xu X, Li G, Bai G, Bernardo A, Carver BF, St. Amand P, et al.. Development of KASP markers for wheat greenbug resistance gene Gb5. Crop Sci. 2021. Jan;61(1):490–9. 10.1002/csc2.20339. DOI
Yang Z, Chen Z, Peng Z, Yu Y, Liao M, Wei S, et al.. Development of a high-density linkage map and mapping of the three-pistil gene (Pis1) in wheat using GBS markers. BMC Genomics. 2017. Jul 31;18(1):567. doi: 10.1186/s12864-017-3960-7 PubMed DOI PMC
Uitdewilligen JGAML, Wolters A-MA, D’hoop BB, Borm TJA, Visser RGF, Eck HJ van, et al.. A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLOS ONE. 2013. May 8;8(5):e62355. doi: 10.1371/journal.pone.0062355 . PubMed DOI PMC
Cheon K-S, Baek J, Cho Y, Jeong Y-M, Lee Y-Y, Oh J, et al.. Single nucleotide polymorphism (SNP) discovery and kompetitive allele-specific PCR (KASP) marker development with Korean Japonica rice varieties. Plant Breed Biotechnol. 2018. Dec 1;6(4):391–403. 10.9787/PBB.2018.6.4.391. DOI
Riccioni C, Belfiori B, Sileoni V, Marconi O, Perretti G, Bellucci M, et al.. High genetic and chemical diversity of wild hop populations from Central Italy with signals of a genetic structure influenced by both sexual and asexual reproduction. Plant Sci. 2021. Mar 1;304:110794. doi: 10.1016/j.plantsci.2020.110794 . PubMed DOI
Patzak J, Nesvadba V, Krofta K, Henychova A, Marzoev AI, Richards K, et al.. Evaluation of genetic variability of wild hops (Humulus lupulus L.) in Canada and the Caucasus region by chemical and molecular methods. Genome. 2010. Jul;53(7):545–57. doi: 10.1139/g10-024 . PubMed DOI
Kalinowski ST, Taper ML, Marshall TC, et al.. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol. 2007;16(5):1099–106. doi: 10.1111/j.1365-294X.2007.03089.x . PubMed DOI
Flanagan SP, Jones AG. The future of parentage analysis: From microsatellites to SNPs and beyond. Mol Ecol. 2019;28(3):544–67. doi: 10.1111/mec.14988 PubMed DOI
Dakin EE, Avise JC. Microsatellite null alleles in parentage analysis. Heredity. 2004. Nov;93(5):504–9. doi: 10.1038/sj.hdy.6800545 PubMed DOI
Gramazio P, Prohens J, Borràs D, Plazas M, Herraiz FJ, Vilanova S, et al.. Comparison of transcriptome-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for genetic fingerprinting, diversity evaluation, and establishment of relationships in eggplants. Euphytica. 2017. Nov 7;213(12):264. 10.1007/s10681-017-2057-3. DOI
Xu J, Liu L, Xu Y, Chen C, Rong T, Ali F, et al.. Development and characterization of simple sequence repeat markers providing genome-wide coverage and high resolution in maize. DNA Res Int J Rapid Publ Rep Genes Genomes. 2013. Oct;20(5):497–509. doi: 10.1093/dnares/dst026 . PubMed DOI PMC
Yu J, Zhang Z, Zhu C, Tabanao DA, Pressoir G, Tuinstra MR, et al.. Simulation appraisal of the adequacy of number of background markers for relationship estimation in association mapping. 2009. Mar 1;2(1):63–77. 10.3835/plantgenome2008.09.0009. DOI
Van Inghelandt D, Melchinger AE, Lebreton C, Stich B, et al.. Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet. 2010. May 1;120(7):1289–99. doi: 10.1007/s00122-009-1256-2 . PubMed DOI PMC
Filippi CV, Aguirre N, Rivas JG, Zubrzycki J, Puebla A, Cordes D, et al.. Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers. BMC Plant Biol. 2015. Feb 13;15(1):52. doi: 10.1186/s12870-014-0360-x PubMed DOI PMC
Chen W, Hou L, Zhang Z, Pang X, Li Y, et al.. Genetic diversity, population structure, and linkage disequilibrium of a core collection of Ziziphus jujuba assessed with genome-wide SNPs developed by genotyping-by-sequencing and SSR markers. Front Plant Sci. 2017;8:575. doi: 10.3389/fpls.2017.00575 . PubMed DOI PMC
Singh N, Choudhury DR, Singh AK, Kumar S, Srinivasan K, Tyagi RK, et al.. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties. PLOS ONE. 2013. Dec 19;8(12):e84136. doi: 10.1371/journal.pone.0084136 . PubMed DOI PMC
Broccanello C, Chiodi C, Funk A, McGrath JM, Panella L, Stevanato P, et al.. Comparison of three PCR-based assays for SNP genotyping in plants. Plant Methods. 2018. Mar 28;14(1):28. doi: 10.1186/s13007-018-0295-6 . PubMed DOI PMC
Semagn K, Babu R, Hearne S, Olsen M, et al.. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed. 2014. Jan 1;33(1):1–14. 10.1007/s11032-013-9917-x. DOI
Makhoul M, Rambla C, Voss-Fels KP, Hickey LT, Snowdon RJ, Obermeier C, et al.. Overcoming polyploidy pitfalls: a user guide for effective SNP conversion into KASP markers in wheat. Theor Appl Genet. 2020. Aug;133(8):2413–30. doi: 10.1007/s00122-020-03608-x PubMed DOI PMC
Rodda MS, Sudheesh S, Javid M, Noy D, Gnanasambandam A, Slater AT, et al.. Breeding for boron tolerance in lentil (Lens culinaris Medik.) using a high-throughput phenotypic assay and molecular markers. Plant Breed. 2018;137(4):492–501. https://doi-org.libproxy.uoregon.edu/10.1111/pbr.12608. DOI
Steele KA, Quinton-Tulloch MJ, Amgai RB, Dhakal R, Khatiwada SP, Vyas D, et al.. Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing of Indica rice. Mol Breed. 2018. Mar 7;38(4):38. doi: 10.1007/s11032-018-0777-2 . PubMed DOI PMC
Yang S, Yu W, Wei X, Wang Z, Zhao Y, Zhao X, et al.. An extended KASP-SNP resource for molecular breeding in Chinese cabbage (Brassica rapa L. ssp. pekinensis). PLOS ONE. 2020. Oct 2;15(10):e0240042. doi: 10.1371/journal.pone.0240042 . PubMed DOI PMC
Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, et al.. Current trends in microsatellite genotyping. Mol Ecol Resour. 2011. Jul;11(4):591–611. doi: 10.1111/j.1755-0998.2011.03014.x . PubMed DOI
Polley A, Ganal MW, Seigner E, et al.. Identification of sex in hop (Humulus lupulus) using molecular markers. Genome. 1997. Jun 1;40(3):357–61. doi: 10.1139/g97-048 . PubMed DOI
Patzak J, Nesvadba V, Vejl P, Skupinová S, et al.. Identification of sex in F1 progenies of hop (Humulus lupulus) by molecular marker. Plant Soil Environ. 2002; 48(7):318–21. doi: 10.17221/4367-PSE DOI
Cerenak A, Javornik B. Application of the male STS marker in hop (Humulus lupulus L.) breeding. In Seigner E.(Ed.) proceedings of the IHGC Scientific Commission, Pulawy, Poland; 1999. July 27–30;39–42.
Čerenak A, Kolenc Z, Sehur P, Whittock SP, Koutoulis A, Beatson R, et al.. New male specific markers for hop and application in breeding program. Sci Rep. 2019. Oct 2;9(1):14223. doi: 10.1038/s41598-019-50400-z PubMed DOI PMC