Fingerprinting and chemotyping approaches reveal a wide genetic and metabolic diversity among wild hops (Humulus lupulus L.)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40327676
PubMed Central
PMC12054859
DOI
10.1371/journal.pone.0322330
PII: PONE-D-24-56047
Knihovny.cz E-zdroje
- MeSH
- fenotyp MeSH
- genetická variace * MeSH
- genotyp MeSH
- Humulus * genetika metabolismus klasifikace chemie MeSH
- listy rostlin genetika metabolismus chemie MeSH
- mikrosatelitní repetice genetika MeSH
- tandemová hmotnostní spektrometrie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
Hop (Humulus lupulus L.) is an emblematic industrial crop in the French North East region that developed at the same time as the brewing activity. Presently, this sector, especially microbreweries, are interested in endemic wild hops, which give beer production a local signature. In this study, we investigated the genetic and metabolic diversity of thirty-six wild hops sampled in various ecological environments. These wild accessions were propagated aeroponically and cultivated under uniform conditions (the same soil and the same environmental factors). Our phytochemical approach based on UHPLC-ESI-MS/MS analysis led to the identification of three metabolic clusters based on leaf content and characterized by variations in the contents of twelve specialized metabolites that were identified (including xanthohumol, bitter acids, and their oxidized derivatives). Furthermore, molecular characterization was carried out using sixteen EST-SSR microsatellites, allowing a genetic affiliation of our wild hops with hop varieties cultivated worldwide and wild hops genotyped to date using this method. Genetic proximity was observed for both European wild and hop varieties, especially for Strisselspalt, the historical variety of our region. Finally, our findings collectively assessed the impact of the hop genotype on the chemical phenotype through multivariate regression tree (MRT) analysis. Our results highlighted the 'WRKY 224' allele as a key discriminator between high- and low-metabolite producers. Moreover, the model based on genetic information explained 40% of the variance in the metabolic data. However, despite this strong association, the model lacked predictive power, suggesting that its applicability may be confined to the datasets analyzed.
Hop Research Institute Co Ltd Žatec Czech Republic
Université de Lorraine Centre de Recherche et Développement de la Bouzule Nancy France
Zobrazit více v PubMed
McPartland JM, Hegman W, Long T. Cannabis in Asia: its center of origin and early cultivation, based on a synthesis of subfossil pollen and archaeobotanical studies. Veget Hist Archaeobot. 2019; 28(6):691–702.
Jastrombek JM, Faguerazzi MM, De Cássio Pierezan H, Rufato L, Sato AJ, Da Silva Ricce W, et al. Hop: an emerging crop in subtropical areas in Brazil. 2022;8(5):393.
Zanoli P, Zavatti M. Pharmacognostic and pharmacological profile of Humulus lupulus L. J Ethnopharmacol. 2008;116(3):383–96. doi: 10.1016/j.jep.2008.01.011 PubMed DOI
Korpelainen H, Pietiläinen M. Hop (Humulus lupulus L.): traditional and present use, and future potential. Econ Bot. 2021; 75(3-4):302–22.
Almaguer C, Schönberger C, Gastl M, Arendt EK, Becker T. Humulus lupulus - a story that begs to be told. J Inst Brew. 2014, 289–314.
Bocquet L, Sahpaz S, Hilbert JL, Rambaud C, Rivière C. Humulus lupulus L., a very popular beer ingredient and medicinal plant: overview of its phytochemistry, its bioactivity, and its biotechnology. Phytochem Rev. 2018;17(5):1047–90.
Oliveira MM, Salomk M, Pais S. Glandular trichomes of Humulus lupulus var. Brewer’s Gold: ontogeny and histochemical characterization of the secretion. Nord J Bot. 1988;8(4):349–59.
De Cooman L, Everaert E, De Keukeleire D. Quantitative analysis of hop acids, essential oils and flavonoids as a clue to the identification of hop varieties. Phytochem Anal 1998;9(3):145–50.
Keukeleire JD, Janssens I, Heyerick A, Ghekiere G, Cambie J, Roldan-Ruiz I, et al.. Relevance of organic farming and effect of climatological conditions on the formation of alpha-acids, beta-acids, desmethylxanthohumol, and xanthohumol in hop (Humulus lupulus L.). J Agric Food Chem. 2007;55(1):61–6. doi: 10.1021/jf061647r PubMed DOI
MacKinnon D, Pavlovič V, Čeh B, Naglič B, Pavlovič M. The impact of weather conditions on alpha-acid content in hop (Humulus lupulus L.) cv. Aurora. Plant Soil Environ. 2020;66(10):519–25. doi: 10.17221/344/2020-pse DOI
Pistelli L, Ferri B, Cioni PL, Koziara M, Agacka M, Skomra U. Aroma profile and bitter acid characterization of hop cones (Humulus lupulus L.) of five healthy and infected Polish cultivars. Ind Crops Prod. 2018;124:653–62. doi: 10.1016/j.indcrop.2018.08.009 DOI
Kunej U, Mikulič-Petkovšek M, Radišek S, Štajner N. Changes in the phenolic compounds of hop (Humulus lupulus L.) induced by infection with verticillium nonalfalfae, the causal agent of hop verticillium wilt. Plants (Basel). 2020;9(7):841. doi: 10.3390/plants9070841 PubMed DOI PMC
Henning JA, Gent DH, Twomey MC, Townsend MS, Pitra NJ, Matthews PD. Precision QTL mapping of downy mildew resistance in hop (Humulus lupulus L.). Euphytica. 2015;202(3):487–98. doi: 10.1007/s10681-015-1356-9 DOI
Henning JA, Gent DH, Townsend MS, Woods JL, Hill ST, Hendrix D. QTL analysis of resistance to powdery mildew in hop (Humulus lupulus L.). Euphytica. 2017;213(4). doi: 10.1007/s10681-017-1849-9 DOI
Mozny M, Trnka M, Vlach V, Zalud Z, Cejka T, Hajkova L, et al.. Climate-induced decline in the quality and quantity of European hops calls for immediate adaptation measures. Nat Commun. 2023;14(1):6028. doi: 10.1038/s41467-023-41474-5 PubMed DOI PMC
Patzak J, Nesvadba V, Henychová A, Krofta K. Assessment of the genetic diversity of wild hops (Humulus lupulus L.) in Europe using chemical and molecular analyses Biochem Syst Ecol. 2010;38(2):136–45.
Patzak J, Nesvadba V, Krofta K, Henychova A, Marzoev AI, Richards K. Evaluation of genetic variability of wild hops (Humulus lupulus L.) in Canada and the Caucasus region by chemical and molecular methods. Genome. 2010;53(7):545–57. doi: 10.1139/g10-024 PubMed DOI
Riccioni C, Belfiori B, Sileoni V, Marconi O, Perretti G, Bellucci M, et al.. High genetic and chemical diversity of wild hop populations from Central Italy with signals of a genetic structure influenced by both sexual and asexual reproduction. Plant Sci. 2021;304:110794. doi: 10.1016/j.plantsci.2020.110794 PubMed DOI
Grdiša M, Šatović Z, Liber Z, Jakše J, Varga F, Erhatić R, et al.. High genetic diversity and low population differentiation in wild hop (Humulus lupulus L.) from croatia. Appl Sci. 2021;11(14):6484. doi: 10.3390/app11146484 DOI
Calvi A, Aci MM, Lupini A, Preiti G. Morphological and genetic analysis of wild hop (Humulus lupulus L.) germplasm from Calabria Region in South Italy. Agronomy. 2023;13(1):252. doi: 10.3390/agronomy13010252 DOI
Paguet A-S, Siah A, Lefèvre G, Vandenberghe M, Lutun D, Degardin N, et al.. Phytochemical characterisation and aromatic potential for brewing of wild hops (Humulus lupulus L.) from Northern France: towards a lead for local hop varieties. Food Chem. 2024;433:137302. doi: 10.1016/j.foodchem.2023.137302 PubMed DOI
Mafakheri M, Kordrostami M, Rahimi M, Matthews PD. Evaluating genetic diversity and structure of a wild hop (Humulus lupulus L.) germplasm using morphological and molecular characteristics. Euphytica. 2020;216(4). doi: 10.1007/s10681-020-02592-z DOI
Bitz L, Pihlava JM, Hartikainen M, Nukari A, Tenhola-Roininen T. Genetic and chemical evaluation of hops from Finland. Acta Hortic. 2021;1328:23–30.
Machado JC Jr, Faria MA, Barata AM, da Silva IG, Cerenak A, Ferreira IMPLVO. Portuguese wild hop diversity assessment by fast SNP genotyping using high-resolution melting. J Appl Genet. 2022;63(1):103–14. doi: 10.1007/s13353-021-00668-7 PubMed DOI
Tegopoulos K, Fountas DV, Andronidou E-M, Bagos PG, Kolovos P, Skavdis G, et al.. Assessing genetic diversity and population differentiation in Wild Hop (Humulus lupulus) from the Region of Central Greece via SNP-NGS genotyping. Diversity. 2023;15(12):1171. doi: 10.3390/d15121171 DOI
Somalraju A, Soto-Cerda B, Ghose K, McCallum J, Knox R, Fofana B. Structure and genetic diversity of Canadian Maritimes wild hops. Genome. 2024;67(1):24–30. doi: 10.1139/gen-2023-0045 PubMed DOI
Salihu B, Samarakoon T, Pulaj B, Quave CL, Mustafa B, Hajdari A. Analysis of chemical and genetic variability in wild hop (Humulus lupulus L.) populations of Kosovo. Plant Biol J. 2024;plb.13699. PubMed
Perpète P, Mélotte L, Dupire S, Collin S. Varietal discrimination of hop pellets by essential oil analysis I. Comparison of fresh samples. J Am Soc Brew Chem. 1998;56(3):104–8.
Šuštar-Vozlič J, Javornik B. Genetic relationships in cultivars of hop, Humulus lupulus L., determined by RAPD analysis. Plant Breeding. 1999;118(2):175–81. doi: 10.1046/j.1439-0523.1999.118002175.x DOI
Townsend MS, Henning JA, Moore DL. AFLP analysis of DNA from dried hop cones. Crop Sci. 2000;40(5):1383–6. doi: 10.2135/cropsci2000.4051383x DOI
Danilova T, Danilov S, Karlov G. Assessment of genetic polymorphism in hop (Humulus lupulus L.) cultivars by ISSR-PCR analysis. Russ J Genet 2003;39(11):1252–7. PubMed
Jakše J, Javornik B. High throughput isolation of microsatellites in hop (Humulus lupulus L.). Plant Mol Biol Rep. 2001;19(3):217–26. doi: 10.1007/bf02772893 DOI
Hadonou AM, Walden R, Darby P. Isolation and characterization of polymorphic microsatellites for assessment of genetic variation of hops (Humulus lupulus L.). Mol Ecol Notes. 2004;4(2):280–2. doi: 10.1111/j.1471-8286.2004.00641.x DOI
Murakami A, Darby P, Javornik B, Pais MSS, Seigner E, Lutz A, et al.. Microsatellite DNA analysis of wild hops, Humulus lupulus L. Genet Resour Crop Evol. 2006;53(8):1553–62.
Bassil NV, Gilmore B, Oliphant JM, Hummer KE, Henning JA. Genic SSRs for European and North American hop (Humulus lupulus L.). Genet Resour Crop Evol. 2008;55(7):959–69. doi: 10.1007/s10722-007-9303-9 DOI
Koelling J, Coles MC, Matthews PD, Schwekendiek A. Development of new microsatellite markers (SSRs) for Humulus lupulus. Mol Breeding. 2011;30(1):479–84. doi: 10.1007/s11032-011-9637-z DOI
Matthews PD, Coles MC, Pitra NJ. Next generation sequencing for a plant of great tradition: application of NGS to SNP detection and validation in hops (Humulus lupulus L.). Brew Sci. 2006;185–91.
Henning JA, Coggins J, Peterson M. Simple SNP-based minimal marker genotyping for Humulus lupulus L. identification and variety validation. BMC Res Notes. 2015;8:542. doi: 10.1186/s13104-015-1492-2 PubMed DOI PMC
Zhang D, Easterling KA, Pitra NJ, Coles MC, Buckler ES, Bass HW, et al.. Non-Mendelian single-nucleotide polymorphism inheritance and atypical meiotic configurations are prevalent in hop. Plant Genome. 2017;10(3). doi: 10.3835/plantgenome2017.04.0032 PubMed DOI
Van Holle A, Muylle H, Ruttink T, Van Landschoot A, Haesaert G, Naudts D, et al.. Single nucleotide polymorphisms and biochemical markers as complementary tools to characterize hops (Humulus lupulus L.) in brewing practice. J Agric Food Chem. 2019;67(13):3761–71. doi: 10.1021/acs.jafc.9b00816 PubMed DOI
Patzak J, Matoušek J. Development and evaluation of expressed sequence tag-derived microsatellite markers for hop genotyping. Biol Plant. 2011;55(4):761–765.
Patzak J, Henychová A. Evaluation of genetic variability within actual hop (Humulus lupulus L.) cultivars by an enlarged set of molecular markers. Czech J Genet Plant Breed. 2018;54(2):86–91. doi: 10.17221/175/2016-cjgpb DOI
Driskill M, Pardee K, Hummer KE, Zurn JD, Amundsen K, Wiles A, et al.. Two fingerprinting sets for Humulus lupulus based on KASP and microsatellite markers. PLoS One. 2022;17(4):e0257746. doi: 10.1371/journal.pone.0257746 PubMed DOI PMC
Rodolfi M, Marieschi M, Chiancone B, Ganino T. Assessment of the genetic and phytochemical variability of Italian wild hop: a route to biodiversity preservation. Appl Sci. 2022;12(11):5751. doi: 10.3390/app12115751 DOI
Nesvadba V, Charvátová J, Henychová A, Patzak J. Evaluation of original historical clones of hops (Humulus lupulus L.). KP. 2020;66(6):382–91.
Olšovská J, Straková L, Nesvadba V, Vrzal T, Malečková M, Patzak J, et al.. SAAZ—fine aroma hop pedigree: a review of current knowledge. Beverages. 2024;10(3):90. doi: 10.3390/beverages10030090 DOI
Velot É, Ducrocq F, Girardeau L, Hehn A, Piutti S, Kahn C, et al.. Hop extract anti-inflammatory effect on human chondrocytes is potentiated when encapsulated in rapeseed lecithin nanoliposomes. Int J Mol Sci. 2022;23(20):12423. doi: 10.3390/ijms232012423 PubMed DOI PMC
R Core Team. R: A language and environment for statistical computing. 2024. https://www.R-project.org/
Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Soft. 2008;25(1).
Kassambara A, Mundt F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2020.
Taiyun W, Vilia S. R package « corrplot »: Visualization of a Correlation Matrix (Version 0.92). 2021. https://github.com/taiyun/corrplot
Coombes KR, Brock G, Abrams ZB, Abruzzo LV. Polychrome: creating and assessing qualitative palettes with many colors. J Stat Soft. 2019;90.
Galili T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. 2015;31(22):3718–20. doi: 10.1093/bioinformatics/btv428 PubMed DOI PMC
Warnes G, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, et al. gplots: Various R Programming Tools for Plotting Data. R package version 3.1.3.1. 2024. https://CRAN.R-project.org/package-gplots
Neuwirth E. RColorBrewer: ColorBrewer Palettes. R package version 1.1-3, 2022. https://CRAN.R-project.org/package-RColorBrewer
Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol. 2007;16(5):1099–106. doi: 10.1111/j.1365-294X.2007.03089.x PubMed DOI
Perrier X, Jacquemoud-Collet J. DARwin Software. 2006. http://darwin.cirad.fr/darwin
Letunic I, Bork P. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024;52(W1):W78–82. doi: 10.1093/nar/gkae268 PubMed DOI PMC
De’ath G. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology. 2002;83(4):1105. doi: 10.2307/3071917 DOI
Paguet A-S, Siah A, Lefèvre G, Moureu S, Cadalen T, Samaillie J, et al.. Multivariate analysis of chemical and genetic diversity of wild Humulus lupulus L. (hop) collected in situ in northern France. Phytochemistry. 2023;205:113508. doi: 10.1016/j.phytochem.2022.113508 PubMed DOI
Serrote CML, Reiniger LRS, Silva KB, Rabaiolli SMDS, Stefanel CM. Determining the polymorphism information content of a molecular marker. Gene. 2020;726:144175. doi: 10.1016/j.gene.2019.144175 PubMed DOI
Murakami A, Darby P, Javornik B, Pais MSS, Seigner E, Lutz A, et al.. Molecular phylogeny of wild Hops, Humulus lupulus L. Heredity. 2006;97(1):66–74. PubMed
Rodolfi M, Silvanini A, Chiancone B, Marieschi M, Fabbri A, Bruni R, et al.. Identification and genetic structure of wild Italian Humulus lupulus L. and comparison with European and American hop cultivars using nuclear microsatellite markers. Genet Resour Crop Evol. 2018;65(5):1405–22. doi: 10.1007/s10722-018-0622-9 DOI
Killeen DP, Watkins OC, Sansom CE, Andersen DH, Gordon KC, Perry NB. Fast sampling, analyses and chemometrics for plant breeding: bitter acids, xanthohumol and terpenes in lupulin glands of hops (Humulus lupulus). Phytochem Anal. 2017;28(1):50–7. doi: 10.1002/pca.2642 PubMed DOI
Dušek M, Olšovská J, Krofta K, Jurková M, Mikyška A. Qualitative determination of β-acids and their transformation products in beer and hop using HR/AM-LC-MS/MS. J Agric Food Chem. 2014;62(31):7690–7. doi: 10.1021/jf501852r PubMed DOI
Stevens JF, Page JE. Xanthohumol and related prenylflavonoids from hops and beer: to your good health!. Phytochemistry. 2004;65(10):1317–30. doi: 10.1016/j.phytochem.2004.04.025 PubMed DOI
Sarraf C, Desjardins Y, Leonhart S, Gosselin A, Gosselin G. Agronomic and nutraceutical potential of hops (Humulus lupulus L.) grown in Québec, Canada. Acta Hortic. 2013;1010:155–61.
Gardea-Torresdey J, Hejazi M, Tiemann K, Parsons JG, Duarte-Gardea M, Henning J. Use of hop (Humulus lupulus) agricultural by-products for the reduction of aqueous lead(II) environmental health hazards. J Hazard Mater. 2002;91(1–3):95–112. doi: 10.1016/s0304-3894(01)00363-6 PubMed DOI
Matoušek J, Kocábek T, Patzak J, Bříza J, Siglová K, Mishra AK, et al.. The “putative” role of transcription factors from HlWRKY family in the regulation of the final steps of prenylflavonid and bitter acids biosynthesis in hop (Humulus lupulus L.). Plant Mol Biol. 2016;92(3):263–77. doi: 10.1007/s11103-016-0510-7 PubMed DOI
Mishra AK, Duraisamy GS, Khare M, Kocábek T, Jakse J, Bříza J, et al.. Genome-wide transcriptome profiling of transgenic hop (Humulus lupulus L.) constitutively overexpressing HlWRKY1 and HlWDR1 transcription factors. BMC Genomics. 2018;19(1):739. doi: 10.1186/s12864-018-5125-8 PubMed DOI PMC
Okada Y, Sano Y, Kaneko T, Abe I, Noguchi H, Ito K. Enzymatic reactions by five chalcone synthase homologs from hop (Humulus lupulus L.). Biosci Biotechnol Biochem. 2004;68(5):1142–5. doi: 10.1271/bbb.68.1142 PubMed DOI
Matousek J, Vrba L, Skopek J, Orctova L, Pesina K, Heyerick A, et al.. Sequence analysis of a “true” chalcone synthase (chs_H1) oligofamily from hop (Humulus lupulus L.) and PAP1 activation of chs_H1 in heterologous systems. J Agric Food Chem. 2006;54(20):7606–15. doi: 10.1021/jf061785g PubMed DOI
Patzak J, Krofta K, Henychová A, Nesvadba V. Number and size of lupulin glands, glandular trichomes of hop (Humulus lupulus L.), play a key role in contents of bitter acids and polyphenols in hop cone. Int J of Food Sci Tech. 2015;50(8):1864–72. doi: 10.1111/ijfs.12825 DOI
Morcol TB, Matthews PD, Kennelly EJ. Differences in leaf chemistry and glandular trichome density between wild southwestern American hop (Humulus neomexicanus) and commercial hop cultivars. J Agric Food Chem. 2021;69(27):7798–814. doi: 10.1021/acs.jafc.1c02710 PubMed DOI