Climate-induced decline in the quality and quantity of European hops calls for immediate adaptation measures
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37816707
PubMed Central
PMC10564787
DOI
10.1038/s41467-023-41474-5
PII: 10.1038/s41467-023-41474-5
Knihovny.cz E-zdroje
- MeSH
- Humulus * MeSH
- klimatické změny MeSH
- odoranty MeSH
- teplota MeSH
- zemědělství metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A recent rise in the global brewery sector has increased the demand for high-quality, late summer hops. The effects of ongoing and predicted climate change on the yield and aroma of hops, however, remain largely unknown. Here, we combine meteorological measurements and model projections to assess the climate sensitivity of the yield, alpha content and cone development of European hops between 1970 and 2050 CE, when temperature increases by 1.4 °C and precipitation decreases by 24 mm. Accounting for almost 90% of all hop-growing regions, our results from Germany, the Czech Republic and Slovenia show that hop ripening started approximately 20 days earlier, production declined by almost 0.2 t/ha/year, and the alpha content decreased by circa 0.6% when comparing data before and after 1994 CE. A predicted decline in hop yield and alpha content of 4-18% and 20-31% by 2050 CE, respectively, calls for immediate adaptation measures to stabilize an ever-growing global sector.
Czech Hydrometeorological Institute 14306 Prague Czechia
Czech University of Life Sciences Prague 16500 Prague Czechia
Department of Geography Faculty of Science Masaryk University 61300 Brno Czechia
Department of Geography University of Cambridge Cambridge CB23EN UK
Global Change Research Institute of the Czech Academy of Sciences 60300 Brno Czechia
Rothamsted Research Station Harpenden AL52JQ UK
Swiss Federal Research Institute 8903 Birmensdorf Switzerland
Zobrazit více v PubMed
Nelson, M.
McGovern, P. E.
Lerro M, Marotta G, Nazzaro C. Measuring consumers’ preferences for craft beer attributes through best-worst scaling. Agric. Food Econ. 2020;8:1. doi: 10.1186/s40100-019-0138-4. DOI
Roberts, T. R. Hops. In
Goncalves J, Figueira J, Rodrigues F, Câmara JS. Headspace solid‐phase microextraction combined with mass spectrometry as a powerful analytical tool for profiling the terpenoid metabolomic pattern of hop‐essential oil derived from Saaz variety. J. Sep. Sci. 2012;35:2282–2296. doi: 10.1002/jssc.201200244. PubMed DOI
Astray G, Gullón P, Gullón B, Munekata PES, Lorenzo JM. Humulus lupulus L. as a natural source of functional biomolecules. Appl. Sci. 2020;10:5074. doi: 10.3390/app10155074. DOI
Nance MR, Setzer WN. Volatile components of aroma hops (Humulus lupulus L.) commonly used in beer brewing. J. Brew. Distill. 2011;2:16–22.
Forteschi M, et al. Quality assessment of cascade hop (Humulus lupulus L.) grown in Sardinia. Eur. Food Res. Technol. 2019;245:863–871. doi: 10.1007/s00217-018-3215-0. DOI
Lafontaine SR, Shellhammer TH. How hoppy beer production has redefined hop quality and a discussion of agricultural and processing strategies to promote it. Tech. Q. 2019;56:1–12.
Mozny M, et al. The impact of climate change on the yield and quality of Saaz hops in the Czech Republic. Agric. Meteorol. 2009;149:913–919. doi: 10.1016/j.agrformet.2009.02.006. DOI
Kučera, J. & Krofta, K. Mathematical model for prediction of alpha acid contents from meteorological data for’Saaz’aroma variety.
Hieronymus, S. For the Love of Hops: The Practical Guide to Aroma, Bitterness, and the Culture of Hops. (Brewers Publications, a division of the Brewers Association, 2012).
Murray DW, O’Neill MA. Craft beer: penetrating a niche market. Br. Food J. 2012;114:899–909. doi: 10.1108/00070701211241518. DOI
Denby CM, et al. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat. Commun. 2018;9:965–965. doi: 10.1038/s41467-018-03293-x. PubMed DOI PMC
Legun K, Comi M, Vicol M. New aesthetic regimes: the shifting global political ecology of aroma hops. Geoforum. 2022;128:148–157. doi: 10.1016/j.geoforum.2021.12.004. DOI
Martin A, Markhvida M, Hallegatte S, Walsh B. Socio-economic impacts of COVID-19 on household consumption and poverty. Econ. Disasters Clim. Change. 2020;4:453–479. doi: 10.1007/s41885-020-00070-3. PubMed DOI PMC
Srečec S, Ceh B, Ciler TS, Rus AF. Empiric mathematical model for predicting the content of alpha-acids in hop (Humulus lupulus L.) cv. Aurora. SpringerPlus. 2013;2:59. doi: 10.1186/2193-1801-2-59. PubMed DOI PMC
Srečec S, Kvaternjak I, Kaučić D, Špoljar A, Erhatić R. Influence of climatic conditions on accumulation of α-acids in hop clones. Agric. Conspec. Sci. 2008;73:161–166.
Wang G, et al. Terpene biosynthesis in glandular trichomes of hop. Plant Physiol. 2008;148:1254–1266. doi: 10.1104/pp.108.125187. PubMed DOI PMC
Barry S, Muggah EM, McSweeney MB, Walker S. A preliminary investigation into differences in hops’ aroma attributes. Int. J. Food Sci. Technol. 2018;53:804–811. doi: 10.1111/ijfs.13656. DOI
De Keukeleire J, et al. Relevance of organic farming and effect of climatological conditions on the formation of α-acids, β-acids, desmethylxanthohumol, and xanthohumol in hop (Humulus lupulus L.) J. Agric. Food Chem. 2007;55:61–66. doi: 10.1021/jf061647r. PubMed DOI
Matsui H, Inui T, Oka K, Fukui N. The influence of pruning and harvest timing on hop aroma, cone appearance, and yield. Food Chem. 2016;202:15–22. doi: 10.1016/j.foodchem.2016.01.058. PubMed DOI
Pavlovic V, et al. Environment and weather influence on quality and market value of hops. Plant Soil Environ. 2012;58:155–160. doi: 10.17221/499/2011-PSE. DOI
Lafontaine S, et al. Impact of harvest maturity on the aroma characteristics and chemistry of Cascade hops used for dry-hopping. Food Chem. 2019;278:228–239. doi: 10.1016/j.foodchem.2018.10.148. PubMed DOI
Van Simaeys KR, et al. Potential determinants of regional variation of three american aroma hops grown in the Willamette Valley, Oregon. J. Am. Soc. Brew. Chem. 2022;80:379–388.
Stark, C. & Gillespie, J. Suitability of New Zealand Cropping Regions to Support Hop Production. Lincoln University (2021). https://hapi.co.nz/wp-content/uploads/2021/08/Suitability-of-New-Zealand-cropping-regions-to-support-hop-production.pdf.
Pokorný J, Pulkrábek J, Štranc P, Bečka D. Photosynthetic activity of selected genotypes of hops (Humulus lupulus L.) in critical periods for yield formation. Plant Soil Environ. 2011;57:264–270. doi: 10.17221/30/2011-PSE. DOI
Potopová V, Lhotka O, Možný M, Musiolková M. Vulnerability of hop‐yields due to compound drought and heat events over European key‐hop regions. Int. J. Climatol. 2021;41:E2136–E2158. doi: 10.1002/joc.6836. DOI
Nesvadba V, Hervert J, Krofta K, Charvátová J. Evaluation of Czech hop varieties in beer. Kvasny Prumysl. 2021;67:529–536. doi: 10.18832/kp2021.67.529. DOI
Hunter JJ, Volschenk CG, Zorer R. Vineyard row orientation of Vitis vinifera L. cv. Shiraz/101-14 Mgt: climatic profiles and vine physiological status. Agric. Meteorol. 2016;228–229:104–119. doi: 10.1016/j.agrformet.2016.06.013. DOI
Neethling E, Petitjean T, Quénol H, Barbeau G. Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change. Mitig. Adapt. Strateg. Glob. Change. 2017;22:777–803. doi: 10.1007/s11027-015-9698-0. DOI
Schindele S, et al. Implementation of agrophotovoltaics: techno-economic analysis of the price-performance ratio and its policy implications. Appl. Energy. 2020;265:114737. doi: 10.1016/j.apenergy.2020.114737. DOI
Trommsdorff M, et al. Combining food and energy production: design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renew. Sustain. Energy Rev. 2021;140:110694. doi: 10.1016/j.rser.2020.110694. DOI
Fandiño M, et al. Assessing and modelling water use and the partition of evapotranspiration of irrigated hop (Humulus Lupulus), and relations of transpiration with hops yield and alpha-acids. Ind. Crops Prod. 2015;77:204–217. doi: 10.1016/j.indcrop.2015.08.042. DOI
Kolenc Z, et al. Hop (Humulus lupulus L.) response mechanisms in drought stress: proteomic analysis with physiology. Plant Physiol. Biochem. 2016;105:67–78. doi: 10.1016/j.plaphy.2016.03.026. PubMed DOI
Nakawuka P, Peters TR, Kenny S, Walsh D. Effect of deficit irrigation on yield quantity and quality, water productivity and economic returns of four cultivars of hops in the Yakima Valley, Washington State. Ind. Crops Prod. 2017;98:82–92. doi: 10.1016/j.indcrop.2017.01.037. DOI
Potop V, Možný M, Soukup J. Drought evolution at various time scales in the lowland regions and their impact on vegetable crops in the Czech Republic. Agric. Meteorol. 2012;156:121–133. doi: 10.1016/j.agrformet.2012.01.002. DOI
Donner P, et al. Influence of weather conditions, irrigation and plant age on yield and alpha-acids content of Czech hop (Humulus lupulus L.) cultivars. Plant Soil Environ. 2020;66:41–46. doi: 10.17221/627/2019-PSE. DOI
Brant V, et al. Distribution of root system of hop plants in hop gardens with regular rows cultivation. Plant Soil Environ. 2020;66:317–326. doi: 10.17221/672/2019-PSE. DOI
Gent DH, et al. Delayed early season irrigation: impacts on hop yield and quality. J. Am. Soc. Brew. Chem. 2022;80:62–65.
FORHOPS. Asahi Europe & International. https://www.prochmel.cz/en/.
Bauerle WL. Intracanopy CO2 and light interactions on Humulus lupulus L. net canopy carbon gain under current and future atmospheric CO2 concentrations. Agric. Meteorol. 2021;310:108621. doi: 10.1016/j.agrformet.2021.108621. DOI
Bauerle WL. Humulus lupulus L. Strobilus photosynthetic capacity and carbon assimilation. Plants. 2023;12:1816. doi: 10.3390/plants12091816. PubMed DOI PMC
Bauerle WL. Disentangling photoperiod from hop vernalization and dormancy for global production and speed breeding. Sci. Rep. 2019;9:16003. doi: 10.1038/s41598-019-52548-0. PubMed DOI PMC
Pörtner H.-O., et al. (eds.) IPCC, 2022: Climate change 2022: impacts, adaptation, and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056, 10.1017/9781009325844.
Lipper L, et al. Climate-smart agriculture for food security. Nat. Clim. Change. 2014;4:1068–1072. doi: 10.1038/nclimate2437. DOI
Comi M. Other agricultures of scale: social and environmental insights from Yakima Valley hop growers. J. Rural Stud. 2020;80:543–552. doi: 10.1016/j.jrurstud.2020.10.041. DOI
BarthHaas. Hops are our passion. https://www.barthhaas.com/en/.
Pfeifroth, U., et al. Surface Radiation Data Set—Heliosat (SARAH)—Edition 2.1.
Semenov MA, Donatelli M, Stratonovitch P, Chatzidaki E, Baruth B. ELPIS: a dataset of local-scale daily climate scenarios for Europe. Clim. Res. 2010;44:3–15. doi: 10.3354/cr00865. DOI
Mozny, M. et al. Climate-induced declines in the quality and quantity of European hops call for immediate adaptation measures (Data sources). Available at 10.6084/m9.figshare.23180342, Accesed 25 May 2023. PubMed PMC
figshare
10.6084/m9.figshare.23180342