The timing of maternal protein degradation during mammalian preimplantation development is species-specific
Status In-Process Jazyk angličtina Země Velká Británie, Anglie Médium electronic-print
Typ dokumentu časopisecké články
PubMed
40812375
PubMed Central
PMC12358800
DOI
10.1530/rep-25-0007
PII: e250007
Knihovny.cz E-zdroje
- Klíčová slova
- cattle, embryonic genome activation, maternal protein, preimplantation development, protein degradation,
- Publikační typ
- časopisecké články MeSH
IN BRIEF: Proper degradation of maternally inherited proteins is a prerequisite for successful embryonic development. This study shows the species-specificity of this process. ABSTRACT: The mechanism of targeting maternal proteins for degradation during preimplantation development is an unexplored process. Only a few proteins that need to be degraded for the proper course of the maternal-to-zygotic transition have been described in mice, and a few more in non-mammalian species. However, it is not well known whether the need for degradation is conserved across species or if it is driven in a species-specific way. Therefore, we selected six proteins that need to be degraded for the proper course of the maternal-to-zygotic transition in mice or Xenopus, and thoroughly characterized their expression at both the mRNA and protein level during bovine embryogenesis. Further, we analysed the protein expression in mice and pigs and compared it to bovine embryos. Thus, we provide a unique interspecies comparison of three mammalian representatives. We found that the degree of conservation between species is low and does not depend on the evolutionary relatedness of the species. This paper suggests that protein degradation during preimplantation development is controlled by a combination of species-specific factors from the embryo and the sequences of protein homologues.
Constantine The Philosopher University in Nitra Nitra Slovakia
Institute of Animal Physiology and Genetics CAS Liběchov Czech Republic
Zobrazit více v PubMed
Albor A, El-Hizawi S, Horn EJ, et al. 2006. The interaction of Piasy with Trim32, an E3-ubiquitin ligase mutated in limb-girdle muscular dystrophy type 2H, promotes Piasy degradation and regulates UVB-induced keratinocyte apoptosis through NFkappaB. J Biol Chem 281 25850–25866. ( 10.1074/jbc.m601655200) PubMed DOI
Al-Matouq J, Holmes T, Hammiller B, et al. 2017. Accumulation of cytoplasmic CDC25A in cutaneous squamous cell carcinoma leads to a dependency on CDC25A for cancer cell survival and tumor growth. Cancer Lett 410 41–49. ( 10.1016/j.canlet.2017.09.023) PubMed DOI
Aoki F, Worrad DM & Schultz RM. 1997. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181 296–307. ( 10.1006/dbio.1996.8466) PubMed DOI
Arrell VL, Day BN & Prather RS. 1991. The transition from maternal to zygotic control of development occurs during the 4-cell stage in the domestic pig, sus scrofa: quantitative and qualitative aspects of protein synthesis1. Biol Reprod 44 62–68. ( 10.1095/biolreprod44.1.62) PubMed DOI
Azuma Y, Arnaoutov A, Anan T, et al. 2005. PIASy mediates SUMO-2 conjugation of topoisomerase-II on mitotic chromosomes. EMBO J 24 2172–2182. ( 10.1038/sj.emboj.7600700) PubMed DOI PMC
Beltrao P, Bork P, Krogan NJ, et al. 2013. Evolution and functional cross-talk of protein post-translational modifications. Mol Syst Biol 9 714. ( 10.1002/msb.201304521) PubMed DOI PMC
Benesova V, Kinterova V, Kanka J, et al. 2016. Characterization of SCF-complex during bovine preimplantation development. PLoS One 11 e0147096. ( 10.1371/journal.pone.0147096) PubMed DOI PMC
Benesova V, Kinterova V, Kanka J, et al. 2017. Potential involvement of SCF-complex in zygotic genome activation during early bovine embryo development. Methods Mol Biol 1605 245–257. ( 10.1007/978-1-4939-6988-3_17) PubMed DOI
Cao WX, Kabelitz S, Gupta M, et al. 2020. Precise temporal regulation of post-transcriptional repressors is required for an orderly drosophila maternal-to-zygotic transition. Cell Rep 31 107783. ( 10.1016/j.celrep.2020.107783) PubMed DOI PMC
Chakraborty A, Prasanth KV & Prasanth SG. 2014. Dynamic phosphorylation of HP1α regulates mitotic progression in human cells. Nat Commun 5 3445. ( 10.1038/ncomms4445) PubMed DOI PMC
Collart C, Allen GE, Bradshaw CR, et al. 2013. Titration of four replication factors is essential for the Xenopus laevis midblastula transition. Science 341 893–896. ( 10.1126/science.1241530) PubMed DOI PMC
Collart C, Smith JC & Zegerman P. 2017. Chk1 inhibition of the replication factor Drf1 guarantees cell-cycle elongation at the Xenopus laevis mid-blastula transition. Dev Cell 42 82–96.e3. ( 10.1016/j.devcel.2017.06.010) PubMed DOI PMC
da Silva Z, Glanzner WG, Currin L, et al. 2022. DNA damage induction alters the expression of ubiquitin and SUMO regulators in preimplantation stage pig embryos. Int J Mol Sci 23 9610. ( 10.3390/ijms23179610) PubMed DOI PMC
da Silva Z, Glanzner WG, Gutierrez K, et al. 2023. DCAF13 and RNF114 participate in the regulation of early porcine embryo development. Reproduction 166 401–410. ( 10.1530/rep-23-0230) PubMed DOI
Dalle Nogare DE, Pauerstein PT & Lane ME. 2009. G2 acquisition by transcription-independent mechanism at the zebrafish midblastula transition. Dev Biol 326 131–142. ( 10.1016/j.ydbio.2008.11.002) PubMed DOI
De Koning L, Savignoni A, Boumendil C, et al. 2009. Heterochromatin protein 1α: a hallmark of cell proliferation relevant to clinical oncology. EMBO Mol Med 1 178–191. ( 10.1002/emmm.200900022) PubMed DOI PMC
DeRenzo C & Seydoux G. 2004. A clean start: degradation of maternal proteins at the oocyte-to-embryo transition. Trends Cell Biol 14 420–426. ( 10.1016/j.tcb.2004.07.005) PubMed DOI
Díaz-Martínez LA, Giménez-Abián JF, Azuma Y, et al. 2006. PIASgamma is required for faithful chromosome segregation in human cells. PLoS One 1 e53. ( 10.1371/journal.pone.0000053) PubMed DOI PMC
Fang S, Wang J, Liu G, et al. 2024. DPPA2/4 promote the pluripotency and proliferation of bovine extended pluripotent stem cells by upregulating the PI3K/AKT/GSK3β/β-Catenin signaling pathway. Cells 13 382. ( 10.3390/cells13050382) PubMed DOI PMC
Farrell JA, Shermoen AW, Yuan K, et al. 2012. Embryonic onset of late replication requires Cdc25 down-regulation. Genes Development 26 714–725. ( 10.1101/gad.186429.111) PubMed DOI PMC
Forma E, Krzeslak A, Bernaciak M, et al. 2012. Expression of TopBP1 in hereditary breast cancer. Mol Biol Rep 39 7795–7804. ( 10.1007/s11033-012-1622-z) PubMed DOI PMC
Frei RE, Schultz GA & Church RB. 1989. Qualitative and quantitative changes in protein synthesis occur at the 8-16-cell stage of embryogenesis in the cow. J Reprod Fertil 86 637–641. ( 10.1530/jrf.0.0860637) PubMed DOI
Gad A, Nemcova L, Murin M, et al. 2020. Global transcriptome analysis of porcine oocytes in correlation with follicle size. Mol Reprod Dev 87 102–114. ( 10.1002/mrd.23294) PubMed DOI
Going JJ, Nixon C, Dornan ES, et al. 2007. Aberrant expression of TopBP1 in breast cancer. Histopathology 50 418–424. ( 10.1111/j.1365-2559.2007.02622.x) PubMed DOI
Higuchi C, Yamamoto M, Shin SW, et al. 2019. Perturbation of maternal PIASy abundance disrupts zygotic genome activation and embryonic development via SUMOylation pathway. Biol Open 8 bio048652. ( 10.1242/bio.048652) PubMed DOI PMC
Hiragami-Hamada K, Shinmyozu K, Hamada D, et al. 2011. N-Terminal phosphorylation of HP1α promotes its chromatin binding. Mol Cell Biol 31 1186–1200. ( 10.1128/mcb.01012-10) PubMed DOI PMC
Huang C, Wu D, Jiao X, et al. 2017. Maternal SENP7 programs meiosis architecture and embryo survival in mouse. Biochim Biophys Acta Mol Cell Res 1864 1195–1206. ( 10.1016/j.bbamcr.2017.03.005) PubMed DOI
Kanemori Y, Uto K & Sagata N. 2005. β-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. Proc Natl Acad Sci U S A 102 6279–6284. ( 10.1073/pnas.0501873102) PubMed DOI PMC
Kang R, Zhou Y, Tan S, et al. 2015. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther 6 144. ( 10.1186/s13287-015-0137-7) PubMed DOI PMC
Kanka J, Nemcova L, Toralova T, et al. 2012. Association of the transcription profile of bovine oocytes and embryos with developmental potential. Anim Reprod Sci 134 29–35. ( 10.1016/j.anireprosci.2012.08.008) PubMed DOI
Katz-Jaffe MG, Schoolcraft WB & Gardner DK. 2006. Analysis of protein expression (secretome) by human and mouse preimplantation embryos. Fertil Steril 86 678–685. ( 10.1016/j.fertnstert.2006.05.022) PubMed DOI
Kepkova KV, Vodicka P, Toralova T, et al. 2011. Transcriptomic analysis of in vivo and in vitro produced bovine embryos revealed a developmental change in cullin 1 expression during maternal-to-embryonic transition. Theriogenology 75 1582–1595. ( 10.1016/j.theriogenology.2010.12.019) PubMed DOI
Kim SH, Li C & Maller JL. 1999. A maternal form of the phosphatase Cdc25A regulates early embryonic cell cycles in Xenopus laevis. Dev Biol 212 381–391. ( 10.1006/dbio.1999.9361) PubMed DOI
Kinterova V, Kanka J, Petruskova V, et al. 2019. Inhibition of Skp1-Cullin-F-box complexes during bovine oocyte maturation and preimplantation development leads to delayed development of embryos PubMed DOI
Kinterová V, Kaňka J, Bartková A, et al. 2022. SCF ligases and their functions in oogenesis and embryogenesis-summary of the most important findings throughout the animal kingdom. Cells 11 234. ( 10.3390/cells11020234) PubMed DOI PMC
Knoblochova L, Duricek T, Vaskovicova M, et al. 2023. CHK1-CDC25A-CDK1 regulate cell cycle progression and protect genome integrity in early mouse embryos. EMBO Rep 24 e56530. ( 10.15252/embr.202256530) PubMed DOI PMC
Li S, Shi Y, Dang Y, et al. 2022. Linker histone H1FOO is required for bovine preimplantation development by regulating lineage specification and chromatin structure. Biol Reprod 107 1425–1438. ( 10.1093/biolre/ioac167) PubMed DOI
Madan P, Calder MD & Watson AJ. 2005. Mitogen-activated protein kinase (MAPK) blockade of bovine preimplantation embryogenesis requires inhibition of both p38 and extracellular signal-regulated kinase (ERK) pathways. Reproduction 130 41–51. ( 10.1530/rep.1.00554) PubMed DOI
Maison C, Bailly D, Quivy JP, et al. 2016. The methyltransferase Suv39h1 links the SUMO pathway to HP1α marking at pericentric heterochromatin. Nat Commun 7 12224. ( 10.1038/ncomms12224) PubMed DOI PMC
Maldonado-Saldivia J, van den Bergen J, Krouskos M, et al. 2007. Dppa2 and Dppa4 are closely linked SAP motif genes restricted to pluripotent cells and the germ line. Stem Cell 25 19–28. ( 10.1634/stemcells.2006-0269) PubMed DOI
Martin C, Beaujean N, Brochard V, et al. 2006. Genome restructuring in mouse embryos during reprogramming and early development. Dev Biol 292 317–332. ( 10.1016/j.ydbio.2006.01.009) PubMed DOI
Montagnoli A, Bosotti R, Villa F, et al. 2002. Drf1, a novel regulatory subunit for human Cdc7 kinase. EMBO J 21 3171–3181. ( 10.1093/emboj/cdf290) PubMed DOI PMC
Morita A, Satouh Y, Kosako H, et al. 2021. Clathrin-mediated endocytosis is essential for the selective degradation of maternal membrane proteins and preimplantation development. Development 148 dev199461. ( 10.1242/dev.199461) PubMed DOI
Morris JS, Nixon C, Bruck A, et al. 2008. Immunohistochemical expression of TopBP1 in feline mammary neoplasia in relation to histological grade, Ki67, ERalpha and p53. Vet J 175 218–226. ( 10.1016/j.tvjl.2007.01.006) PubMed DOI
Mtango NR & Latham KE. 2007. Ubiquitin proteasome pathway gene expression varies in rhesus monkey oocytes and embryos of different developmental potential. Physiol Genom 31 1–14. ( 10.1152/physiolgenomics.00040.2007) PubMed DOI
Nishibuchi G, Machida S, Osakabe A, et al. 2014. N-terminal phosphorylation of HP1α increases its nucleosome-binding specificity. Nucleic Acids Res 42 12498–12511. ( 10.1093/nar/gku995) PubMed DOI PMC
Nishibuchi G, Machida S, Nakagawa R, et al. 2019. Mitotic phosphorylation of HP1α regulates its cell cycle-dependent chromatin binding. J Biochem 165 433–446. ( 10.1093/jb/mvy117) PubMed DOI
Raurell-Vila H, Bosch-Presegue L, Gonzalez J, et al. 2017. An HP1 isoform-specific feedback mechanism regulates Suv39h1 activity under stress conditions. Epigenetics 12 166–175. ( 10.1080/15592294.2016.1278096) PubMed DOI PMC
Rosenbaum Bartkova A, Nemcova L, Strejcek F, et al. 2024. Impact of media supplements FGF2, LIF and IGF1 on the genome activity of porcine embryos produced in vitro. Sci Rep 14 7081. ( 10.1038/s41598-024-57865-7) PubMed DOI PMC
Ross PJ & Sampaio RV. 2018. Epigenetic remodeling in preimplantation embryos: cows are not big mice. Anim Reprod 15 204–214. ( 10.21451/1984-3143-ar2018-0068) PubMed DOI PMC
Schönichen A, Webb BA, Jacobson MP, et al. 2013. Considering protonation as a posttranslational modification regulating protein structure and function. Annu Rev Biophys 42 289–314. ( 10.1146/annurev-biophys-050511-102349) PubMed DOI PMC
Sharma J, Antenos M & Madan P. 2021. A comparative analysis of Hippo signaling pathway components during murine and bovine early Mammalian embryogenesis. Genes 12 281. ( 10.3390/genes12020281) PubMed DOI PMC
Sharrocks AD 2006. PIAS proteins and transcriptional regulation – more than just SUMO E3 ligases? Genes Development 20 754–758. ( 10.1101/gad.1421006) PubMed DOI
Shimuta K, Nakajo N, Uto K, et al. 2002. Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition. EMBO J 21 3694–3703. ( 10.1093/emboj/cdf357) PubMed DOI PMC
Silva T, Bradley RH, Gao Y, et al. 2006. Xenopus CDC7/DRF1 complex is required for the initiation of DNA replication. J Biol Chem 281 11569–11576. ( 10.1074/jbc.m510278200) PubMed DOI
Suzumori N, Burns KH, Yan W, et al. 2003. RFPL4 interacts with oocyte proteins of the ubiquitin-proteasome degradation pathway. Proc Natl Acad Sci U S A 100 550–555. ( 10.1073/pnas.0234474100) PubMed DOI PMC
Takahashi TS & Walter JC. 2005. Cdc7–Drf1 is a developmentally regulated protein kinase required for the initiation of vertebrate DNA replication. Genes Development 19 2295–2300. ( 10.1101/gad.1339805) PubMed DOI PMC
Tikhmyanova N & Coleman TR. 2003. Isoform switching of Cdc6 contributes to developmental cell cycle remodeling. Dev Biol 260 362–375. ( 10.1016/s0012-1606(03)00253-7) PubMed DOI
Toralova T, Kinterova V, Chmelikova E, et al. 2020. The neglected part of early embryonic development: maternal protein degradation. Cell Mol Life Sci 77 3177–3194. ( 10.1007/s00018-020-03482-2) PubMed DOI PMC
Torres-Zelada EF, George S, Blum HR, et al. 2022. Chiffon triggers global histone H3 acetylation and expression of developmental genes in drosophila embryos. J Cell Sci 135 jcs259132. ( 10.1242/jcs.259132) PubMed DOI PMC
Tsukamoto S, Kuma A & Mizushima N. 2008. The role of autophagy during the oocyte-to-embryo transition. Autophagy 4 1076–1078. ( 10.4161/auto.7065) PubMed DOI
van Wijnen AJ, Bagheri L, Badreldin AA, et al. 2021. Biological functions of chromobox (CBX) proteins in stem cell self-renewal, lineage-commitment, cancer and development. Bone 143 115659. ( 10.1016/j.bone.2020.115659) PubMed DOI
Verlhac MH, Terret M-E & Pintard L. 2010. Control of the oocyte-to-embryo transition by the ubiquitin-proteolytic system in mouse and C. elegans. Curr Opin Cell Biol 22 758–763. ( 10.1016/j.ceb.2010.09.003) PubMed DOI
Yan Y-L, Zhang C, Hao J, et al. 2019. DPPA2/4 and SUMO E3 ligase PIAS4 opposingly regulate zygotic transcriptional program. PLoS Biol 17 e3000324. ( 10.1371/journal.pbio.3000324) PubMed DOI PMC
Yang Y, Zhou C, Wang Y, et al. 2017. The E3 ubiquitin ligase RNF114 and TAB1 degradation are required for maternal-to-zygotic transition. EMBO Rep 18 205–216. ( 10.15252/embr.201642573) PubMed DOI PMC
Yao T & Ndoja A. 2012. Regulation of gene expression by the ubiquitin-proteasome system. Semin Cell Dev Biol 23 523–529. ( 10.1016/j.semcdb.2012.02.006) PubMed DOI PMC
Yoshioka K, Suzuki C, Tanaka A, et al. 2002. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol Reprod 66 112–119. ( 10.1095/biolreprod66.1.112) PubMed DOI
Zhao H, Watkins JL & Piwnica-Worms H. 2002. Disruption of the checkpoint kinase 1/cell division cycle 25A pathway abrogates ionizing radiation-induced S and G2 checkpoints. Proc Natl Acad Sci U S A 99 14795–14800. ( 10.1073/pnas.182557299) PubMed DOI PMC
Zhou S, Guo Y, Sun H, et al. 2021. Maternal RNF114-mediated target substrate degradation regulates zygotic genome activation in mouse embryos. Development 148 dev199426. ( 10.1242/dev.199426) PubMed DOI