SCF Ligases and Their Functions in Oogenesis and Embryogenesis-Summary of the Most Important Findings throughout the Animal Kingdom

. 2022 Jan 11 ; 11 (2) : . [epub] 20220111

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35053348

Grantová podpora
8021-00048B Danish Council for Independent Research/Natural Sciences
RVO: 67985904 IAPG institutional support
1/0001/19 VEGA
1/0167/20 VEGA

SCF-dependent proteolysis was first discovered via genetic screening of budding yeast almost 25 years ago. In recent years, more and more functions of SCF (Skp1-Cullin 1-F-box) ligases have been described, and we can expect the number of studies on this topic to increase. SCF ligases, which are E3 ubiquitin multi-protein enzymes, catalyse protein ubiquitination and thus allow protein degradation mediated by the 26S proteasome. They play a crucial role in the degradation of cell cycle regulators, regulation of the DNA repair and centrosome cycle and play an important role in several diseases. SCF ligases seem to be needed during all phases of development, from oocyte formation through fertilization, activation of the embryonic genome to embryo implantation. In this review, we summarize known data on SCF ligase-mediated degradation during oogenesis and embryogenesis. In particular, SCFβTrCP and SCFSEL-10/FBXW7 are among the most important and best researched ligases during early development. SCFβTrCP is crucial for the oogenesis of Xenopus and mouse and also in Xenopus and Drosophila embryogenesis. SCFSEL-10/FBXW7 participates in the degradation of several RNA-binding proteins and thereby affects the regulation of gene expression during the meiosis of C. elegans. Nevertheless, a large number of SCF ligases that are primarily involved in embryogenesis remain to be elucidated.

Zobrazit více v PubMed

Sánchez F., Smitz J. Molecular Control of Oogenesis. Biochim. Biophys. Acta. 2012;1822:1896–1912. doi: 10.1016/j.bbadis.2012.05.013. PubMed DOI

Swain J.E., Pool T.B. ART Failure: Oocyte Contributions to Unsuccessful Fertilization. Hum. Reprod. Update. 2008;14:431–446. doi: 10.1093/humupd/dmn025. PubMed DOI

Kline D., Kline J.T. Repetitive Calcium Transients and the Role of Calcium in Exocytosis and Cell Cycle Activation in the Mouse Egg. Dev. Biol. 1992;149:80–89. doi: 10.1016/0012-1606(92)90265-I. PubMed DOI

Laurincík J., Hyttel P., Baran V., Eckert J., Lucas-Hahn A., Pivko J., Niemann H., Brem G., Schellander K. A Detailed Analysis of Pronucleus Development in Bovine Zygotes in Vitro: Cell-Cycle Chronology and Ultrastructure. Mol. Reprod. Dev. 1998;50:192–199. doi: 10.1002/(SICI)1098-2795(199806)50:2<192::AID-MRD10>3.0.CO;2-9. PubMed DOI

Jukam D., Shariati S.A.M., Skotheim J.M. Zygotic Genome Activation in Vertebrates. Dev. Cell. 2017;42:316–332. doi: 10.1016/j.devcel.2017.07.026. PubMed DOI PMC

Minami N., Suzuki T., Tsukamoto S. Zygotic Gene Activation and Maternal Factors in Mammals. J. Reprod. Dev. 2007;53:707–715. doi: 10.1262/jrd.19029. PubMed DOI

Aoki F., Worrad D.M., Schultz R.M. Regulation of Transcriptional Activity during the First and Second Cell Cycles in the Preimplantation Mouse Embryo. Dev. Biol. 1997;181:296–307. doi: 10.1006/dbio.1996.8466. PubMed DOI

Kanka J., Kepková K., Nemcová L. Gene Expression during Minor Genome Activation in Preimplantation Bovine Development. Theriogenology. 2009;72:572–583. doi: 10.1016/j.theriogenology.2009.04.014. PubMed DOI

Barckmann B., Simonelig M. Control of Maternal MRNA Stability in Germ Cells and Early Embryos. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2013;1829:714–724. doi: 10.1016/j.bbagrm.2012.12.011. PubMed DOI

Glickman M.H., Ciechanover A. The Ubiquitin-Proteasome Proteolytic Pathway: Destruction for the Sake of Construction. Physiol. Rev. 2002;82:373–428. doi: 10.1152/physrev.00027.2001. PubMed DOI

Zheng N., Shabek N. Ubiquitin Ligases: Structure, Function, and Regulation. Annu. Rev. Biochem. 2017;86:129–157. doi: 10.1146/annurev-biochem-060815-014922. PubMed DOI

Petroski M.D., Deshaies R.J. Function and Regulation of Cullin-RING Ubiquitin Ligases. Nat. Rev. Mol. Cell Biol. 2005;6:9–20. doi: 10.1038/nrm1547. PubMed DOI

Jones J., Wu K., Yang Y., Guerrero C., Nillegoda N., Pan Z.-Q., Huang L. A Targeted Proteomic Analysis of the Ubiquitin-like Modifier Nedd8 and Associated Proteins. J. Proteome Res. 2008;7:1274–1287. doi: 10.1021/pr700749v. PubMed DOI PMC

Bennett E.J., Rush J., Gygi S.P., Harper J.W. Dynamics of Cullin-RING Ubiquitin Ligase Network Revealed by Systematic Quantitative Proteomics. Cell. 2010;143:951–965. doi: 10.1016/j.cell.2010.11.017. PubMed DOI PMC

Kepkova K.V., Vodicka P., Toralova T., Lopatarova M., Cech S., Dolezel R., Havlicek V., Besenfelder U., Kuzmany A., Sirard M.-A., et al. Transcriptomic Analysis of in Vivo and in Vitro Produced Bovine Embryos Revealed a Developmental Change in Cullin 1 Expression during Maternal-to-Embryonic Transition. Theriogenology. 2011;75:1582–1595. doi: 10.1016/j.theriogenology.2010.12.019. PubMed DOI

Benesova V., Kinterova V., Kanka J., Toralova T. Characterization of SCF-Complex during Bovine Preimplantation Development. PLoS ONE. 2016;11:e0147096. doi: 10.1371/journal.pone.0147096. PubMed DOI PMC

Ying C., Yangsheng W., Jiapeng L., Liqin W., Xiaolin L., Mingjun L., Juncheng H. Transcriptome Profiles of Pre-Pubertal and Adult in Vitro Matured Ovine Oocytes Obtained from FSH-Stimulated Animals. Reprod. Domest. Anim. 2021;56:1085–1094. doi: 10.1111/rda.13951. PubMed DOI

Dealy M.J., Nguyen K.V., Lo J., Gstaiger M., Krek W., Elson D., Arbeit J., Kipreos E.T., Johnson R.S. Loss of Cul1 Results in Early Embryonic Lethality and Dysregulation of Cyclin E. Nat. Genet. 1999;23:245–248. doi: 10.1038/13886. PubMed DOI

Wang Y., Penfold S., Tang X., Hattori N., Riley P., Harper J.W., Cross J.C., Tyers M. Deletion of the Cul1 Gene in Mice Causes Arrest in Early Embryogenesis and Accumulation of Cyclin E. Curr. Biol. 1999;9:1191–1194. doi: 10.1016/S0960-9822(00)80024-X. PubMed DOI

Zeng L., Luo T., He L., Tan Y., Zhang Q. New Insights into the Roles of CUL1 in Mouse Placenta Development. Biochem. Biophys. Res. Commun. 2021;559:70–77. doi: 10.1016/j.bbrc.2021.04.064. PubMed DOI

Sun X., Tong X., Hao Y., Li C., Zhang Y., Pan Y., Dai Y., Liu L., Zhang T., Zhang S. Abnormal Cullin1 Neddylation-Mediated P21 Accumulation Participates in the Pathogenesis of Recurrent Spontaneous Abortion by Regulating Trophoblast Cell Proliferation and Differentiation. Mol. Hum. Reprod. 2020;26:327–339. doi: 10.1093/molehr/gaaa021. PubMed DOI PMC

Zhang Q., Yu S., Huang X., Tan Y., Zhu C., Wang Y.-L., Wang H., Lin H.-Y., Fu J., Wang H. New Insights into the Function of Cullin 3 in Trophoblast Invasion and Migration. Reproduction. 2015;150:139–149. doi: 10.1530/REP-15-0126. PubMed DOI

Tsunematsu R., Nishiyama M., Kotoshiba S., Saiga T., Kamura T., Nakayama K.I. Fbxw8 Is Essential for Cul1-Cul7 Complex Formation and for Placental Development. Mol. Cell. Biol. 2006;26:6157–6169. doi: 10.1128/MCB.00595-06. PubMed DOI PMC

Morimoto M., Nishida T., Nagayama Y., Yasuda H. Nedd8-Modification of Cul1 Is Promoted by Roc1 as a Nedd8-E3 Ligase and Regulates Its Stability. Biochem. Biophys. Res. Commun. 2003;301:392–398. doi: 10.1016/S0006-291X(02)03051-6. PubMed DOI

Ohta T., Michel J.J., Schottelius A.J., Xiong Y. ROC1, a Homolog of APC11, Represents a Family of Cullin Partners with an Associated Ubiquitin Ligase Activity. Mol. Cell. 1999;3:535–541. doi: 10.1016/S1097-2765(00)80482-7. PubMed DOI

Jia L., Sun Y. RBX1/ROC1-SCF E3 Ubiquitin Ligase Is Required for Mouse Embryogenesis and Cancer Cell Survival. Cell Div. 2009;4:16. doi: 10.1186/1747-1028-4-16. PubMed DOI PMC

Sasagawa Y., Urano T., Kohara Y., Takahashi H., Higashitani A. Caenorhabditis Elegans RBX1 Is Essential for Meiosis, Mitotic Chromosomal Condensation and Segregation, and Cytokinesis. Genes Cells. 2003;8:857–872. doi: 10.1046/j.1365-2443.2003.00682.x. PubMed DOI

Jia L., Bickel J.S., Wu J., Morgan M.A., Li H., Yang J., Yu X., Chan R.C., Sun Y. RBX1 (RING Box Protein 1) E3 Ubiquitin Ligase Is Required for Genomic Integrity by Modulating DNA Replication Licensing Proteins. J. Biol. Chem. 2011;286:3379–3386. doi: 10.1074/jbc.M110.188425. PubMed DOI PMC

Noureddine M.A., Donaldson T.D., Thacker S.A., Duronio R.J. Drosophila Roc1a Encodes a RING-H2 Protein with a Unique Function in Processing the Hh Signal Transducer Ci by the SCF E3 Ubiquitin Ligase. Dev. Cell. 2002;2:757–770. doi: 10.1016/S1534-5807(02)00164-8. PubMed DOI

Bai C., Sen P., Hofmann K., Ma L., Goebl M., Harper J.W., Elledge S.J. SKP1 Connects Cell Cycle Regulators to the Ubiquitin Proteolysis Machinery through a Novel Motif, the F-Box. Cell. 1996;86:263–274. doi: 10.1016/S0092-8674(00)80098-7. PubMed DOI

Kim H.W., Eletsky A., Gonzalez K.J., van der Wel H., Strauch E.-M., Prestegard J.H., West C.M. Skp1 Dimerization Conceals Its F-Box Protein Binding Site. Biochemistry. 2020;59:1527–1536. doi: 10.1021/acs.biochem.0c00094. PubMed DOI PMC

Guan Y., Leu N.A., Ma J., Chmátal L., Ruthel G., Bloom J.C., Lampson M.A., Schimenti J.C., Luo M., Wang P.J. SKP1 Drives the Prophase I to Metaphase I Transition during Male Meiosis. Sci. Adv. 2020;6:eaaz2129. doi: 10.1126/sciadv.aaz2129. PubMed DOI PMC

Mandel S.A., Fishman-Jacob T., Youdim M.B.H. Targeting SKP1, an Ubiquitin E3 Ligase Component Found Decreased in Sporadic Parkinson’s Disease. Neurodegener. Dis. 2012;10:220–223. doi: 10.1159/000333223. PubMed DOI

Piva R., Liu J., Chiarle R., Podda A., Pagano M., Inghirami G. In Vivo Interference with Skp1 Function Leads to Genetic Instability and Neoplastic Transformation. Mol. Cell. Biol. 2002;22:8375–8387. doi: 10.1128/MCB.22.23.8375-8387.2002. PubMed DOI PMC

Jackson P.K., Eldridge A.G., Freed E., Furstenthal L., Hsu J.Y., Kaiser B.K., Reimann J.D. The Lore of the RINGs: Substrate Recognition and Catalysis by Ubiquitin Ligases. Trends Cell Biol. 2000;10:429–439. doi: 10.1016/S0962-8924(00)01834-1. PubMed DOI

Galan J.M., Peter M. Ubiquitin-Dependent Degradation of Multiple F-Box Proteins by an Autocatalytic Mechanism. Proc. Natl. Acad. Sci. USA. 1999;96:9124–9129. doi: 10.1073/pnas.96.16.9124. PubMed DOI PMC

Kisielnicka E., Minasaki R., Eckmann C.R. MAPK Signaling Couples SCF-Mediated Degradation of Translational Regulators to Oocyte Meiotic Progression. Proc. Natl. Acad. Sci. USA. 2018;115:E2772–E2781. doi: 10.1073/pnas.1715439115. PubMed DOI PMC

Jin Y., Yang M., Gao C., Yue W., Liang X., Xie B., Zhu X., Fan S., Li R., Li M. Fbxo30 Regulates Chromosome Segregation of Oocyte Meiosis. Cell. Mol. Life Sci. 2019;76:2217–2229. doi: 10.1007/s00018-019-03038-z. PubMed DOI PMC

Zhao B.-W., Sun S.-M., Xu K., Li Y.-Y., Lei W.-L., Li L., Liu S.-L., Ouyang Y.-C., Sun Q.-Y., Wang Z.-B. FBXO34 Regulates the G2/M Transition and Anaphase Entry in Meiotic Oocytes. Front. Cell Dev. Biol. 2021;9:647103. doi: 10.3389/fcell.2021.647103. PubMed DOI PMC

Margottin-Goguet F., Hsu J.Y., Loktev A., Hsieh H.M., Reimann J.D.R., Jackson P.K. Prophase Destruction of Emi1 by the SCF(BetaTrCP/Slimb) Ubiquitin Ligase Activates the Anaphase Promoting Complex to Allow Progression beyond Prometaphase. Dev. Cell. 2003;4:813–826. doi: 10.1016/S1534-5807(03)00153-9. PubMed DOI

Marangos P., Verschuren E.W., Chen R., Jackson P.K., Carroll J. Prophase I Arrest and Progression to Metaphase I in Mouse Oocytes Are Controlled by Emi1-Dependent Regulation of APC(Cdh1) J. Cell Biol. 2007;176:65–75. doi: 10.1083/jcb.200607070. PubMed DOI PMC

Hansen D.V., Loktev A.V., Ban K.H., Jackson P.K. Plk1 Regulates Activation of the Anaphase Promoting Complex by Phosphorylating and Triggering SCFbetaTrCP-Dependent Destruction of the APC Inhibitor Emi1. Mol. Biol. Cell. 2004;15:5623–5634. doi: 10.1091/mbc.e04-07-0598. PubMed DOI PMC

Schmidt A., Rauh N.R., Nigg E.A., Mayer T.U. Cytostatic Factor: An Activity That Puts the Cell Cycle on Hold. J. Cell Sci. 2006;119:1213–1218. doi: 10.1242/jcs.02919. PubMed DOI

Tung J.J., Hansen D.V., Ban K.H., Loktev A.V., Summers M.K., Adler J.R., Jackson P.K. A Role for the Anaphase-Promoting Complex Inhibitor Emi2/XErp1, a Homolog of Early Mitotic Inhibitor 1, in Cytostatic Factor Arrest of Xenopus Eggs. Proc. Natl. Acad. Sci. USA. 2005;102:4318–4323. doi: 10.1073/pnas.0501108102. PubMed DOI PMC

Sako K., Suzuki K., Isoda M., Yoshikai S., Senoo C., Nakajo N., Ohe M., Sagata N. Emi2 Mediates Meiotic MII Arrest by Competitively Inhibiting the Binding of Ube2S to the APC/C. Nat. Commun. 2014;5:3667. doi: 10.1038/ncomms4667. PubMed DOI

Setoyama D., Yamashita M., Sagata N. Mechanism of Degradation of CPEB during Xenopus Oocyte Maturation. Proc. Natl. Acad. Sci. USA. 2007;104:18001–18006. doi: 10.1073/pnas.0706952104. PubMed DOI PMC

Zhao L.-W., Zhu Y.-Z., Chen H., Wu Y.-W., Pi S.-B., Chen L., Shen L., Fan H.-Y. PABPN1L Mediates Cytoplasmic MRNA Decay as a Placeholder during the Maternal-to-Zygotic Transition. EMBO Rep. 2020;21:e49956. doi: 10.15252/embr.201949956. PubMed DOI PMC

Daldello E.M., Le T., Poulhe R., Jessus C., Haccard O., Dupré A. Correction: Control of Cdc6 Accumulation by Cdk1 and MAPK Is Essential for Completion of Oocyte Meiotic Divisions in Xenopus. J. Cell Sci. 2018;131:jcs215293. doi: 10.1242/jcs.215293. PubMed DOI

Spike C.A., Huelgas-Morales G., Tsukamoto T., Greenstein D. Multiple Mechanisms Inactivate the LIN-41 RNA-Binding Protein To Ensure a Robust Oocyte-to-Embryo Transition in Caenorhabditis Elegans. Genetics. 2018;210:1011–1037. doi: 10.1534/genetics.118.301421. PubMed DOI PMC

Chesnaye E.D.L., Kerr B., Paredes A., Merchant-Larios H., Méndez J.P., Ojeda S.R. Fbxw15/Fbxo12J Is an F-Box Protein-Encoding Gene Selectively Expressed in Oocytes of the Mouse Ovary. Biol. Reprod. 2008;78:714–725. doi: 10.1095/biolreprod.107.063826. PubMed DOI

Moshe Y., Boulaire J., Pagano M., Hershko A. Role of Polo-like Kinase in the Degradation of Early Mitotic Inhibitor 1, a Regulator of the Anaphase Promoting Complex/Cyclosome. Proc. Natl. Acad. Sci. USA. 2004;101:7937–7942. doi: 10.1073/pnas.0402442101. PubMed DOI PMC

Watanabe N., Arai H., Iwasaki J.-I., Shiina M., Ogata K., Hunter T., Osada H. Cyclin-Dependent Kinase (CDK) Phosphorylation Destabilizes Somatic Wee1 via Multiple Pathways. Proc. Natl. Acad. Sci. USA. 2005;102:11663–11668. doi: 10.1073/pnas.0500410102. PubMed DOI PMC

Rauh N.R., Schmidt A., Bormann J., Nigg E.A., Mayer T.U. Calcium Triggers Exit from Meiosis II by Targeting the APC/C Inhibitor XErp1 for Degradation. Nature. 2005;437:1048–1052. doi: 10.1038/nature04093. PubMed DOI

Mendez R., Barnard D., Richter J.D. Differential MRNA Translation and Meiotic Progression Require Cdc2-Mediated CPEB Destruction. EMBO J. 2002;21:1833–1844. doi: 10.1093/emboj/21.7.1833. PubMed DOI PMC

Welcker M., Clurman B.E. FBW7 Ubiquitin Ligase: A Tumour Suppressor at the Crossroads of Cell Division, Growth and Differentiation. Nat. Rev. Cancer. 2008;8:83–93. doi: 10.1038/nrc2290. PubMed DOI

Spike C.A., Coetzee D., Eichten C., Wang X., Hansen D., Greenstein D. The TRIM-NHL Protein LIN-41 and the OMA RNA-Binding Proteins Antagonistically Control the Prophase-to-Metaphase Transition and Growth of Caenorhabditis Elegans Oocytes. Genetics. 2014;198:1535–1558. doi: 10.1534/genetics.114.168831. PubMed DOI PMC

Jones A.R., Francis R., Schedl T. GLD-1, a Cytoplasmic Protein Essential for Oocyte Differentiation, Shows Stage- and Sex-Specific Expression during Caenorhabditis Elegans Germline Development. Dev. Biol. 1996;180:165–183. doi: 10.1006/dbio.1996.0293. PubMed DOI

Cheng X., Pei P., Yu J., Zhang Q., Li D., Xie X., Wu J., Wang S., Zhang T. F-Box Protein FBXO30 Mediates Retinoic Acid Receptor γ Ubiquitination and Regulates BMP Signaling in Neural Tube Defects. Cell Death Dis. 2019;10:551. doi: 10.1038/s41419-019-1783-y. PubMed DOI PMC

Adhikari D., Zheng W., Shen Y., Gorre N., Ning Y., Halet G., Kaldis P., Liu K. Cdk1, but Not Cdk2, Is the Sole Cdk That Is Essential and Sufficient to Drive Resumption of Meiosis in Mouse Oocytes. Hum. Mol. Genet. 2012;21:2476–2484. doi: 10.1093/hmg/dds061. PubMed DOI

Wang L., Tripurani S.K., Wanna W., Rexroad C.E., Yao J. Cloning and Characterization of a Novel Oocyte-Specific Gene Encoding an F-Box Protein in Rainbow Trout (Oncorhynchus Mykiss) Reprod. Biol. Endocrinol. 2013;11:86. doi: 10.1186/1477-7827-11-86. PubMed DOI PMC

Shimuta K., Nakajo N., Uto K., Hayano Y., Okazaki K., Sagata N. Chk1 Is Activated Transiently and Targets Cdc25A for Degradation at the Xenopus Midblastula Transition. EMBO J. 2002;21:3694–3703. doi: 10.1093/emboj/cdf357. PubMed DOI PMC

Collart C., Smith J.C., Zegerman P. Chk1 Inhibition of the Replication Factor Drf1 Guarantees Cell-Cycle Elongation at the Xenopus Laevis Mid-Blastula Transition. Dev. Cell. 2017;42:82–96.e3. doi: 10.1016/j.devcel.2017.06.010. PubMed DOI PMC

Kinterova V., Kanka J., Petruskova V., Toralova T. Inhibition of SCF Complexes during Bovine Oocyte Maturation and Preimplantation Development Leads to Delayed Development of Embryos. Biol. Reprod. 2018;100:896–906. doi: 10.1093/biolre/ioy254. PubMed DOI

Toralova T., Kinterova V., Chmelikova E., Kanka J. The Neglected Part of Early Embryonic Development: Maternal Protein Degradation. Cell. Mol. Life Sci. 2020;77:3177–3194. doi: 10.1007/s00018-020-03482-2. PubMed DOI PMC

Benesova V., Kinterova V., Kanka J., Toralova T. Potential Involvement of SCF-Complex in Zygotic Genome Activation During Early Bovine Embryo Development. Methods Mol. Biol. 2017;1605:245–257. doi: 10.1007/978-1-4939-6988-3_17. PubMed DOI

Wang S., Kou Z., Jing Z., Zhang Y., Guo X., Dong M., Wilmut I., Gao S. Proteome of Mouse Oocytes at Different Developmental Stages. Proc. Natl. Acad. Sci. USA. 2010;107:17639–17644. doi: 10.1073/pnas.1013185107. PubMed DOI PMC

Knowles B.B., Evsikov A.V., de Vries W.N., Peaston A.E., Solter D. Molecular Control of the Oocyte to Embryo Transition. Philos. Trans. R. Soc. B Biol. Sci. 2003;358:1381–1387. doi: 10.1098/rstb.2003.1330. PubMed DOI PMC

Cunha-Ferreira I., Bento I., Pimenta-Marques A., Jana S.C., Lince-Faria M., Duarte P., Borrego-Pinto J., Gilberto S., Amado T., Brito D., et al. Regulation of Autophosphorylation Controls PLK4 Self-Destruction and Centriole Number. Curr. Biol. 2013;23:2245–2254. doi: 10.1016/j.cub.2013.09.037. PubMed DOI

Muzzopappa M., Wappner P. Multiple Roles of the F-Box Protein Slimb in Drosophila Egg Chamber Development. Development. 2005;132:2561–2571. doi: 10.1242/dev.01839. PubMed DOI

Peel N., Dougherty M., Goeres J., Liu Y., O’Connell K.F. The C. Elegans F-Box Proteins LIN-23 and SEL-10 Antagonize Centrosome Duplication by Regulating ZYG-1 Levels. J. Cell Sci. 2012;125:3535–3544. doi: 10.1242/jcs.097105. PubMed DOI PMC

Cui Y., He S., Xing C., Lu K., Wang J., Xing G., Meng A., Jia S., He F., Zhang L. SCFFBXL15 Regulates BMP Signalling by Directing the Degradation of HECT-Type Ubiquitin Ligase Smurf1. EMBO J. 2011;30:2675–2689. doi: 10.1038/emboj.2011.155. PubMed DOI PMC

Avilés-Pagán E.E., Kang A.S.W., Orr-Weaver T.L. Identification of New Regulators of the Oocyte-to-Embryo Transition in Drosophila. G3 Genes Genomes Genet. 2020;10:2989–2998. doi: 10.1534/g3.120.401415. PubMed DOI PMC

Solc P., Saskova A., Baran V., Kubelka M., Schultz R.M., Motlik J. CDC25A Phosphatase Controls Meiosis I Progression in Mouse Oocytes. Dev. Biol. 2008;317:260–269. doi: 10.1016/j.ydbio.2008.02.028. PubMed DOI PMC

Sun L., Bertke M.M., Champion M.M., Zhu G., Huber P.W., Dovichi N.J. Quantitative Proteomics of Xenopus Laevis Embryos: Expression Kinetics of Nearly 4000 Proteins during Early Development. Sci. Rep. 2014;4:4365. doi: 10.1038/srep04365. PubMed DOI PMC

Yang Y., Zhou C., Wang Y., Liu W., Liu C., Wang L., Liu Y., Shang Y., Li M., Zhou S., et al. The E3 Ubiquitin Ligase RNF114 and TAB1 Degradation Are Required for Maternal-to-Zygotic Transition. EMBO Rep. 2017;18:205–216. doi: 10.15252/embr.201642573. PubMed DOI PMC

Higuchi C., Yamamoto M., Shin S.-W., Miyamoto K., Matsumoto K. Perturbation of Maternal PIASy Abundance Disrupts Zygotic Genome Activation and Embryonic Development via SUMOylation Pathway. Biol. Open. 2019;8:bio048652. doi: 10.1242/bio.048652. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...