A low-cost picowatt calorimeter using a flexible printed circuit board

. 2025 Mar 27 ; 16 (1) : 2994. [epub] 20250327

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40148321

Grantová podpora
52150710541 National Natural Science Foundation of China (National Science Foundation of China)
62201187 National Natural Science Foundation of China (National Science Foundation of China)

Odkazy

PubMed 40148321
PubMed Central PMC11950193
DOI 10.1038/s41467-025-58025-9
PII: 10.1038/s41467-025-58025-9
Knihovny.cz E-zdroje

Calorimetry is crucial in biology, chemistry, physics, and pharmaceutical research, enabling the detection of heat changes at nanowatt and picowatt levels. However, traditional calorimetry systems are often limited by high costs and complex fabrication processes. Here, we reduce the cost and fabrication complexity of microcalorimeters by utilizing widely available flexible printed circuit manufacturing processes. This device achieves temperature and power resolutions of ≈ 6 μK and ≈ 654 pW in vacuum. Its feasibility is validated across a wide range of measurements, including salt crystallization, protein crystallization, and cellular metabolism. Our concept enhances the accessibility of microcalorimeters for high-resolution thermal analysis, which is challenging for conventional calorimeters.

Zobrazit více v PubMed

Hemminger, W. & Höhne, G. Calorimetry, Fundamentals and Practice. Verlag Chemie (1984).

Sturtevant, J. M. Biochemical applications of differential scanning calorimetry. Annu Rev. Phys. Chem.38, 463–488 (1987).

Fabjan, C. W. & Gianotti, F. Calorimetry for particle physics. Rev. Mod. Phys.75, 1243 (2003).

Lodwig, T. H. & Smeaton, W. A. The ice calorimeter of Lavoisier and laplace and some of its critics. Ann. Sci.31, 1–18 (1974).

Zhu, H., Wang, L., Feng, J. & Neuzil, P. The development of ultrasensitive microcalorimeters for bioanalysis and energy balance monitoring. Fundam. Res4, 1625–1638 (2023). PubMed PMC

Li, L. et al. Adsorption/reaction energetics measured by microcalorimetry and correlated with reactivity on supported catalysts: a review. Chin. J. Catal.37, 2039–2052 (2016).

Calvet, E. & Prat, H. Recent progress in microcalorimetry. Elsevier (2016).

Bastos, M. et al. Isothermal titration calorimetry. Nat. Rev. Meth Prim.3, 17 (2023).

Ni, S., Bu, Y., Zhu, H., Neuzil, P. & Yobas, L. A Sub-nL chip calorimeter and its application to the measurement of the photothermal transduction efficiency of plasmonic nanoparticles. J. Microelectromechanical Syst.30, 759–769 (2021).

Feng, J. G. et al. Nanowatt simple microcalorimetry for dynamically monitoring the defense mechanism of Paramecium Caudatum. Sensor Actuat a-Phys323, 112643 (2021).

Gaddes, D., Reeves, W. B. & Tadigadapa, S. Calorimetric biosensing system for quantification of urinary creatinine. ACS Sens2, 796–802 (2017). PubMed

Wang, B., Jia, Y. & Lin, Q. A microfabrication-based approach to quantitative isothermal titration calorimetry. Biosens. Bioelectron.78, 438–446 (2016). PubMed

Hong, S. et al. Sub-nanowatt microfluidic single-cell calorimetry. Nat. Commun.11, 1–9 (2020). PubMed PMC

Lerchner, J. et al. Continuous monitoring of drug effects on complex biological samples by segmented flow chip calorimetry. J. Therm. Anal. Calorim.127, 1307–1317 (2017).

Liu, Y., Lehnert, T. & Gijs, M. A. M. Fast antimicrobial susceptibility testing on Escherichia coli by metabolic heat nanocalorimetry. Lab Chip20, 3144–3157 (2020). PubMed

Lee, W., Fon, W., Axelrod, B. W. & Roukes, M. L. High-sensitivity microfluidic calorimeters for biological and chemical applications. P Natl Acad. Sci. USA106, 18040–18040 (2009). PubMed PMC

Xu, J., Reiserer, R., Tellinghuisen, J., Wikswo, J. P. & Baudenbacher, F. J. A microfabricated nanocalorimeter: design, characterization, and chemical calibration. Anal. Chem.80, 2728–2733 (2008). PubMed PMC

Feng, J. G. et al. Droplet-based differential microcalorimeter for real-time energy balance monitoring. Sensor Actuat B-Chem312,127967 (2020).

Inomata, N., Inaoka, R., Okabe, K., Funatsu, T. & Ono, T. Short-term temperature change detections and frequency signals in single cultured cells using a microfabricated thermistor. Sens Bio-Sens Res27, 100309 (2020).

Bae, J. et al. A micromachined picocalorimeter sensor for liquid samples with application to chemical reactions and biochemistry. Adv Sci.8, 2003415 (2021). PubMed PMC

Torres, F. E. et al. Enthalpy arrays. P Natl Acad. Sci. USA101, 9517–9522 (2004). PubMed PMC

Mukhametzyanov, T. A., Sedov, I. A., Solomonov, B. N. & Schick, C. Fast scanning calorimetry of lysozyme unfolding at scanning rates from 5 K/min to 500,000 K/min. Biochim Biophys. Acta - Gen. Subj.1862, 2024–2030 (2018). PubMed

Lubbers, B., Kazura, E., Dawson, E., Mernaugh, R. & Baudenbacher, F. Microfabricated calorimeters for thermometric enzyme linked immunosorbent assay in one-Nanoliter droplets. Biomed Microdevices21, 85 (2019). PubMed

Hur, S., Mittapally, R., Yadlapalli, S., Reddy, P. & Meyhofer, E. Sub-nanowatt resolution direct calorimetry for probing real-time metabolic activity of individual C. elegans worms. Nat. Commun.11, 2983 (2020). PubMed PMC

van Herwaarden, S. et al. Design, performance and analysis of thermal lag of the UFS1 twin-calorimeter chip for fast scanning calorimetry using the Mettler-Toledo Flash DSC 1. Thermochim. Acta522, 46–52 (2011).

Iervolino, E. et al. Temperature calibration and electrical characterization of the differential scanning calorimeter chip UFS1 for the Mettler-Toledo Flash DSC 1. Thermochim. Acta522, 53–59 (2011).

Neuzil, P., Pipper, J. & Hsieh, T. M. Disposable real-time microPCR device: lab-on-a-chip at a low cost. Mol. BioSyst.2, 292–298 (2006). PubMed

Castro, E. R. et al. Determination of dynamic contact angles within microfluidic devices. Microfluid Nanofluidics22, 1–11 (2018).

Zhang, H. et al. Nanolithography toolbox—Simplifying the design complexity of microfluidic chips. J. Vac. Sci. Technol. B: Nanotechnol. Microelectron.38, 063002 (2020).

Balram, K. C. et al. The nanolithography toolbox. J. Res Natl Inst. Stand Technol.121, 464 (2016). PubMed PMC

Quinn, T. J. & Martin, J. E. A radiometric determination of the Stefan-Boltzmann constant and thermodynamic temperatures between -40 °C and +100 °C. Proc. R. Soc. Lond. A Math. Phys. Sci.316, 85–189 (1985).

Gu, X., Karunasiri, G., Chen, G., Sridhar, U. & Xu, B. Determination of thermal parameters of microbolometers using a single electrical measurement. Appl Phys. Lett.72, 1881–1883 (1998).

Svatoš, V., Gablech, I., Pekárek, J., Klempa, J. & Neužil, P. Precise determination of thermal parameters of a microbolometer. Infrared Phys. Technol.93, 286–290 (2018).

He, X. et al. Performance of microbolometer focal plane arrays under varying pressure. IEEE Electron Device Lett.21, 233–235 (2000).

Huang, J. Z., Liu, Y., Tang, Z. Y., Shao, X. F. & Zhang, C. C. A polymer-based microfluidic sensor for biochemical detection. Ieee Sens J.20, 6270–6276 (2020).

Fornell, A., Söderbäck, P., Liu, Z., De Albuquerque Moreira, M. & Tenje, M. Fabrication of silicon microfluidic chips for acoustic particle focusing using direct laser writing. Micromachines11, 113 (2020). PubMed PMC

ToolBox, T. E. et al. Water - Heat of Vaporization vs. Temperature. Available at: https://www.engineeringtoolbox.com/water-properties-d_1573.html (2010).

Wilson, S. K. & apos, Ambrosio, H-M. Evaporation of sessile droplets. Annu Rev. Fluid Mech. 55, 481–509 2023).

Zhu, H. L. et al. Thermodynamics of KCl crystals formation and growth in a sessile droplet. Cell Rep. Phys. Sci.5, 101971 (2024).

Shahidzadeh-Bonn, N., Rafai, S., Azouni, A. & Bonn, D. Evaporating droplets. J. Fluid Mech.549, 307–313 (2006).

Chancellor, E., Wikswo, J., Baudenbacher, F., Radparvar, M. & Osterman, D. Heat conduction calorimeter for massively parallel high throughput measurements with picoliter sample volumes. Appl Phys. Lett.85, 2408–2410 (2004).

Chen, X. et al. Evaporation of droplets on superhydrophobic surfaces: surface roughness and small droplet size effects. Phys. Rev. Lett.109, 116101 (2012). PubMed

David, S., Sefiane, K. & Tadrist, L. Experimental investigation of the effect of thermal properties of the substrate in the wetting and evaporation of sessile drops. Colloids Surf. A298, 108–114 (2007).

Durbin, S. D. & Feher, G. Protein crystallization. Annu Rev. Phys. Chem.47, 171–204 (1996). PubMed

Houben, L., Weissman, H., Wolf, S. G. & Rybtchinski, B. A mechanism of ferritin crystallization revealed by cryo-STEM tomography. Nature579, 540–543 (2020). PubMed

Sauter, A. et al. Real-time observation of nonclassical protein crystallization kinetics. J. Am. Chem. Soc.137, 1485–1491 (2015). PubMed

Land, T. A., Malkin, A. J., Kuznetsov, Y. G., McPherson, A. & De Yoreo, J. J. Mechanisms of protein crystal growth: an atomic force microscopy study of canavalin crystallization. Phys. Rev. Lett.75, 2774 (1995). PubMed

Carreón, Y. J. P., González-Gutiérrez, J., Pérez-Camacho, M. I. & Mercado-Uribe, H. Patterns produced by dried droplets of protein binary mixtures suspended in water. Colloids Surf. B161, 103–110 (2018). PubMed

Deegan, R. D. et al. Capillary flow as the cause of ring stains from dried liquid drops. Nature389, 827–829 (1997).

Carreón, Y. J. P. et al. Patterns in dried droplets to detect unfolded BSA. Sensors22, 1156 (2022). PubMed PMC

Sleutel, M. & Van Driessche, A. E. S. Role of clusters in nonclassical nucleation and growth of protein crystals. P Natl Acad. Sci. USA111, E546–E553 (2014). PubMed PMC

Pathak, B., Christy, J., Sefiane, K. & Gozuacik, D. Complex pattern formation in solutions of protein and mixed salts using dehydrating sessile droplets. Langmuir36, 9728–9737 (2020). PubMed

Pal, A., Gope, A. & Sengupta, A. Drying of bio-colloidal sessile droplets: advances, applications, and perspectives. Adv. Colloid Interface Sci.314, 102870 (2023). PubMed

Guo, W. et al. Non-associative phase separation in an evaporating droplet as a model for prebiotic compartmentalization. Nat. Commun.12, 3194 (2021). PubMed PMC

Carreón, Y. J. P. et al. Effects of substrate temperature on patterns produced by dried droplets of proteins. Colloids Surf. B203, 111763 (2021). PubMed

Wang, H. et al. High‐performance hydrogel sensors enabled multimodal and accurate human–machine interaction system for active rehabilitation. Adv. Mater.36, 2309868 (2024). PubMed

Wang, W. et al. A breathable, stretchable, and self‐calibrated multimodal electronic skin based on hydrogel microstructures for wireless wearables. Adv. Funct. Mater34, 2316339 (2024).

Sefiane, K., Duursma, G. & Arif, A. Patterns from dried drops as a characterisation and healthcare diagnosis technique, potential and challenges: a review. Adv. Colloid Interface Sci.298, 102546 (2021). PubMed

Hasan M. S., Sobolev K., Nosonovsky M. Evaporation of droplets capable of bearing viruses airborne and on hydrophobic surfaces. J. Appl. Phys.129, 024703 (2021).

Kokornaczyk, M. O., Bodrova, N. B. & Baumgartner, S. Diagnostic tests based on pattern formation in drying body fluids–A mapping review. Colloids Surf. B208, 112092 (2021). PubMed

Hegde, O., Chatterjee, R., Rasheed, A., Chakravortty, D. & Basu, S. Multiscale vapor-mediated dendritic pattern formation and bacterial aggregation in complex respiratory biofluid droplets. J. Colloid Interface Sci.606, 2011–2023 (2022). PubMed

González-Gutiérrez, J., Pérez-Isidoro, R., Pérez-Camacho, M. I. & Ruiz-Suárez, J. C. The calorimetric properties of liposomes determine the morphology of dried droplets. Colloids Surf. B155, 215–222 (2017). PubMed

Mader, J., Xiao, L., Schmidt, T. J. & Benicewicz B.C. Polybenzimidazole/acid complexes as high-temperature membranes. Fuel cells II216, 63–124 (2008).

Neuzil, P., Liu, Y., Feng, H.-H. & Zeng, W. Micromachined bolometer with single-crystal silicon diode as temperature sensor. IEEE Electron Device Lett.26, 320–322 (2005).

Pekárek, J. et al. Self-compensating method for bolometer–based IR focal plane arrays. Sens. Actuat a-Phys.265, 40–46 (2017).

Vollmer, M. & van de Goor, T. HPLC-Chip/MS technology in proteomic profiling. Micro and nano technologies in bioanalysis: methods and protocols, 544, 3–15 (2009). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...