Infinite Selectivity of Wet SiO2 Etching in Respect to Al

. 2020 Mar 31 ; 11 (4) : . [epub] 20200331

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32244504

Grantová podpora
GJ18-06498Y Grantová Agentura České Republiky
LM2015041 Ministerstvo Školství, Mládeže a Tělovýchovy

We propose and demonstrate an unconventional method suitable for releasing microelectromechanical systems devices containing an Al layer by wet etching using SiO2 as a sacrificial layer. We used 48% HF solution in combination with 20% oleum to keep the HF solution water-free and thus to prevent attack of the Al layer, achieving an outstanding etch rate of thermally grown SiO2 of ≈1 µm·min-1. We also verified that this etching solution only minimally affected the Al layer, as the chip immersion for ≈9 min increased the Al layer sheet resistance by only ≈7.6%. The proposed etching method was performed in an ordinary fume hood in a polytetrafluorethylene beaker at elevated temperature of ≈70 °C using water bath on a hotplate. It allowed removal of the SiO2 sacrificial layer in the presence of Al without the necessity of handling highly toxic HF gas.

Zobrazit více v PubMed

Radamson H.H., He X., Zhang Q., Liu J., Cui H., Xiang J., Kong Z., Xiong W., Li J., Gao J., et al. Miniaturization of Cmos. Micromachines. 2019;10:293. doi: 10.3390/mi10050293. PubMed DOI PMC

Janssen G.C., Abdalla M.M., Van Keulen F., Pujada B.R., Van Venrooy B. Celebrating the 100th Anniversary of the Stoney Equation for Film Stress: Developments from Polycrystalline Steel Strips to Single Crystal Silicon Wafers. Thin Solid Film. 2009;517:1858–1867. doi: 10.1016/j.tsf.2008.07.014. DOI

Gablech I., Klempa J., Pekárek J., Vyroubal P., Hrabina J., Holá M., Kunz J., Brodský J., Neužil P. Simple and Efficient Aln-Based Piezoelectric Energy Harvesters. Micromachines. 2020;11:143. doi: 10.3390/mi11020143. PubMed DOI PMC

Petersen K.E. Silicon as a Mechanical Material. Proc. IEEE. 1982;70:420–457. doi: 10.1109/PROC.1982.12331. DOI

Dutta S., Imran M., Kumar P., Pal R., Datta P., Chatterjee R. Comparison of Etch Characteristics of Koh, Tmah and Edp for Bulk Micromachining of Silicon (110) Microsyst. Technol. 2011;17:1621. doi: 10.1007/s00542-011-1351-6. DOI

Hamzah A.A., Aziz N.A., Majlis B.Y., Yunas J., Dee C.F., Bais B. Optimization of Hna Etching Parameters to Produce High Aspect Ratio Solid Silicon Microneedles. J. Micromech. Microeng. 2012;22:095017. doi: 10.1088/0960-1317/22/9/095017. DOI

Rangelow I.W., Löschner H. Reactive Ion Etching for Microelectrical Mechanical System Fabrication. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1995;13:2394–2399. doi: 10.1116/1.588007. DOI

Laerme F., Schilp A., Funk K., Offenberg M. Bosch Deep Silicon Etching: Improving Uniformity and Etch Rate for Advanced Mems Applications; Proceedings of the Paper presented at the Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 99CH36291); Orlando, FL, USA. 21–21 January 1999.

Eisele K.M. Sf 6, a Preferable Etchant for Plasma Etching Silicon. J. Electrochem. Soc. 1981;128:123–126. doi: 10.1149/1.2127351. DOI

Winters H.F., Coburn J.W. The Etching of Silicon with Xef2 Vapor. Appl. Phys. Lett. 1979;34:70–73. doi: 10.1063/1.90562. DOI

Svatoš V., Gablech I., Ilic B.R., Pekárek J., Neužil P. In Situ Observation of Carbon Nanotube Layer Growth on Microbolometers with Substrates at Ambient Temperature. J. Appl. Phys. 2018;123:114503. doi: 10.1063/1.5016465. PubMed DOI PMC

Kovacs G.T.A., Maluf N.I., Petersen K.E. Bulk Micromachining of Silicon. Proc. IEEE. 1998;86:1536–1551. doi: 10.1109/5.704259. DOI

Guan D., Bruccoleri A.R., Heilmann R.K., Schattenburg M.L. Stress Control of Plasma Enhanced Chemical Vapor Deposited Silicon Oxide Film from Tetraethoxysilane. J. Micromech. Microeng. 2013;24:027001. doi: 10.1088/0960-1317/24/2/027001. DOI

Judy J. Microelectromechanical Systems (Mems): Fabrication, Design and Applications. Smart Mater. Struct. 2001;10:1115–1134. doi: 10.1088/0964-1726/10/6/301. DOI

Tarraf A., Daleiden J., Irmer S., Prasai D., Hillmer H. Stress Investigation of Pecvd Dielectric Layers for Advanced Optical Mems. J. Micromech. Microeng. 2003;14:317–323. doi: 10.1088/0960-1317/14/3/001. DOI

Hornbeck L.J. Current Status of the Digital Micromirror Device (Dmd) for Projection Television Applications; Proceedings of the Paper presented at the IEEE International Electron Devices Meeting; Washington, DC, USA. 5–8 December 1993.

Tea N.H., Milanovic V., Zincke C.A., Suehle J.S., Gaitan M., Zaghloul M.E., Geist J. Hybrid Postprocessing Etching for Cmos-Compatible Mems. J. Microelectromech. Syst. 1997;6:363–372. doi: 10.1109/84.650134. DOI

Domanský K., Petelenz D., Janata J. Effect of Thermal Treatment of Passivation Integrity of Chemical Vapor Deposition Silicon Nitride. Appl. Phys. Lett. 1992;60:2074–2076. doi: 10.1063/1.107093. DOI

Jang W.I., Choi C.A., Lee M.L., Jun C.H., Kim Y.T. Fabrication of Mems Devices by Using Anhydrous Hf Gas-Phase Etching with Alcoholic Vapor. J. Micromech. Microeng. 2002;12:297. doi: 10.1088/0960-1317/12/3/316. DOI

Witvrouw A., Bois B.D., de Moor P., Verbist A., van Hoof C.A., Bender H., Baert C. Comparison between Wet Hf Etching and Vapor Hf Etching for Sacrificial Oxide Removal; Proceedings of the Paper presented at the Micromachining and Microfabrication Process Technology VI; Santa Clara, CA, USA. 25 August 2000.

Gennissen P.T.J., French P.J. Sacrificial Oxide Etching Compatible with Aluminum Metallization; Proceedings of the International Solid State Sensors and Actuators Conference (Transducers ’97); Chicago, IL, USA. 19–19 June 1997; pp. 225–228.

Clews P.J., Mani S.S. Selective Etchant for Oxide Sacrificial Material in Semiconductor Device Fabrication. 6,893,578. U.S. Patent. 2005 May 17;

Amini B.V., Abdolvand R., Ayazi F. A 4.5-Mw Closed-Loop $\Delta\Sigma $ Micro-Gravity Cmos Soi Accelerometer. IEEE J. Solid State Circuits. 2006;41:2983–2991. doi: 10.1109/JSSC.2006.884864. DOI

Kuehnel W., Sherman S. A Surface Micromachined Silicon Accelerometer with on-Chip Detection Circuitry. Sens. Actuators A Phys. 1994;45:7–16. doi: 10.1016/0924-4247(94)00815-9. DOI

Syllaios A.J., Schimert T.R., Gooch R.W., McCardel W.L., Ritchey B.A., Tregilgas J.H. Amorphous Silicon Microbolometer Technology. MRS Online Proc. Libr. Arch. 2000;609:A14.4. doi: 10.1557/PROC-609-A14.4. DOI

Sedky S., Fiorini P., Baert K., Hermans L., Mertens R. Characterization and Optimization of Infrared Poly Sige Bolometers. IEEE Trans. Electron Devices. 1999;46:675–682. doi: 10.1109/16.753700. DOI

Akhavan J. The Chemistry of Explosives. Royal Society of Chemistry; London, UK: 2011.

Balram K.C., Westly D.A., Davanco M., Grutter K.E., Li Q., Michels T., Ray C.H., Yu L.Y., Kasica R.J., Wallin C.B., et al. The Nanolithography Toolbox. J. Res. Natl. Inst. Stand. Technol. 2016;121:464–475. doi: 10.6028/jres.121.024. PubMed DOI PMC

Walker P., Tarn W.H. Crc Handbook of Metal Etchants. CRC press; Boca raton, FL, USA: 1990.

Miccoli I., Edler F., Pfnür H., Tegenkamp C. The 100th Anniversary of the Four-Point Probe Technique: The Role of Probe Geometries in Isotropic and Anisotropic Systems. J. Phys. Condens. Matter. 2015;27:223201. doi: 10.1088/0953-8984/27/22/223201. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...