Infinite Selectivity of Wet SiO2 Etching in Respect to Al
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GJ18-06498Y
Grantová Agentura České Republiky
LM2015041
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32244504
PubMed Central
PMC7230285
DOI
10.3390/mi11040365
PII: mi11040365
Knihovny.cz E-zdroje
- Klíčová slova
- SiO2 etching, microelectromechanical systems (MEMS), sacrificial layer, selectivity,
- Publikační typ
- časopisecké články MeSH
We propose and demonstrate an unconventional method suitable for releasing microelectromechanical systems devices containing an Al layer by wet etching using SiO2 as a sacrificial layer. We used 48% HF solution in combination with 20% oleum to keep the HF solution water-free and thus to prevent attack of the Al layer, achieving an outstanding etch rate of thermally grown SiO2 of ≈1 µm·min-1. We also verified that this etching solution only minimally affected the Al layer, as the chip immersion for ≈9 min increased the Al layer sheet resistance by only ≈7.6%. The proposed etching method was performed in an ordinary fume hood in a polytetrafluorethylene beaker at elevated temperature of ≈70 °C using water bath on a hotplate. It allowed removal of the SiO2 sacrificial layer in the presence of Al without the necessity of handling highly toxic HF gas.
Zobrazit více v PubMed
Radamson H.H., He X., Zhang Q., Liu J., Cui H., Xiang J., Kong Z., Xiong W., Li J., Gao J., et al. Miniaturization of Cmos. Micromachines. 2019;10:293. doi: 10.3390/mi10050293. PubMed DOI PMC
Janssen G.C., Abdalla M.M., Van Keulen F., Pujada B.R., Van Venrooy B. Celebrating the 100th Anniversary of the Stoney Equation for Film Stress: Developments from Polycrystalline Steel Strips to Single Crystal Silicon Wafers. Thin Solid Film. 2009;517:1858–1867. doi: 10.1016/j.tsf.2008.07.014. DOI
Gablech I., Klempa J., Pekárek J., Vyroubal P., Hrabina J., Holá M., Kunz J., Brodský J., Neužil P. Simple and Efficient Aln-Based Piezoelectric Energy Harvesters. Micromachines. 2020;11:143. doi: 10.3390/mi11020143. PubMed DOI PMC
Petersen K.E. Silicon as a Mechanical Material. Proc. IEEE. 1982;70:420–457. doi: 10.1109/PROC.1982.12331. DOI
Dutta S., Imran M., Kumar P., Pal R., Datta P., Chatterjee R. Comparison of Etch Characteristics of Koh, Tmah and Edp for Bulk Micromachining of Silicon (110) Microsyst. Technol. 2011;17:1621. doi: 10.1007/s00542-011-1351-6. DOI
Hamzah A.A., Aziz N.A., Majlis B.Y., Yunas J., Dee C.F., Bais B. Optimization of Hna Etching Parameters to Produce High Aspect Ratio Solid Silicon Microneedles. J. Micromech. Microeng. 2012;22:095017. doi: 10.1088/0960-1317/22/9/095017. DOI
Rangelow I.W., Löschner H. Reactive Ion Etching for Microelectrical Mechanical System Fabrication. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1995;13:2394–2399. doi: 10.1116/1.588007. DOI
Laerme F., Schilp A., Funk K., Offenberg M. Bosch Deep Silicon Etching: Improving Uniformity and Etch Rate for Advanced Mems Applications; Proceedings of the Paper presented at the Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 99CH36291); Orlando, FL, USA. 21–21 January 1999.
Eisele K.M. Sf 6, a Preferable Etchant for Plasma Etching Silicon. J. Electrochem. Soc. 1981;128:123–126. doi: 10.1149/1.2127351. DOI
Winters H.F., Coburn J.W. The Etching of Silicon with Xef2 Vapor. Appl. Phys. Lett. 1979;34:70–73. doi: 10.1063/1.90562. DOI
Svatoš V., Gablech I., Ilic B.R., Pekárek J., Neužil P. In Situ Observation of Carbon Nanotube Layer Growth on Microbolometers with Substrates at Ambient Temperature. J. Appl. Phys. 2018;123:114503. doi: 10.1063/1.5016465. PubMed DOI PMC
Kovacs G.T.A., Maluf N.I., Petersen K.E. Bulk Micromachining of Silicon. Proc. IEEE. 1998;86:1536–1551. doi: 10.1109/5.704259. DOI
Guan D., Bruccoleri A.R., Heilmann R.K., Schattenburg M.L. Stress Control of Plasma Enhanced Chemical Vapor Deposited Silicon Oxide Film from Tetraethoxysilane. J. Micromech. Microeng. 2013;24:027001. doi: 10.1088/0960-1317/24/2/027001. DOI
Judy J. Microelectromechanical Systems (Mems): Fabrication, Design and Applications. Smart Mater. Struct. 2001;10:1115–1134. doi: 10.1088/0964-1726/10/6/301. DOI
Tarraf A., Daleiden J., Irmer S., Prasai D., Hillmer H. Stress Investigation of Pecvd Dielectric Layers for Advanced Optical Mems. J. Micromech. Microeng. 2003;14:317–323. doi: 10.1088/0960-1317/14/3/001. DOI
Hornbeck L.J. Current Status of the Digital Micromirror Device (Dmd) for Projection Television Applications; Proceedings of the Paper presented at the IEEE International Electron Devices Meeting; Washington, DC, USA. 5–8 December 1993.
Tea N.H., Milanovic V., Zincke C.A., Suehle J.S., Gaitan M., Zaghloul M.E., Geist J. Hybrid Postprocessing Etching for Cmos-Compatible Mems. J. Microelectromech. Syst. 1997;6:363–372. doi: 10.1109/84.650134. DOI
Domanský K., Petelenz D., Janata J. Effect of Thermal Treatment of Passivation Integrity of Chemical Vapor Deposition Silicon Nitride. Appl. Phys. Lett. 1992;60:2074–2076. doi: 10.1063/1.107093. DOI
Jang W.I., Choi C.A., Lee M.L., Jun C.H., Kim Y.T. Fabrication of Mems Devices by Using Anhydrous Hf Gas-Phase Etching with Alcoholic Vapor. J. Micromech. Microeng. 2002;12:297. doi: 10.1088/0960-1317/12/3/316. DOI
Witvrouw A., Bois B.D., de Moor P., Verbist A., van Hoof C.A., Bender H., Baert C. Comparison between Wet Hf Etching and Vapor Hf Etching for Sacrificial Oxide Removal; Proceedings of the Paper presented at the Micromachining and Microfabrication Process Technology VI; Santa Clara, CA, USA. 25 August 2000.
Gennissen P.T.J., French P.J. Sacrificial Oxide Etching Compatible with Aluminum Metallization; Proceedings of the International Solid State Sensors and Actuators Conference (Transducers ’97); Chicago, IL, USA. 19–19 June 1997; pp. 225–228.
Clews P.J., Mani S.S. Selective Etchant for Oxide Sacrificial Material in Semiconductor Device Fabrication. 6,893,578. U.S. Patent. 2005 May 17;
Amini B.V., Abdolvand R., Ayazi F. A 4.5-Mw Closed-Loop $\Delta\Sigma $ Micro-Gravity Cmos Soi Accelerometer. IEEE J. Solid State Circuits. 2006;41:2983–2991. doi: 10.1109/JSSC.2006.884864. DOI
Kuehnel W., Sherman S. A Surface Micromachined Silicon Accelerometer with on-Chip Detection Circuitry. Sens. Actuators A Phys. 1994;45:7–16. doi: 10.1016/0924-4247(94)00815-9. DOI
Syllaios A.J., Schimert T.R., Gooch R.W., McCardel W.L., Ritchey B.A., Tregilgas J.H. Amorphous Silicon Microbolometer Technology. MRS Online Proc. Libr. Arch. 2000;609:A14.4. doi: 10.1557/PROC-609-A14.4. DOI
Sedky S., Fiorini P., Baert K., Hermans L., Mertens R. Characterization and Optimization of Infrared Poly Sige Bolometers. IEEE Trans. Electron Devices. 1999;46:675–682. doi: 10.1109/16.753700. DOI
Akhavan J. The Chemistry of Explosives. Royal Society of Chemistry; London, UK: 2011.
Balram K.C., Westly D.A., Davanco M., Grutter K.E., Li Q., Michels T., Ray C.H., Yu L.Y., Kasica R.J., Wallin C.B., et al. The Nanolithography Toolbox. J. Res. Natl. Inst. Stand. Technol. 2016;121:464–475. doi: 10.6028/jres.121.024. PubMed DOI PMC
Walker P., Tarn W.H. Crc Handbook of Metal Etchants. CRC press; Boca raton, FL, USA: 1990.
Miccoli I., Edler F., Pfnür H., Tegenkamp C. The 100th Anniversary of the Four-Point Probe Technique: The Role of Probe Geometries in Isotropic and Anisotropic Systems. J. Phys. Condens. Matter. 2015;27:223201. doi: 10.1088/0953-8984/27/22/223201. PubMed DOI