Simple and Efficient AlN-Based Piezoelectric Energy Harvesters
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GJ18-06498Y
Grantová Agentura České Republiky
LM2015041
CEITEC Nano Research Infrastructure
FEKT-S-17-4595
BUT specific research program
PubMed
32012859
PubMed Central
PMC7074684
DOI
10.3390/mi11020143
PII: mi11020143
Knihovny.cz E-zdroje
- Klíčová slova
- AlN, complementary metal oxide semiconductor (CMOS) compatible, energy harvesting, high performance, micro-electro-mechanical systems (MEMS) cantilever,
- Publikační typ
- časopisecké články MeSH
In this work, we demonstrate the simple fabrication process of AlN-based piezoelectric energy harvesters (PEH), which are made of cantilevers consisting of a multilayer ion beam-assisted deposition. The preferentially (001) orientated AlN thin films possess exceptionally high piezoelectric coefficients d33 of (7.33 ± 0.08) pC∙N-1. The fabrication of PEH was completed using just three lithography steps, conventional silicon substrate with full control of the cantilever thickness, in addition to the thickness of the proof mass. As the AlN deposition was conducted at a temperature of ≈330 °C, the process can be implemented into standard complementary metal oxide semiconductor (CMOS) technology, as well as the CMOS wafer post-processing. The PEH cantilever deflection and efficiency were characterized using both laser interferometry, and a vibration shaker, respectively. This technology could become a core feature for future CMOS-based energy harvesters.
Central European Institute of Technology Brno University of Technology CZ 61600 Brno Czech Republic
Institute of Scientific Instruments Czech Academy of Sciences CZ 61264 Brno Czech Republic
Zobrazit více v PubMed
Liu H.C., Zhong J.W., Lee C., Lee S.W., Lin L.W. A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Appl. Phys. Rev. 2018;5:041306. doi: 10.1063/1.5074184. DOI
Du Y., Xu J., Paul B., Eklund P. Flexible thermoelectric materials and devices. Appl. Mater. Today. 2018;12:366–388. doi: 10.1016/j.apmt.2018.07.004. DOI
Toshiyoshi H., Ju S., Honma H., Ji C.H., Fujita H. MEMS vibrational energy harvesters. Sci. Technol. Adv. Mater. 2019;20:124–143. doi: 10.1080/14686996.2019.1569828. PubMed DOI PMC
Meninger S., Mur-Miranda J.O., Amirtharajah R., Chandrakasan A., Lang J.H. Vibration-to-electric energy conversion. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2001;9:64–76. doi: 10.1109/92.920820. DOI
Tian W.C., Ling Z.Y., Yu W.B., Shi J. A Review of MEMS Scale Piezoelectric Energy Harvester. Appl. Sci. 2018;8:645. doi: 10.3390/app8040645. DOI
Todaro M.T., Guido F., Mastronardi V., Desmaele D., Epifani G., Algieri L., De Vittorio M. Piezoelectric MEMS vibrational energy harvesters: Advances and outlook. Microelectron. Eng. 2017;183:23–36. doi: 10.1016/j.mee.2017.10.005. DOI
Wang P.H., Du H.J. ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance. Rev. Sci. Instrum. 2015;86:075002. doi: 10.1063/1.4923456. PubMed DOI
Tian Y.W., Li G.M., Yi Z.R., Liu J.Q., Yang B. A low-frequency MEMS piezoelectric energy harvester with a rectangular hole based on bulk PZT film. J. Phys. Chem. Solids. 2018;117:21–27. doi: 10.1016/j.jpcs.2018.02.024. DOI
Yeo H.G., Ma X.K., Rahn C., Trolier-McKinstry S. Efficient Piezoelectric Energy Harvesters Utilizing (001) Textured Bimorph PZT Films on Flexible Metal Foils. Adv. Funct. Mater. 2016;26:5940–5946. doi: 10.1002/adfm.201601347. DOI
Toprak A., Tigli O. MEMS Scale PVDF-TrFE-Based Piezoelectric Energy Harvesters. J. Microelectromech. Syst. 2015;24:1989–1997. doi: 10.1109/JMEMS.2015.2457782. DOI
Fei C., Liu X., Zhu B., Li D., Yang X., Yang Y., Zhou Q. AlN piezoelectric thin films for energy harvesting and acoustic devices. Nano Energy. 2018;51:146–161. doi: 10.1016/j.nanoen.2018.06.062. DOI
Conrad H., Schmidt J.U., Pufe W., Zimmer F., Sandner T., Schenk H., Lakner H. Aluminum Nitride—A promising and Full CMOS Compatible Piezoelectric Material for MOEMS Applications. Proc. SPIE. 2009;7362:73620J.
Doll J.C., Petzold B.C., Ninan B., Mullapudi R., Pruitt B.L. Aluminum nitride on titanium for CMOS compatible piezoelectric transducers. J. Micromech. Microeng. 2009;20:025008. doi: 10.1088/0960-1317/20/2/025008. PubMed DOI PMC
Zhao X.Q., Shang Z.G., Luo G.X., Deng L.C. A vibration energy harvester using AlN piezoelectric cantilever array. Microelectron. Eng. 2015;142:47–51. doi: 10.1016/j.mee.2015.07.006. DOI
Yang Z., Zhou S., Zu J., Inman D. High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule. 2018;2:642–697. doi: 10.1016/j.joule.2018.03.011. DOI
Hadas Z., Smilek J. Efficiency of vibration energy harvesting systems: Technology, Components and System Design. In: Kanoun O., editor. Energy Harvesting for Wireless Sensor Networks. De Gruyter; Berlin, Germany: 2018. pp. 45–64.
Ahrberg C.D., Ilic B.R., Manz A., Neuzil P. Handheld real-time PCR device. Lab Chip. 2016;16:586–592. doi: 10.1039/C5LC01415H. PubMed DOI PMC
Gablech I., Caha O., Svatos V., Pekarek J., Neuzil P., Sikola T. Stress-free deposition of [001] preferentially oriented titanium thin film by Kaufman ion-beam source. Thin Solid Films. 2017;638:57–62. doi: 10.1016/j.tsf.2017.07.039. DOI
Gablech I., Svatos V., Caha O., Hrabovsky M., Prasek J., Hubalek J., Sikola T. Preparation of (001) preferentially oriented titanium thin films by ion-beam sputtering deposition on thermal silicon dioxide. J. Mater. Sci. 2016;51:3329–3336. doi: 10.1007/s10853-015-9648-y. DOI
Gablech I., Svatoš V., Caha O., Dubroka A., Pekárek J., Klempa J., Neužil P., Schneider M., Šikola T. Preparation of high-quality stress-free (001) aluminum nitride thin film using a dual Kaufman ion-beam source setup. Thin Solid Films. 2019;670:105–112. doi: 10.1016/j.tsf.2018.12.035. DOI
Mallik P.K.S., Rao D.S. Vibration control on composite beams with multiple piezoelectric patches using finite element analysis. Int. Res. J. Eng. Technol. 2017;4:6.
Kunz J., Fialka J., Benes P., Havranek Z. An Automated measurement system for measuring an overall power efficiency and a characterisation of piezo harvesters. J. Phys. Conf. Ser. 2018;1065:202008. doi: 10.1088/1742-6596/1065/20/202008. DOI
Erturk A., Inman D.J. Piezoelectric Energy Harvesting. Wiley; Hoboken, NJ, USA: 2011.
Minh L.V., Kuwano H. Highly Efficient Piezoelectric Micro-Energy Harvesters with Aln Thin Films Grown Directly on Flexible Ti Foils; Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS); Las Vegas, NV, USA. 22–26 January 2017; pp. 833–836.
Nabavi S., Zhang L.H. Nonlinear Multi-Mode Wideband Piezoelectric MEMS Vibration Energy Harvester. IEEE Sens. J. 2019;19:4837–4848. doi: 10.1109/JSEN.2019.2904025. DOI
Iannacci J., Sordo G., Schneider M., Schmid U., Camarda A., Romani A. A Novel Toggle-Type MEMS Vibration Energy Harvester for Internet of Things Applications; Proceedings of the 2016 IEEE SENSORS; Orlando, FL, USA. 30 October–3 November 2016.
He X.M., Wen Q., Lu Z., Shang Z.G., Wen Z.Y. A micro-electromechanical systems based vibration energy harvester with aluminum nitride piezoelectric thin film deposited by pulsed direct-current magnetron sputtering. Appl. Energy. 2018;228:881–890. doi: 10.1016/j.apenergy.2018.07.001. DOI
Jia Y., Seshia A.A. Power Optimization by Mass Tuning for MEMS Piezoelectric Cantilever Vibration Energy Harvesting. J. Microelectromech. Syst. 2016;25:108–117. doi: 10.1109/JMEMS.2015.2496346. DOI