Blood metabolomic and transcriptomic signatures stratify patient subgroups in multiple sclerosis according to disease severity

. 2024 Mar 15 ; 27 (3) : 109225. [epub] 20240215

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38433900
Odkazy

PubMed 38433900
PubMed Central PMC10907838
DOI 10.1016/j.isci.2024.109225
PII: S2589-0042(24)00446-2
Knihovny.cz E-zdroje

There are no blood-based biomarkers distinguishing patients with relapsing-remitting (RRMS) from secondary progressive multiple sclerosis (SPMS) although evidence supports metabolomic changes according to MS disease severity. Here machine learning analysis of serum metabolomic data stratified patients with RRMS from SPMS with high accuracy and a putative score was developed that stratified MS patient subsets. The top differentially expressed metabolites between SPMS versus patients with RRMS included lipids and fatty acids, metabolites enriched in pathways related to cellular respiration, notably, elevated lactate and glutamine (gluconeogenesis-related) and acetoacetate and bOHbutyrate (ketone bodies), and reduced alanine and pyruvate (glycolysis-related). Serum metabolomic changes were recapitulated in the whole blood transcriptome, whereby differentially expressed genes were also enriched in cellular respiration pathways in patients with SPMS. The final gene-metabolite interaction network demonstrated a potential metabolic shift from glycolysis toward increased gluconeogenesis and ketogenesis in SPMS, indicating metabolic stress which may trigger stress response pathways and subsequent neurodegeneration.

Zobrazit více v PubMed

Filippi M., Bar-Or A., Piehl F., Preziosa P., Solari A., Vukusic S., Rocca M.A. Multiple sclerosis. Nat. Rev. Dis. Prim. 2018;4:43. doi: 10.1038/s41572-018-0041-4. PubMed DOI

Dendrou C.A., Fugger L., Friese M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015;15:545–558. doi: 10.1038/nri3871. https://www.nature.com/articles/nri3871#supplementary-information PubMed DOI

Trapp B.D., Nave K.-A. Multiple Sclerosis: An Immune or Neurodegenerative Disorder? Annu. Rev. Neurosci. 2008;31:247–269. doi: 10.1146/annurev.neuro.30.051606.094313. PubMed DOI

Attfield K.E., Jensen L.T., Kaufmann M., Friese M.A., Fugger L. The immunology of multiple sclerosis. Nat. Rev. Immunol. 2022;22:734–750. doi: 10.1038/s41577-022-00718-z. PubMed DOI

Correale J., Gaitán M.I., Gaitán M.I., Fiol M.P. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain. 2017;140:527–546. doi: 10.1093/brain/aww258. PubMed DOI

Brownlee W.J., Hardy T.A., Fazekas F., Miller D.H. Diagnosis of multiple sclerosis: progress and challenges. Lancet. 2017;389:1336–1346. doi: 10.1016/S0140-6736(16)30959-X. PubMed DOI

Kappos L., Butzkueven H., Wiendl H., Spelman T., Pellegrini F., Chen Y., Dong Q., Koendgen H., Belachew S., Trojano M., Tysabri® Observational Program TOP Investigators Greater sensitivity to multiple sclerosis disability worsening and progression events using a roving versus a fixed reference value in a prospective cohort study. Mult. Scler. 2018;24:963–973. doi: 10.1177/1352458517709619. PubMed DOI PMC

Liu Z., Waters J., Rui B. Metabolomics as a promising tool for improving understanding of multiple sclerosis: A review of recent advances. Biomed. J. 2022;45:594–606. doi: 10.1016/j.bj.2022.01.004. PubMed DOI PMC

Chiricosta L., Blando S., D’Angiolini S., Gugliandolo A., Mazzon E. A Comprehensive Exploration of the Transcriptomic Landscape in Multiple Sclerosis: A Systematic Review. Int. J. Mol. Sci. 2023;24:1448. PubMed PMC

Bhargava P., Anthony D.C. Metabolomics in multiple sclerosis disease course and progression. Mult. Scler. 2020;26:591–598. doi: 10.1177/1352458519876020. PubMed DOI

Fitzgerald K.C., Smith M.D., Kim S., Sotirchos E.S., Kornberg M.D., Douglas M., Nourbakhsh B., Graves J., Rattan R., Poisson L., et al. Multi-omic evaluation of metabolic alterations in multiple sclerosis identifies shifts in aromatic amino acid metabolism. Cell Rep. Med. 2021;2 doi: 10.1016/j.xcrm.2021.100424. PubMed DOI PMC

Poddighe S., Murgia F., Lorefice L., Liggi S., Cocco E., Marrosu M.G., Atzori L. Metabolomic analysis identifies altered metabolic pathways in Multiple Sclerosis. Int. J. Biochem. Cell Biol. 2017;93:148–155. doi: 10.1016/j.biocel.2017.07.004. PubMed DOI

Jurynczyk M., Probert F., Yeo T., Tackley G., Claridge T.D.W., Cavey A., Woodhall M.R., Arora S., Winkler T., Schiffer E., et al. Metabolomics reveals distinct, antibody-independent, molecular signatures of MS, AQP4-antibody and MOG-antibody disease. Acta Neuropathol. Commun. 2017;5:95. doi: 10.1186/s40478-017-0495-8. PubMed DOI PMC

Dickens A.M., Larkin J.R., Griffin J.L., Cavey A., Matthews L., Turner M.R., Wilcock G.K., Davis B.G., Claridge T.D.W., Palace J., et al. A type 2 biomarker separates relapsing-remitting from secondary progressive multiple sclerosis. Neurology. 2014;83:1492–1499. doi: 10.1212/wnl.0000000000000905. PubMed DOI PMC

Stoessel D., Stellmann J.P., Willing A., Behrens B., Rosenkranz S.C., Hodecker S.C., Stürner K.H., Reinhardt S., Fleischer S., Deuschle C., et al. Metabolomic Profiles for Primary Progressive Multiple Sclerosis Stratification and Disease Course Monitoring. Front. Hum. Neurosci. 2018;12:226. doi: 10.3389/fnhum.2018.00226. PubMed DOI PMC

Nali L.H., Olival G.S., Sousa F.T.G., de Oliveira A.C.S., Montenegro H., da Silva I.T., Dias-Neto E., Naya H., Spangenberg L., Penalva-de-Oliveira A.C., Romano C.M. Whole transcriptome analysis of multiple Sclerosis patients reveals active inflammatory profile in relapsing patients and downregulation of neurological repair pathways in secondary progressive cases. Mult. Scler. Relat. Disord. 2020;44 doi: 10.1016/j.msard.2020.102243. PubMed DOI

Kihara Y., Zhu Y., Jonnalagadda D., Romanow W., Palmer C., Siddoway B., Rivera R., Dutta R., Trapp B.D., Chun J. Single-Nucleus RNA-seq of Normal-Appearing Brain Regions in Relapsing-Remitting vs. Secondary Progressive Multiple Sclerosis: Implications for the Efficacy of Fingolimod. Front. Cell. Neurosci. 2022;16 doi: 10.3389/fncel.2022.918041. PubMed DOI PMC

Voskuhl R.R., Itoh N., Tassoni A., Matsukawa M.A., Ren E., Tse V., Jang E., Suen T.T., Itoh Y. Gene expression in oligodendrocytes during remyelination reveals cholesterol homeostasis as a therapeutic target in multiple sclerosis. Proc. Natl. Acad. Sci. USA. 2019;116:10130–10139. doi: 10.1073/pnas.1821306116. PubMed DOI PMC

Malhotra S., Costa C., Eixarch H., Keller C.W., Amman L., Martínez-Banaclocha H., Midaglia L., Sarró E., Machín-Díaz I., Villar L.M., et al. NLRP3 inflammasome as prognostic factor and therapeutic target in primary progressive multiple sclerosis patients. Brain. 2020;143:1414–1430. doi: 10.1093/brain/awaa084. PubMed DOI

Coelewij L., Waddington K.E., Robinson G.A., Chocano E., McDonnell T., Farinha F., Peng J., Dönnes P., Smith E., Croca S., et al. Serum Metabolomic Signatures Can Predict Subclinical Atherosclerosis in Patients With Systemic Lupus Erythematosus. Arterioscler. Thromb. Vasc. Biol. 2021;41:1446–1458. doi: 10.1161/atvbaha.120.315321. PubMed DOI PMC

Chong J., Xia J. Using MetaboAnalyst 4.0 for Metabolomics Data Analysis, Interpretation, and Integration with Other Omics Data. Methods Mol. Biol. 2020;2104:337–360. doi: 10.1007/978-1-0716-0239-3_17. PubMed DOI

Xie F., Chakraborty B., Ong M.E.H., Goldstein B.A., Liu N. AutoScore: A Machine Learning-Based Automatic Clinical Score Generator and Its Application to Mortality Prediction Using Electronic Health Records. JMIR Med. Inform. 2020;8 doi: 10.2196/21798. PubMed DOI PMC

Mathur D., López-Rodas G., Casanova B., Marti M.B. Perturbed glucose metabolism: insights into multiple sclerosis pathogenesis. Front. Neurol. 2014;5:250. doi: 10.3389/fneur.2014.00250. PubMed DOI PMC

Nijland P.G., Molenaar R.J., van der Pol S.M.A., van der Valk P., van Noorden C.J.F., de Vries H.E., van Horssen J. Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions. Acta Neuropathol. Commun. 2015;3:79. doi: 10.1186/s40478-015-0261-8. PubMed DOI PMC

Yoon N., Jang A.K., Seo Y., Jung B.H. Metabolomics in Autoimmune Diseases: Focus on Rheumatoid Arthritis, Systemic Lupus Erythematous, and Multiple Sclerosis. Metabolites. 2021;11 doi: 10.3390/metabo11120812. PubMed DOI PMC

Kallaur A.P., Oliveira S.R., Simão A.N.C., Alfieri D.F., Flauzino T., Lopes J., de Carvalho Jennings Pereira W.L., de Meleck Proença C., Borelli S.D., Kaimen-Maciel D.R., et al. Cytokine Profile in Patients with Progressive Multiple Sclerosis and Its Association with Disease Progression and Disability. Mol. Neurobiol. 2017;54:2950–2960. doi: 10.1007/s12035-016-9846-x. PubMed DOI

Ofengeim D., Ito Y., Najafov A., Zhang Y., Shan B., DeWitt J.P., Ye J., Zhang X., Chang A., Vakifahmetoglu-Norberg H., et al. Activation of Necroptosis in Multiple Sclerosis. Cell Rep. 2015;10:1836–1849. doi: 10.1016/j.celrep.2015.02.051. PubMed DOI PMC

Goutman S.A., Hardiman O., Al-Chalabi A., Chió A., Savelieff M.G., Kiernan M.C., Feldman E.L. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol. 2022;21:465–479. doi: 10.1016/S1474-4422(21)00414-2. PubMed DOI PMC

Honorat J.A., Nakatsuji Y., Shimizu M., Kinoshita M., Sumi-Akamaru H., Sasaki T., Takata K., Koda T., Namba A., Yamashita K., et al. Febuxostat ameliorates secondary progressive experimental autoimmune encephalomyelitis by restoring mitochondrial energy production in a GOT2-dependent manner. PLoS One. 2017;12 doi: 10.1371/journal.pone.0187215. PubMed DOI PMC

Zahoor I., Rui B., Khan J., Datta I., Giri S. An emerging potential of metabolomics in multiple sclerosis: a comprehensive overview. Cell. Mol. Life Sci. 2021;78:3181–3203. doi: 10.1007/s00018-020-03733-2. PubMed DOI PMC

Porter L., Shoushtarizadeh A., Jelinek G.A., Brown C.R., Lim C.K., de Livera A.M., Jacobs K.R., Weiland T.J. Metabolomic Biomarkers of Multiple Sclerosis: A Systematic Review. Front. Mol. Biosci. 2020;7 doi: 10.3389/fmolb.2020.574133. PubMed DOI PMC

Zahoor I., Suhail H., Datta I., Ahmed M.E., Poisson L.M., Waters J., Rashid F., Bin R., Singh J., Cerghet M., et al. Blood-based untargeted metabolomics in relapsing-remitting multiple sclerosis revealed the testable therapeutic target. Proc. Natl. Acad. Sci. USA. 2022;119 doi: 10.1073/pnas.2123265119. PubMed DOI PMC

Compston A., Coles A. Multiple sclerosis. Lancet. 2008;372:1502–1517. doi: 10.1016/s0140-6736(08)61620-7. PubMed DOI

Pitt D., Lo C.H., Gauthier S.A., Hickman R.A., Longbrake E., Airas L.M., Mao-Draayer Y., Riley C., De Jager P.L., Wesley S., et al. Toward Precision Phenotyping of Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2022;9 doi: 10.1212/nxi.0000000000200025. PubMed DOI PMC

Dayon L., Cominetti O., Wojcik J., Galindo A.N., Oikonomidi A., Henry H., Migliavacca E., Kussmann M., Bowman G.L., Popp J. Proteomes of Paired Human Cerebrospinal Fluid and Plasma: Relation to Blood-Brain Barrier Permeability in Older Adults. J. Proteome Res. 2019;18:1162–1174. doi: 10.1021/acs.jproteome.8b00809. PubMed DOI

Maroto-García J., Martínez-Escribano A., Delgado-Gil V., Mañez M., Mugueta C., Varo N., García de la Torre Á., Ruiz-Galdón M. Biochemical biomarkers for multiple sclerosis. Clin. Chim. Acta. 2023;548 doi: 10.1016/j.cca.2023.117471. PubMed DOI

Varhaug K.N., Torkildsen Ø., Myhr K.-M., Vedeler C.A. Neurofilament Light Chain as a Biomarker in Multiple Sclerosis. Front. Neurol. 2019;10 doi: 10.3389/fneur.2019.00338. PubMed DOI PMC

Lötsch J., Schiffmann S., Schmitz K., Brunkhorst R., Lerch F., Ferreiros N., Wicker S., Tegeder I., Geisslinger G., Ultsch A. Machine-learning based lipid mediator serum concentration patterns allow identification of multiple sclerosis patients with high accuracy. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-33077-8. PubMed DOI PMC

Mehrpour M., Kyani A., Tafazzoli M., Fathi F., Joghataie M.-T. A metabonomics investigation of multiple sclerosis by nuclear magnetic resonance. Magn. Reson. Chem. 2013;51:102–109. doi: 10.1002/mrc.3915. PubMed DOI

Kim H.H., Jeong I.H., Hyun J.S., Kong B.S., Kim H.J., Park S.J. Metabolomic profiling of CSF in multiple sclerosis and neuromyelitis optica spectrum disorder by nuclear magnetic resonance. PLoS One. 2017;12 doi: 10.1371/journal.pone.0181758. PubMed DOI PMC

Yeo T., Sealey M., Zhou Y., Saldana L., Loveless S., Claridge T.D.W., Robertson N., DeLuca G., Palace J., Anthony D.C., Probert F. A blood-based metabolomics test to distinguish relapsing-remitting and secondary progressive multiple sclerosis: addressing practical considerations for clinical application. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-69119-3. PubMed DOI PMC

Julkunen H., Cichońska A., Tiainen M., Koskela H., Nybo K., Mäkelä V., Nokso-Koivisto J., Kristiansson K., Perola M., Salomaa V., et al. Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. Nat. Commun. 2023;14:604. doi: 10.1038/s41467-023-36231-7. PubMed DOI PMC

Tikkanen E., Jägerroos V., Holmes M.V., Sattar N., Ala-Korpela M., Jousilahti P., Lundqvist A., Perola M., Salomaa V., Würtz P. Metabolic Biomarker Discovery for Risk of Peripheral Artery Disease Compared With Coronary Artery Disease: Lipoprotein and Metabolite Profiling of 31 657 Individuals From 5 Prospective Cohorts. J. Am. Heart Assoc. 2021;10 doi: 10.1161/jaha.121.021995. PubMed DOI PMC

Cocco E., Murgia F., Lorefice L., Barberini L., Poddighe S., Frau J., Fenu G., Coghe G., Murru M.R., Murru R., et al. (1)H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2016;3:e185. doi: 10.1212/nxi.0000000000000185. PubMed DOI PMC

Lorefice L., Murgia F., Fenu G., Frau J., Coghe G., Murru M.R., Tranquilli S., Visconti A., Marrosu M.G., Atzori L., Cocco E. Assessing the Metabolomic Profile of Multiple Sclerosis Patients Treated with Interferon Beta 1a by (1)H-NMR Spectroscopy. Neurotherapeutics. 2019;16:797–807. doi: 10.1007/s13311-019-00721-8. PubMed DOI PMC

Zhang Y., Kuang Y., Xu K., Harris D., Lee Z., LaManna J., Puchowicz M.A. Ketosis proportionately spares glucose utilization in brain. J. Cerebr. Blood Flow Metabol. 2013;33:1307–1311. doi: 10.1038/jcbfm.2013.87. PubMed DOI PMC

Kaufmann M., Schaupp A.-L., Sun R., Coscia F., Dendrou C.A., Cortes A., Kaur G., Evans H.G., Mollbrink A., Navarro J.F., et al. Identification of early neurodegenerative pathways in progressive multiple sclerosis. Nat. Neurosci. 2022;25:944–955. doi: 10.1038/s41593-022-01097-3. PubMed DOI

Argelaguet R., Velten B., Arnol D., Dietrich S., Zenz T., Marioni J.C., Buettner F., Huber W., Stegle O. Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 2018;14:e8124. doi: 10.15252/msb.20178124. PubMed DOI PMC

Singh A., Shannon C.P., Gautier B., Rohart F., Vacher M., Tebbutt S.J., Lê Cao K.A. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics. 2019;35:3055–3062. doi: 10.1093/bioinformatics/bty1054. PubMed DOI PMC

O'Connor L.M., O'Connor B.A., Lim S.B., Zeng J., Lo C.H. Integrative multi-omics and systems bioinformatics in translational neuroscience: A data mining perspective. J. Pharm. Anal. 2023;13:836–850. doi: 10.1016/j.jpha.2023.06.011. PubMed DOI PMC

Hasin Y., Seldin M., Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18:83. doi: 10.1186/s13059-017-1215-1. PubMed DOI PMC

Waddington K.E., Papadaki A., Coelewij L., Adriani M., Nytrova P., Kubala Havrdova E., Fogdell-Hahn A., Farrell R., Dönnes P., Pineda-Torra I., Jury E.C. Using Serum Metabolomics to Predict Development of Anti-drug Antibodies in Multiple Sclerosis Patients Treated With IFNβ. Front. Immunol. 2020;11:1527. doi: 10.3389/fimmu.2020.01527. PubMed DOI PMC

Adriani M., Nytrova P., Mbogning C., Hässler S., Medek K., Jensen P.E.H., Creeke P., Warnke C., Ingenhoven K., Hemmer B., et al. Monocyte NOTCH2 expression predicts IFN-β immunogenicity in multiple sclerosis patients. JCI Insight. 2018;3 doi: 10.1172/jci.insight.99274. PubMed DOI PMC

Peng J., Jury E.C., Dönnes P., Ciurtin C. Machine Learning Techniques for Personalised Medicine Approaches in Immune-Mediated Chronic Inflammatory Diseases: Applications and Challenges. Front. Pharmacol. 2021;12 doi: 10.3389/fphar.2021.720694. PubMed DOI PMC

Eriksen R., Perez I.G., Posma J.M., Haid M., Sharma S., Prehn C., Thomas L.E., Koivula R.W., Bizzotto R., Prehn C., et al. Dietary metabolite profiling brings new insight into the relationship between nutrition and metabolic risk: An IMI DIRECT study. EBioMedicine. 2020;58 doi: 10.1016/j.ebiom.2020.102932. PubMed DOI PMC

Robinson G.A., Peng J., Peckham H., Radziszewska A., Butler G., Pineda-Torra I., Jury E.C., Ciurtin C. Sex hormones drive changes in lipoprotein metabolism. iScience. 2021;24 doi: 10.1016/j.isci.2021.103257. PubMed DOI PMC

Battle A., Khan Z., Wang S.H., Mitrano A., Ford M.J., Pritchard J.K., Gilad Y. Genomic variation. Impact of regulatory variation from RNA to protein. Science. 2015;347:664–667. doi: 10.1126/science.1260793. PubMed DOI PMC

Emwas A.H.M. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol. Biol. 2015;1277:161–193. doi: 10.1007/978-1-4939-2377-9_13. PubMed DOI

Lorincz B., Jury E.C., Vrablik M., Ramanathan M., Uher T. The role of cholesterol metabolism in multiple sclerosis: From molecular pathophysiology to radiological and clinical disease activity. Autoimmun. Rev. 2022;21 doi: 10.1016/j.autrev.2022.103088. PubMed DOI

Pineda-Torra I., Siddique S., Waddington K.E., Farrell R., Jury E.C. Disrupted Lipid Metabolism in Multiple Sclerosis: A Role for Liver X Receptors? Front. Endocrinol. 2021;12 doi: 10.3389/fendo.2021.639757. PubMed DOI PMC

Uher T., Fellows K., Horakova D., Zivadinov R., Vaneckova M., Sobisek L., Tyblova M., Seidl Z., Krasensky J., Bergsland N., et al. Serum lipid profile changes predict neurodegeneration in interferon-β1a-treated multiple sclerosis patients. J. Lipid Res. 2017;58:403–411. doi: 10.1194/jlr.M072751. PubMed DOI PMC

Tettey P., Simpson S., Jr., Taylor B., Blizzard L., Ponsonby A.L., Dwyer T., Kostner K., van der Mei I. An adverse lipid profile is associated with disability and progression in disability, in people with MS. Mult. Scler. 2014;20:1737–1744. doi: 10.1177/1352458514533162. PubMed DOI

Gafson A.R., Thorne T., McKechnie C.I.J., Jimenez B., Nicholas R., Matthews P.M. Lipoprotein markers associated with disability from multiple sclerosis. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-35232-7. PubMed DOI PMC

Cantuti-Castelvetri L., Fitzner D., Bosch-Queralt M., Weil M.-T., Su M., Sen P., Ruhwedel T., Mitkovski M., Trendelenburg G., Lütjohann D., et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science. 2018;359:684–688. doi: 10.1126/science.aan4183. PubMed DOI

Jorissen W., Wouters E., Bogie J.F., Vanmierlo T., Noben J.P., Sviridov D., Hellings N., Somers V., Valcke R., Vanwijmeersch B., et al. Relapsing-remitting multiple sclerosis patients display an altered lipoprotein profile with dysfunctional HDL. Sci. Rep. 2017;7 doi: 10.1038/srep43410. PubMed DOI PMC

Yu H., Bai S., Hao Y., Guan Y. Fatty acids role in multiple sclerosis as “metabokines”. J. Neuroinflammation. 2022;19:157. doi: 10.1186/s12974-022-02502-1. PubMed DOI PMC

Broos J.Y., Loonstra F.C., de Ruiter L.R.J., Gouda M., Fung W.H., Schoonheim M.M., Heijink M., Strijbis E.M.M., Teunissen C., Killestein J., et al. Association of Arachidonic Acid–Derived Lipid Mediators With Disease Severity in Patients With Relapsing and Progressive Multiple Sclerosis. Neurology. 2023;101:e533–e545. doi: 10.1212/wnl.0000000000207459. PubMed DOI PMC

Gijs K., Claudio Derada T., Alessandro L., Paul C.N., Ian R., Maria A., Serena R., Stephania L., Susanne M.A.v.d.P., Bert van het H., et al. Specialized pro-resolving lipid mediators are differentially altered in peripheral blood of patients with multiple sclerosis and attenuate monocyte and blood-brain barrier dysfunction. Haematologica. 2020;105:2056–2070. doi: 10.3324/haematol.2019.219519. PubMed DOI PMC

Palumbo S. In: Multiple Sclerosis: Perspectives in Treatment and Pathogenesis. Zagon I.S., McLaughlin P.J., editors. Codon Publications; 2017. Pathogenesis and Progression of Multiple Sclerosis: The Role of Arachidonic Acid–Mediated Neuroinflammation.https://www.ncbi.nlm.nih.gov/books/NBK470143/ PubMed DOI

Jakimovski D., Weinstock-Guttman B., Gandhi S., Guan Y., Hagemeier J., Ramasamy D.P., Fuchs T.A., Browne R.W., Bergsland N., Dwyer M.G., et al. Dietary and lifestyle factors in multiple sclerosis progression: results from a 5-year longitudinal MRI study. J. Neurol. 2019;266:866–875. doi: 10.1007/s00415-019-09208-0. PubMed DOI

Jakimovski D., Gandhi S., Paunkoski I., Bergsland N., Hagemeier J., Ramasamy D.P., Hojnacki D., Kolb C., Benedict R.H.B., Weinstock-Guttman B., Zivadinov R. Hypertension and heart disease are associated with development of brain atrophy in multiple sclerosis: a 5-year longitudinal study. Eur. J. Neurol. 2019;26:87–e8. doi: 10.1111/ene.13769. PubMed DOI

Ramírez-Salazar S.A., Herren C., McCartney J., Ortiz García J.G. Dietary Insights in Neurological Diseases. Curr. Neurol. Neurosci. Rep. 2021;21:55. doi: 10.1007/s11910-021-01143-w. PubMed DOI

Chataway J., Schuerer N., Alsanousi A., Chan D., MacManus D., Hunter K., Anderson V., Bangham C.R.M., Clegg S., Nielsen C., et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet. 2014;383:2213–2221. doi: 10.1016/s0140-6736(13)62242-4. PubMed DOI

Eshaghi A., Kievit R.A., Prados F., Sudre C.H., Nicholas J., Cardoso M.J., Chan D., Nicholas R., Ourselin S., Greenwood J., et al. Applying causal models to explore the mechanism of action of simvastatin in progressive multiple sclerosis. Proc. Natl. Acad. Sci. USA. 2019;116:11020–11027. doi: 10.1073/pnas.1818978116. PubMed DOI PMC

Gurevich M., Miron G., Falb R.Z., Magalashvili D., Dolev M., Stern Y., Achiron A. Transcriptional response to interferon beta-1a treatment in patients with secondary progressive multiple sclerosis. BMC Neurol. 2015;15:240. doi: 10.1186/s12883-015-0495-x. PubMed DOI PMC

Koch M.W., Ilnytskyy Y., Golubov A., Metz L.M., Yong V.W., Kovalchuk O. Global transcriptome profiling of mild relapsing-remitting versus primary progressive multiple sclerosis. Eur. J. Neurol. 2018;25:651–658. doi: 10.1111/ene.13565. PubMed DOI

Rohart F., Gautier B., Singh A., Lê Cao K.A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017;13 doi: 10.1371/journal.pcbi.1005752. PubMed DOI PMC

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Zhou Y., Zhou B., Pache L., Chang M., Khodabakhshi A.H., Tanaseichuk O., Benner C., Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019;10:1523. doi: 10.1038/s41467-019-09234-6. PubMed DOI PMC

Metsalu T., Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43:W566–W570. doi: 10.1093/nar/gkv468. PubMed DOI PMC

Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC

Piñero J., Ramírez-Anguita J.M., Saüch-Pitarch J., Ronzano F., Centeno E., Sanz F., Furlong L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48:D845–D855. doi: 10.1093/nar/gkz1021. PubMed DOI PMC

Friedman J., Hastie T., Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010;33:1–22. doi: 10.18637/jss.v033.i01. PubMed DOI PMC

Ruczinski I., Kooperberg C., LeBlanc M. Logic regression. J. Comput. Graph Stat. 2003;12:475–511.

Kuhn M. Building Predictive Models in R Using the Caret Package. Journal of statistical software. 2008;28:26. doi: 10.18637/jss.v028.i05. DOI

Tuszynski J. 2021. caTools: Tools: Moving Window Statistics, GIF, Base64, ROC AUC, Etc.https://CRAN.R-project.org/package=caTools

Wilkinson L. ggplot2: Elegant Graphics for Data Analysis by WICKHAM. Biometrics. 2011;67:678–679. doi: 10.1111/j.1541-0420.2011.01616.x. DOI

Gu Z., Gu L., Eils R., Schlesner M., Brors B. circlize Implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2812. doi: 10.1093/bioinformatics/btu393. PubMed DOI

Diedenhofen B., Musch J. cocor: A Comprehensive Solution for the Statistical Comparison of Correlations. PLoS One. 2015;10 doi: 10.1371/journal.pone.0121945. PubMed DOI PMC

Blighe K., Rana S., Lewis M. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. 2023. https://github.com/kevinblighe/EnhancedVolcano R package version 1.18.0.

Erich Neuwirth 2022 RColorBrewer: ColorBrewer Palettes. https://CRAN.R-project.org/package=RColorBrewer

Alboukadel Kassambara 2020 Ggpubr: 'ggplot2' Based Publication Ready Plots. https://CRAN.R-project.org/package=ggpubr

Raivo Kolde 2019 Pheatmap: Pretty Heatmaps. https://CRAN.R-project.org/package=pheatmap

Polman C.H., Reingold S.C., Banwell B., Clanet M., Cohen J.A., Filippi M., Fujihara K., Havrdova E., Hutchinson M., Kappos L., et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011;69:292–302. doi: 10.1002/ana.22366. PubMed DOI PMC

Wang F., Debik J., Andreassen T., Euceda L.R., Haukaas T.H., Cannet C., Schäfer H., Bathen T.F., Giskeødegård G.F. Effect of Repeated Freeze-Thaw Cycles on NMR-Measured Lipoproteins and Metabolites in Biofluids. J. Proteome Res. 2019;18:3681–3688. doi: 10.1021/acs.jproteome.9b00343. PubMed DOI

Picard Toolkit . Broad Institute, GitHub; 2019. picard: A Set of Command Line Tools (In Java) for Manipulating High-Throughput Sequencing (HTS) Data and Formats Such as SAM/BAM/CRAM and VCF.https://github.com/broadinstitute/picard

Dobin A. GitHub; 2022. STAR: RNA-seq aligner.https://github.com/alexdobin/STAR

Chen S., Zhou Y., Chen Y., Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC

The R Project for Statistical Computing. https://www.r-project.org/

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...