Blood metabolomic and transcriptomic signatures stratify patient subgroups in multiple sclerosis according to disease severity
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
38433900
PubMed Central
PMC10907838
DOI
10.1016/j.isci.2024.109225
PII: S2589-0042(24)00446-2
Knihovny.cz E-resources
- Keywords
- Classification Description, Machine learning, Metabolomics, Molecular network, Transcriptomics,
- Publication type
- Journal Article MeSH
There are no blood-based biomarkers distinguishing patients with relapsing-remitting (RRMS) from secondary progressive multiple sclerosis (SPMS) although evidence supports metabolomic changes according to MS disease severity. Here machine learning analysis of serum metabolomic data stratified patients with RRMS from SPMS with high accuracy and a putative score was developed that stratified MS patient subsets. The top differentially expressed metabolites between SPMS versus patients with RRMS included lipids and fatty acids, metabolites enriched in pathways related to cellular respiration, notably, elevated lactate and glutamine (gluconeogenesis-related) and acetoacetate and bOHbutyrate (ketone bodies), and reduced alanine and pyruvate (glycolysis-related). Serum metabolomic changes were recapitulated in the whole blood transcriptome, whereby differentially expressed genes were also enriched in cellular respiration pathways in patients with SPMS. The final gene-metabolite interaction network demonstrated a potential metabolic shift from glycolysis toward increased gluconeogenesis and ketogenesis in SPMS, indicating metabolic stress which may trigger stress response pathways and subsequent neurodegeneration.
See more in PubMed
Filippi M., Bar-Or A., Piehl F., Preziosa P., Solari A., Vukusic S., Rocca M.A. Multiple sclerosis. Nat. Rev. Dis. Prim. 2018;4:43. doi: 10.1038/s41572-018-0041-4. PubMed DOI
Dendrou C.A., Fugger L., Friese M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015;15:545–558. doi: 10.1038/nri3871. https://www.nature.com/articles/nri3871#supplementary-information PubMed DOI
Trapp B.D., Nave K.-A. Multiple Sclerosis: An Immune or Neurodegenerative Disorder? Annu. Rev. Neurosci. 2008;31:247–269. doi: 10.1146/annurev.neuro.30.051606.094313. PubMed DOI
Attfield K.E., Jensen L.T., Kaufmann M., Friese M.A., Fugger L. The immunology of multiple sclerosis. Nat. Rev. Immunol. 2022;22:734–750. doi: 10.1038/s41577-022-00718-z. PubMed DOI
Correale J., Gaitán M.I., Gaitán M.I., Fiol M.P. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain. 2017;140:527–546. doi: 10.1093/brain/aww258. PubMed DOI
Brownlee W.J., Hardy T.A., Fazekas F., Miller D.H. Diagnosis of multiple sclerosis: progress and challenges. Lancet. 2017;389:1336–1346. doi: 10.1016/S0140-6736(16)30959-X. PubMed DOI
Kappos L., Butzkueven H., Wiendl H., Spelman T., Pellegrini F., Chen Y., Dong Q., Koendgen H., Belachew S., Trojano M., Tysabri® Observational Program TOP Investigators Greater sensitivity to multiple sclerosis disability worsening and progression events using a roving versus a fixed reference value in a prospective cohort study. Mult. Scler. 2018;24:963–973. doi: 10.1177/1352458517709619. PubMed DOI PMC
Liu Z., Waters J., Rui B. Metabolomics as a promising tool for improving understanding of multiple sclerosis: A review of recent advances. Biomed. J. 2022;45:594–606. doi: 10.1016/j.bj.2022.01.004. PubMed DOI PMC
Chiricosta L., Blando S., D’Angiolini S., Gugliandolo A., Mazzon E. A Comprehensive Exploration of the Transcriptomic Landscape in Multiple Sclerosis: A Systematic Review. Int. J. Mol. Sci. 2023;24:1448. PubMed PMC
Bhargava P., Anthony D.C. Metabolomics in multiple sclerosis disease course and progression. Mult. Scler. 2020;26:591–598. doi: 10.1177/1352458519876020. PubMed DOI
Fitzgerald K.C., Smith M.D., Kim S., Sotirchos E.S., Kornberg M.D., Douglas M., Nourbakhsh B., Graves J., Rattan R., Poisson L., et al. Multi-omic evaluation of metabolic alterations in multiple sclerosis identifies shifts in aromatic amino acid metabolism. Cell Rep. Med. 2021;2 doi: 10.1016/j.xcrm.2021.100424. PubMed DOI PMC
Poddighe S., Murgia F., Lorefice L., Liggi S., Cocco E., Marrosu M.G., Atzori L. Metabolomic analysis identifies altered metabolic pathways in Multiple Sclerosis. Int. J. Biochem. Cell Biol. 2017;93:148–155. doi: 10.1016/j.biocel.2017.07.004. PubMed DOI
Jurynczyk M., Probert F., Yeo T., Tackley G., Claridge T.D.W., Cavey A., Woodhall M.R., Arora S., Winkler T., Schiffer E., et al. Metabolomics reveals distinct, antibody-independent, molecular signatures of MS, AQP4-antibody and MOG-antibody disease. Acta Neuropathol. Commun. 2017;5:95. doi: 10.1186/s40478-017-0495-8. PubMed DOI PMC
Dickens A.M., Larkin J.R., Griffin J.L., Cavey A., Matthews L., Turner M.R., Wilcock G.K., Davis B.G., Claridge T.D.W., Palace J., et al. A type 2 biomarker separates relapsing-remitting from secondary progressive multiple sclerosis. Neurology. 2014;83:1492–1499. doi: 10.1212/wnl.0000000000000905. PubMed DOI PMC
Stoessel D., Stellmann J.P., Willing A., Behrens B., Rosenkranz S.C., Hodecker S.C., Stürner K.H., Reinhardt S., Fleischer S., Deuschle C., et al. Metabolomic Profiles for Primary Progressive Multiple Sclerosis Stratification and Disease Course Monitoring. Front. Hum. Neurosci. 2018;12:226. doi: 10.3389/fnhum.2018.00226. PubMed DOI PMC
Nali L.H., Olival G.S., Sousa F.T.G., de Oliveira A.C.S., Montenegro H., da Silva I.T., Dias-Neto E., Naya H., Spangenberg L., Penalva-de-Oliveira A.C., Romano C.M. Whole transcriptome analysis of multiple Sclerosis patients reveals active inflammatory profile in relapsing patients and downregulation of neurological repair pathways in secondary progressive cases. Mult. Scler. Relat. Disord. 2020;44 doi: 10.1016/j.msard.2020.102243. PubMed DOI
Kihara Y., Zhu Y., Jonnalagadda D., Romanow W., Palmer C., Siddoway B., Rivera R., Dutta R., Trapp B.D., Chun J. Single-Nucleus RNA-seq of Normal-Appearing Brain Regions in Relapsing-Remitting vs. Secondary Progressive Multiple Sclerosis: Implications for the Efficacy of Fingolimod. Front. Cell. Neurosci. 2022;16 doi: 10.3389/fncel.2022.918041. PubMed DOI PMC
Voskuhl R.R., Itoh N., Tassoni A., Matsukawa M.A., Ren E., Tse V., Jang E., Suen T.T., Itoh Y. Gene expression in oligodendrocytes during remyelination reveals cholesterol homeostasis as a therapeutic target in multiple sclerosis. Proc. Natl. Acad. Sci. USA. 2019;116:10130–10139. doi: 10.1073/pnas.1821306116. PubMed DOI PMC
Malhotra S., Costa C., Eixarch H., Keller C.W., Amman L., Martínez-Banaclocha H., Midaglia L., Sarró E., Machín-Díaz I., Villar L.M., et al. NLRP3 inflammasome as prognostic factor and therapeutic target in primary progressive multiple sclerosis patients. Brain. 2020;143:1414–1430. doi: 10.1093/brain/awaa084. PubMed DOI
Coelewij L., Waddington K.E., Robinson G.A., Chocano E., McDonnell T., Farinha F., Peng J., Dönnes P., Smith E., Croca S., et al. Serum Metabolomic Signatures Can Predict Subclinical Atherosclerosis in Patients With Systemic Lupus Erythematosus. Arterioscler. Thromb. Vasc. Biol. 2021;41:1446–1458. doi: 10.1161/atvbaha.120.315321. PubMed DOI PMC
Chong J., Xia J. Using MetaboAnalyst 4.0 for Metabolomics Data Analysis, Interpretation, and Integration with Other Omics Data. Methods Mol. Biol. 2020;2104:337–360. doi: 10.1007/978-1-0716-0239-3_17. PubMed DOI
Xie F., Chakraborty B., Ong M.E.H., Goldstein B.A., Liu N. AutoScore: A Machine Learning-Based Automatic Clinical Score Generator and Its Application to Mortality Prediction Using Electronic Health Records. JMIR Med. Inform. 2020;8 doi: 10.2196/21798. PubMed DOI PMC
Mathur D., López-Rodas G., Casanova B., Marti M.B. Perturbed glucose metabolism: insights into multiple sclerosis pathogenesis. Front. Neurol. 2014;5:250. doi: 10.3389/fneur.2014.00250. PubMed DOI PMC
Nijland P.G., Molenaar R.J., van der Pol S.M.A., van der Valk P., van Noorden C.J.F., de Vries H.E., van Horssen J. Differential expression of glucose-metabolizing enzymes in multiple sclerosis lesions. Acta Neuropathol. Commun. 2015;3:79. doi: 10.1186/s40478-015-0261-8. PubMed DOI PMC
Yoon N., Jang A.K., Seo Y., Jung B.H. Metabolomics in Autoimmune Diseases: Focus on Rheumatoid Arthritis, Systemic Lupus Erythematous, and Multiple Sclerosis. Metabolites. 2021;11 doi: 10.3390/metabo11120812. PubMed DOI PMC
Kallaur A.P., Oliveira S.R., Simão A.N.C., Alfieri D.F., Flauzino T., Lopes J., de Carvalho Jennings Pereira W.L., de Meleck Proença C., Borelli S.D., Kaimen-Maciel D.R., et al. Cytokine Profile in Patients with Progressive Multiple Sclerosis and Its Association with Disease Progression and Disability. Mol. Neurobiol. 2017;54:2950–2960. doi: 10.1007/s12035-016-9846-x. PubMed DOI
Ofengeim D., Ito Y., Najafov A., Zhang Y., Shan B., DeWitt J.P., Ye J., Zhang X., Chang A., Vakifahmetoglu-Norberg H., et al. Activation of Necroptosis in Multiple Sclerosis. Cell Rep. 2015;10:1836–1849. doi: 10.1016/j.celrep.2015.02.051. PubMed DOI PMC
Goutman S.A., Hardiman O., Al-Chalabi A., Chió A., Savelieff M.G., Kiernan M.C., Feldman E.L. Emerging insights into the complex genetics and pathophysiology of amyotrophic lateral sclerosis. Lancet Neurol. 2022;21:465–479. doi: 10.1016/S1474-4422(21)00414-2. PubMed DOI PMC
Honorat J.A., Nakatsuji Y., Shimizu M., Kinoshita M., Sumi-Akamaru H., Sasaki T., Takata K., Koda T., Namba A., Yamashita K., et al. Febuxostat ameliorates secondary progressive experimental autoimmune encephalomyelitis by restoring mitochondrial energy production in a GOT2-dependent manner. PLoS One. 2017;12 doi: 10.1371/journal.pone.0187215. PubMed DOI PMC
Zahoor I., Rui B., Khan J., Datta I., Giri S. An emerging potential of metabolomics in multiple sclerosis: a comprehensive overview. Cell. Mol. Life Sci. 2021;78:3181–3203. doi: 10.1007/s00018-020-03733-2. PubMed DOI PMC
Porter L., Shoushtarizadeh A., Jelinek G.A., Brown C.R., Lim C.K., de Livera A.M., Jacobs K.R., Weiland T.J. Metabolomic Biomarkers of Multiple Sclerosis: A Systematic Review. Front. Mol. Biosci. 2020;7 doi: 10.3389/fmolb.2020.574133. PubMed DOI PMC
Zahoor I., Suhail H., Datta I., Ahmed M.E., Poisson L.M., Waters J., Rashid F., Bin R., Singh J., Cerghet M., et al. Blood-based untargeted metabolomics in relapsing-remitting multiple sclerosis revealed the testable therapeutic target. Proc. Natl. Acad. Sci. USA. 2022;119 doi: 10.1073/pnas.2123265119. PubMed DOI PMC
Compston A., Coles A. Multiple sclerosis. Lancet. 2008;372:1502–1517. doi: 10.1016/s0140-6736(08)61620-7. PubMed DOI
Pitt D., Lo C.H., Gauthier S.A., Hickman R.A., Longbrake E., Airas L.M., Mao-Draayer Y., Riley C., De Jager P.L., Wesley S., et al. Toward Precision Phenotyping of Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2022;9 doi: 10.1212/nxi.0000000000200025. PubMed DOI PMC
Dayon L., Cominetti O., Wojcik J., Galindo A.N., Oikonomidi A., Henry H., Migliavacca E., Kussmann M., Bowman G.L., Popp J. Proteomes of Paired Human Cerebrospinal Fluid and Plasma: Relation to Blood-Brain Barrier Permeability in Older Adults. J. Proteome Res. 2019;18:1162–1174. doi: 10.1021/acs.jproteome.8b00809. PubMed DOI
Maroto-García J., Martínez-Escribano A., Delgado-Gil V., Mañez M., Mugueta C., Varo N., García de la Torre Á., Ruiz-Galdón M. Biochemical biomarkers for multiple sclerosis. Clin. Chim. Acta. 2023;548 doi: 10.1016/j.cca.2023.117471. PubMed DOI
Varhaug K.N., Torkildsen Ø., Myhr K.-M., Vedeler C.A. Neurofilament Light Chain as a Biomarker in Multiple Sclerosis. Front. Neurol. 2019;10 doi: 10.3389/fneur.2019.00338. PubMed DOI PMC
Lötsch J., Schiffmann S., Schmitz K., Brunkhorst R., Lerch F., Ferreiros N., Wicker S., Tegeder I., Geisslinger G., Ultsch A. Machine-learning based lipid mediator serum concentration patterns allow identification of multiple sclerosis patients with high accuracy. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-33077-8. PubMed DOI PMC
Mehrpour M., Kyani A., Tafazzoli M., Fathi F., Joghataie M.-T. A metabonomics investigation of multiple sclerosis by nuclear magnetic resonance. Magn. Reson. Chem. 2013;51:102–109. doi: 10.1002/mrc.3915. PubMed DOI
Kim H.H., Jeong I.H., Hyun J.S., Kong B.S., Kim H.J., Park S.J. Metabolomic profiling of CSF in multiple sclerosis and neuromyelitis optica spectrum disorder by nuclear magnetic resonance. PLoS One. 2017;12 doi: 10.1371/journal.pone.0181758. PubMed DOI PMC
Yeo T., Sealey M., Zhou Y., Saldana L., Loveless S., Claridge T.D.W., Robertson N., DeLuca G., Palace J., Anthony D.C., Probert F. A blood-based metabolomics test to distinguish relapsing-remitting and secondary progressive multiple sclerosis: addressing practical considerations for clinical application. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-69119-3. PubMed DOI PMC
Julkunen H., Cichońska A., Tiainen M., Koskela H., Nybo K., Mäkelä V., Nokso-Koivisto J., Kristiansson K., Perola M., Salomaa V., et al. Atlas of plasma NMR biomarkers for health and disease in 118,461 individuals from the UK Biobank. Nat. Commun. 2023;14:604. doi: 10.1038/s41467-023-36231-7. PubMed DOI PMC
Tikkanen E., Jägerroos V., Holmes M.V., Sattar N., Ala-Korpela M., Jousilahti P., Lundqvist A., Perola M., Salomaa V., Würtz P. Metabolic Biomarker Discovery for Risk of Peripheral Artery Disease Compared With Coronary Artery Disease: Lipoprotein and Metabolite Profiling of 31 657 Individuals From 5 Prospective Cohorts. J. Am. Heart Assoc. 2021;10 doi: 10.1161/jaha.121.021995. PubMed DOI PMC
Cocco E., Murgia F., Lorefice L., Barberini L., Poddighe S., Frau J., Fenu G., Coghe G., Murru M.R., Murru R., et al. (1)H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2016;3:e185. doi: 10.1212/nxi.0000000000000185. PubMed DOI PMC
Lorefice L., Murgia F., Fenu G., Frau J., Coghe G., Murru M.R., Tranquilli S., Visconti A., Marrosu M.G., Atzori L., Cocco E. Assessing the Metabolomic Profile of Multiple Sclerosis Patients Treated with Interferon Beta 1a by (1)H-NMR Spectroscopy. Neurotherapeutics. 2019;16:797–807. doi: 10.1007/s13311-019-00721-8. PubMed DOI PMC
Zhang Y., Kuang Y., Xu K., Harris D., Lee Z., LaManna J., Puchowicz M.A. Ketosis proportionately spares glucose utilization in brain. J. Cerebr. Blood Flow Metabol. 2013;33:1307–1311. doi: 10.1038/jcbfm.2013.87. PubMed DOI PMC
Kaufmann M., Schaupp A.-L., Sun R., Coscia F., Dendrou C.A., Cortes A., Kaur G., Evans H.G., Mollbrink A., Navarro J.F., et al. Identification of early neurodegenerative pathways in progressive multiple sclerosis. Nat. Neurosci. 2022;25:944–955. doi: 10.1038/s41593-022-01097-3. PubMed DOI
Argelaguet R., Velten B., Arnol D., Dietrich S., Zenz T., Marioni J.C., Buettner F., Huber W., Stegle O. Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets. Mol. Syst. Biol. 2018;14:e8124. doi: 10.15252/msb.20178124. PubMed DOI PMC
Singh A., Shannon C.P., Gautier B., Rohart F., Vacher M., Tebbutt S.J., Lê Cao K.A. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics. 2019;35:3055–3062. doi: 10.1093/bioinformatics/bty1054. PubMed DOI PMC
O'Connor L.M., O'Connor B.A., Lim S.B., Zeng J., Lo C.H. Integrative multi-omics and systems bioinformatics in translational neuroscience: A data mining perspective. J. Pharm. Anal. 2023;13:836–850. doi: 10.1016/j.jpha.2023.06.011. PubMed DOI PMC
Hasin Y., Seldin M., Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18:83. doi: 10.1186/s13059-017-1215-1. PubMed DOI PMC
Waddington K.E., Papadaki A., Coelewij L., Adriani M., Nytrova P., Kubala Havrdova E., Fogdell-Hahn A., Farrell R., Dönnes P., Pineda-Torra I., Jury E.C. Using Serum Metabolomics to Predict Development of Anti-drug Antibodies in Multiple Sclerosis Patients Treated With IFNβ. Front. Immunol. 2020;11:1527. doi: 10.3389/fimmu.2020.01527. PubMed DOI PMC
Adriani M., Nytrova P., Mbogning C., Hässler S., Medek K., Jensen P.E.H., Creeke P., Warnke C., Ingenhoven K., Hemmer B., et al. Monocyte NOTCH2 expression predicts IFN-β immunogenicity in multiple sclerosis patients. JCI Insight. 2018;3 doi: 10.1172/jci.insight.99274. PubMed DOI PMC
Peng J., Jury E.C., Dönnes P., Ciurtin C. Machine Learning Techniques for Personalised Medicine Approaches in Immune-Mediated Chronic Inflammatory Diseases: Applications and Challenges. Front. Pharmacol. 2021;12 doi: 10.3389/fphar.2021.720694. PubMed DOI PMC
Eriksen R., Perez I.G., Posma J.M., Haid M., Sharma S., Prehn C., Thomas L.E., Koivula R.W., Bizzotto R., Prehn C., et al. Dietary metabolite profiling brings new insight into the relationship between nutrition and metabolic risk: An IMI DIRECT study. EBioMedicine. 2020;58 doi: 10.1016/j.ebiom.2020.102932. PubMed DOI PMC
Robinson G.A., Peng J., Peckham H., Radziszewska A., Butler G., Pineda-Torra I., Jury E.C., Ciurtin C. Sex hormones drive changes in lipoprotein metabolism. iScience. 2021;24 doi: 10.1016/j.isci.2021.103257. PubMed DOI PMC
Battle A., Khan Z., Wang S.H., Mitrano A., Ford M.J., Pritchard J.K., Gilad Y. Genomic variation. Impact of regulatory variation from RNA to protein. Science. 2015;347:664–667. doi: 10.1126/science.1260793. PubMed DOI PMC
Emwas A.H.M. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol. Biol. 2015;1277:161–193. doi: 10.1007/978-1-4939-2377-9_13. PubMed DOI
Lorincz B., Jury E.C., Vrablik M., Ramanathan M., Uher T. The role of cholesterol metabolism in multiple sclerosis: From molecular pathophysiology to radiological and clinical disease activity. Autoimmun. Rev. 2022;21 doi: 10.1016/j.autrev.2022.103088. PubMed DOI
Pineda-Torra I., Siddique S., Waddington K.E., Farrell R., Jury E.C. Disrupted Lipid Metabolism in Multiple Sclerosis: A Role for Liver X Receptors? Front. Endocrinol. 2021;12 doi: 10.3389/fendo.2021.639757. PubMed DOI PMC
Uher T., Fellows K., Horakova D., Zivadinov R., Vaneckova M., Sobisek L., Tyblova M., Seidl Z., Krasensky J., Bergsland N., et al. Serum lipid profile changes predict neurodegeneration in interferon-β1a-treated multiple sclerosis patients. J. Lipid Res. 2017;58:403–411. doi: 10.1194/jlr.M072751. PubMed DOI PMC
Tettey P., Simpson S., Jr., Taylor B., Blizzard L., Ponsonby A.L., Dwyer T., Kostner K., van der Mei I. An adverse lipid profile is associated with disability and progression in disability, in people with MS. Mult. Scler. 2014;20:1737–1744. doi: 10.1177/1352458514533162. PubMed DOI
Gafson A.R., Thorne T., McKechnie C.I.J., Jimenez B., Nicholas R., Matthews P.M. Lipoprotein markers associated with disability from multiple sclerosis. Sci. Rep. 2018;8 doi: 10.1038/s41598-018-35232-7. PubMed DOI PMC
Cantuti-Castelvetri L., Fitzner D., Bosch-Queralt M., Weil M.-T., Su M., Sen P., Ruhwedel T., Mitkovski M., Trendelenburg G., Lütjohann D., et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science. 2018;359:684–688. doi: 10.1126/science.aan4183. PubMed DOI
Jorissen W., Wouters E., Bogie J.F., Vanmierlo T., Noben J.P., Sviridov D., Hellings N., Somers V., Valcke R., Vanwijmeersch B., et al. Relapsing-remitting multiple sclerosis patients display an altered lipoprotein profile with dysfunctional HDL. Sci. Rep. 2017;7 doi: 10.1038/srep43410. PubMed DOI PMC
Yu H., Bai S., Hao Y., Guan Y. Fatty acids role in multiple sclerosis as “metabokines”. J. Neuroinflammation. 2022;19:157. doi: 10.1186/s12974-022-02502-1. PubMed DOI PMC
Broos J.Y., Loonstra F.C., de Ruiter L.R.J., Gouda M., Fung W.H., Schoonheim M.M., Heijink M., Strijbis E.M.M., Teunissen C., Killestein J., et al. Association of Arachidonic Acid–Derived Lipid Mediators With Disease Severity in Patients With Relapsing and Progressive Multiple Sclerosis. Neurology. 2023;101:e533–e545. doi: 10.1212/wnl.0000000000207459. PubMed DOI PMC
Gijs K., Claudio Derada T., Alessandro L., Paul C.N., Ian R., Maria A., Serena R., Stephania L., Susanne M.A.v.d.P., Bert van het H., et al. Specialized pro-resolving lipid mediators are differentially altered in peripheral blood of patients with multiple sclerosis and attenuate monocyte and blood-brain barrier dysfunction. Haematologica. 2020;105:2056–2070. doi: 10.3324/haematol.2019.219519. PubMed DOI PMC
Palumbo S. In: Multiple Sclerosis: Perspectives in Treatment and Pathogenesis. Zagon I.S., McLaughlin P.J., editors. Codon Publications; 2017. Pathogenesis and Progression of Multiple Sclerosis: The Role of Arachidonic Acid–Mediated Neuroinflammation.https://www.ncbi.nlm.nih.gov/books/NBK470143/ PubMed DOI
Jakimovski D., Weinstock-Guttman B., Gandhi S., Guan Y., Hagemeier J., Ramasamy D.P., Fuchs T.A., Browne R.W., Bergsland N., Dwyer M.G., et al. Dietary and lifestyle factors in multiple sclerosis progression: results from a 5-year longitudinal MRI study. J. Neurol. 2019;266:866–875. doi: 10.1007/s00415-019-09208-0. PubMed DOI
Jakimovski D., Gandhi S., Paunkoski I., Bergsland N., Hagemeier J., Ramasamy D.P., Hojnacki D., Kolb C., Benedict R.H.B., Weinstock-Guttman B., Zivadinov R. Hypertension and heart disease are associated with development of brain atrophy in multiple sclerosis: a 5-year longitudinal study. Eur. J. Neurol. 2019;26:87–e8. doi: 10.1111/ene.13769. PubMed DOI
Ramírez-Salazar S.A., Herren C., McCartney J., Ortiz García J.G. Dietary Insights in Neurological Diseases. Curr. Neurol. Neurosci. Rep. 2021;21:55. doi: 10.1007/s11910-021-01143-w. PubMed DOI
Chataway J., Schuerer N., Alsanousi A., Chan D., MacManus D., Hunter K., Anderson V., Bangham C.R.M., Clegg S., Nielsen C., et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet. 2014;383:2213–2221. doi: 10.1016/s0140-6736(13)62242-4. PubMed DOI
Eshaghi A., Kievit R.A., Prados F., Sudre C.H., Nicholas J., Cardoso M.J., Chan D., Nicholas R., Ourselin S., Greenwood J., et al. Applying causal models to explore the mechanism of action of simvastatin in progressive multiple sclerosis. Proc. Natl. Acad. Sci. USA. 2019;116:11020–11027. doi: 10.1073/pnas.1818978116. PubMed DOI PMC
Gurevich M., Miron G., Falb R.Z., Magalashvili D., Dolev M., Stern Y., Achiron A. Transcriptional response to interferon beta-1a treatment in patients with secondary progressive multiple sclerosis. BMC Neurol. 2015;15:240. doi: 10.1186/s12883-015-0495-x. PubMed DOI PMC
Koch M.W., Ilnytskyy Y., Golubov A., Metz L.M., Yong V.W., Kovalchuk O. Global transcriptome profiling of mild relapsing-remitting versus primary progressive multiple sclerosis. Eur. J. Neurol. 2018;25:651–658. doi: 10.1111/ene.13565. PubMed DOI
Rohart F., Gautier B., Singh A., Lê Cao K.A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017;13 doi: 10.1371/journal.pcbi.1005752. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Zhou Y., Zhou B., Pache L., Chang M., Khodabakhshi A.H., Tanaseichuk O., Benner C., Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019;10:1523. doi: 10.1038/s41467-019-09234-6. PubMed DOI PMC
Metsalu T., Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015;43:W566–W570. doi: 10.1093/nar/gkv468. PubMed DOI PMC
Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Piñero J., Ramírez-Anguita J.M., Saüch-Pitarch J., Ronzano F., Centeno E., Sanz F., Furlong L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48:D845–D855. doi: 10.1093/nar/gkz1021. PubMed DOI PMC
Friedman J., Hastie T., Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J. Stat. Softw. 2010;33:1–22. doi: 10.18637/jss.v033.i01. PubMed DOI PMC
Ruczinski I., Kooperberg C., LeBlanc M. Logic regression. J. Comput. Graph Stat. 2003;12:475–511.
Kuhn M. Building Predictive Models in R Using the Caret Package. Journal of statistical software. 2008;28:26. doi: 10.18637/jss.v028.i05. DOI
Tuszynski J. 2021. caTools: Tools: Moving Window Statistics, GIF, Base64, ROC AUC, Etc.https://CRAN.R-project.org/package=caTools
Wilkinson L. ggplot2: Elegant Graphics for Data Analysis by WICKHAM. Biometrics. 2011;67:678–679. doi: 10.1111/j.1541-0420.2011.01616.x. DOI
Gu Z., Gu L., Eils R., Schlesner M., Brors B. circlize Implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2812. doi: 10.1093/bioinformatics/btu393. PubMed DOI
Diedenhofen B., Musch J. cocor: A Comprehensive Solution for the Statistical Comparison of Correlations. PLoS One. 2015;10 doi: 10.1371/journal.pone.0121945. PubMed DOI PMC
Blighe K., Rana S., Lewis M. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. 2023. https://github.com/kevinblighe/EnhancedVolcano R package version 1.18.0.
Erich Neuwirth 2022 RColorBrewer: ColorBrewer Palettes. https://CRAN.R-project.org/package=RColorBrewer
Alboukadel Kassambara 2020 Ggpubr: 'ggplot2' Based Publication Ready Plots. https://CRAN.R-project.org/package=ggpubr
Raivo Kolde 2019 Pheatmap: Pretty Heatmaps. https://CRAN.R-project.org/package=pheatmap
Polman C.H., Reingold S.C., Banwell B., Clanet M., Cohen J.A., Filippi M., Fujihara K., Havrdova E., Hutchinson M., Kappos L., et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011;69:292–302. doi: 10.1002/ana.22366. PubMed DOI PMC
Wang F., Debik J., Andreassen T., Euceda L.R., Haukaas T.H., Cannet C., Schäfer H., Bathen T.F., Giskeødegård G.F. Effect of Repeated Freeze-Thaw Cycles on NMR-Measured Lipoproteins and Metabolites in Biofluids. J. Proteome Res. 2019;18:3681–3688. doi: 10.1021/acs.jproteome.9b00343. PubMed DOI
Picard Toolkit . Broad Institute, GitHub; 2019. picard: A Set of Command Line Tools (In Java) for Manipulating High-Throughput Sequencing (HTS) Data and Formats Such as SAM/BAM/CRAM and VCF.https://github.com/broadinstitute/picard
Dobin A. GitHub; 2022. STAR: RNA-seq aligner.https://github.com/alexdobin/STAR
Chen S., Zhou Y., Chen Y., Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC
The R Project for Statistical Computing. https://www.r-project.org/