Monocyte NOTCH2 expression predicts IFN-β immunogenicity in multiple sclerosis patients

. 2018 Jun 07 ; 3 (11) : . [epub] 20180607

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid29875313

Multiple sclerosis (MS) is an autoimmune disease characterized by CNS inflammation leading to demyelination and axonal damage. IFN-β is an established treatment for MS; however, up to 30% of IFN-β-treated MS patients develop neutralizing antidrug antibodies (nADA), leading to reduced drug bioactivity and efficacy. Mechanisms driving antidrug immunogenicity remain uncertain, and reliable biomarkers to predict immunogenicity development are lacking. Using high-throughput flow cytometry, NOTCH2 expression on CD14+ monocytes and increased frequency of proinflammatory monocyte subsets were identified as baseline predictors of nADA development in MS patients treated with IFN-β. The association of this monocyte profile with nADA development was validated in 2 independent cross-sectional MS patient cohorts and a prospective cohort followed before and after IFN-β administration. Reduced monocyte NOTCH2 expression in nADA+ MS patients was associated with NOTCH2 activation measured by increased expression of Notch-responsive genes, polarization of monocytes toward a nonclassical phenotype, and increased proinflammatory IL-6 production. NOTCH2 activation was T cell dependent and was only triggered in the presence of serum from nADA+ patients. Thus, nADA development was driven by a proinflammatory environment that triggered activation of the NOTCH2 signaling pathway prior to first IFN-β administration.

Assistance Publique Hôpitaux de Paris Hôpital Paul Brousse Villejuif France

Centre d'Esclerosi Múltiple de Catalunya Hospital Universitari Vall d'Hebron Barcelona Spain

CESP Fac De Médecine Univ Paris Sud Fac De Médecine UVSQ INSERM Université Paris Saclay Villejuif France

Clinical Department of Neurology Innsbruck Medical University Innsbruck Austria

Department of Neurology and Center for Clinical Neuroscience 1st Faculty of Medicine Charles University and General University Hospital Prague Czech Republic

Department of Neurology Medical Faculty Research Group for Clinical and Experimental Neuroimmunology Heinrich Heine University Düsseldorf Germany

Department of Rheumatology University College Hospital London United Kingdom

Karolinska Institutet Department of Clinical Neuroscience Center for Molecular Medicine Karolinska University Hospital Sweden

Klinikum rechts der Isar Department of Neurology School of Medicine Technical University of Munich Munich Germany

Laboratory of Clinical Neuroimmunology Departments of Biomedicine and Clinical Research University Hospital Basel and University of Basel Basel Switzerland

Neuroimmunology Laboratory DMSC Department of Neurology Rigshospitalet Region H Copenhagen Denmark

Neuroimmunology Unit Centre for Neuroscience and Trauma Blizard Institute Queen Mary University of London London United Kingdom

Scicross AB Skövde Sweden

Translational Sciences Unit Sanofi R and D 91385 Chilly Mazarin Paris France

University Hospital Koeln Deptartment of Neurology Koeln Germany

Zobrazit více v PubMed

Brownlee WJ, Hardy TA, Fazekas F, Miller DH. Diagnosis of multiple sclerosis: progress and challenges. Lancet. 2017;389(10076):1336–1346. doi: 10.1016/S0140-6736(16)30959-X. PubMed DOI

Sawcer S, Franklin RJ, Ban M. Multiple sclerosis genetics. Lancet Neurol. 2014;13(7):700–709. doi: 10.1016/S1474-4422(14)70041-9. PubMed DOI

Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14(9):1142–1149. doi: 10.1038/nn.2887. PubMed DOI

Yamasaki R, et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med. 2014;211(8):1533–1549. doi: 10.1084/jem.20132477. PubMed DOI PMC

Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–558. doi: 10.1038/nri3871. PubMed DOI

Nikbin B, Bonab MM, Khosravi F, Talebian F. Role of B cells in pathogenesis of multiple sclerosis. Int Rev Neurobiol. 2007;79:13–42. PubMed

Lopez-Diego RS, Weiner HL. Novel therapeutic strategies for multiple sclerosis--a multifaceted adversary. Nat Rev Drug Discov. 2008;7(11):909–925. doi: 10.1038/nrd2358. PubMed DOI

Mishra MK, Yong VW. Myeloid cells - targets of medication in multiple sclerosis. Nat Rev Neurol. 2016;12(9):539–551. doi: 10.1038/nrneurol.2016.110. PubMed DOI

[No authors listed] Neutralizing antibodies during treatment of multiple sclerosis with interferon beta-1b: experience during the first three years. The IFNB Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group. Neurology. 1996;47(4):889–894. doi: 10.1212/WNL.47.4.889. PubMed DOI

Jacobs LD, et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG) Ann Neurol. 1996;39(3):285–294. doi: 10.1002/ana.410390304. PubMed DOI

Fisher E, et al. Eight-year follow-up study of brain atrophy in patients with MS. Neurology. 2002;59(9):1412–1420. doi: 10.1212/01.WNL.0000036271.49066.06. PubMed DOI

Applebee A, Panitch H. Early stage and long term treatment of multiple sclerosis with interferon-beta. Biologics. 2009;3:257–271. PubMed PMC

Bachelet D, et al. Occurrence of Anti-Drug Antibodies against Interferon-Beta and Natalizumab in Multiple Sclerosis: A Collaborative Cohort Analysis. PLoS One. 2016;11(11):e0162752. doi: 10.1371/journal.pone.0162752. PubMed DOI PMC

Sominanda A, Hillert J, Fogdell-Hahn A. In vivo bioactivity of interferon-beta in multiple sclerosis patients with neutralising antibodies is titre-dependent. J Neurol Neurosurg Psychiatry. 2008;79(1):57–62. doi: 10.1136/jnnp.2007.122549. PubMed DOI

Neumann TA, Foote M. Megakaryocyte growth and development factor (MGDF): an Mpl ligand and cytokine that regulates thrombopoiesis. Cytokines Cell Mol Ther. 2000;6(1):47–56. doi: 10.1080/13684730050515912. PubMed DOI

Sorensen PS. Neutralizing antibodies against interferon-Beta. Ther Adv Neurol Disord. 2008;1(2):125–141. doi: 10.1177/1756285608095144. PubMed DOI PMC

Schellekens H. The immunogenicity of biopharmaceuticals. Neurology. 2003;61(9 Suppl 5):S11–S12. PubMed

Link J, et al. Human leukocyte antigen genes and interferon beta preparations influence risk of developing neutralizing anti-drug antibodies in multiple sclerosis. PLoS One. 2014;9(3):e90479. doi: 10.1371/journal.pone.0090479. PubMed DOI PMC

et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—establishing disease prognosis and monitoring patients. Nat Rev Neurol. 2015;11(10):597–606. PubMed

Malhotra S, et al. Search for specific biomarkers of IFNβ bioactivity in patients with multiple sclerosis. PLoS One. 2011;6(8):e23634. doi: 10.1371/journal.pone.0023634. PubMed DOI PMC

Graessel A, et al. A Combined Omics Approach to Generate the Surface Atlas of Human Naive CD4+ T Cells during Early T-Cell Receptor Activation. Mol Cell Proteomics. 2015;14(8):2085–2102. doi: 10.1074/mcp.M114.045690. PubMed DOI PMC

Rugg-Gunn PJ, et al. Cell-surface proteomics identifies lineage-specific markers of embryo-derived stem cells. Dev Cell. 2012;22(4):887–901. doi: 10.1016/j.devcel.2012.01.005. PubMed DOI PMC

Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6):392–404. doi: 10.1038/nri3671. PubMed DOI

Patel AA, et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med. 2017;214(7):1913–1923. doi: 10.1084/jem.20170355. PubMed DOI PMC

Gamrekelashvili J, et al. Regulation of monocyte cell fate by blood vessels mediated by Notch signalling. Nat Commun. 2016;7:12597. PubMed PMC

Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27:669–692. doi: 10.1146/annurev.immunol.021908.132557. PubMed DOI

Abeles RD, et al. CD14, CD16 and HLA-DR reliably identifies human monocytes and their subsets in the context of pathologically reduced HLA-DR expression by CD14(hi) /CD16(neg) monocytes: Expansion of CD14(hi) /CD16(pos) and contraction of CD14(lo) /CD16(pos) monocytes in acute liver failure. Cytometry A. 2012;81(10):823–834. PubMed

Ilagan MX, Kopan R. SnapShot: notch signaling pathway. Cell. 2007;128(6):1246. PubMed

Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137(2):216–233. doi: 10.1016/j.cell.2009.03.045. PubMed DOI PMC

Tsao PN, et al. Lipopolysaccharide-induced Notch signaling activation through JNK-dependent pathway regulates inflammatory response. J Biomed Sci. 2011;18:56. PubMed PMC

Wong KL, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118(5):e16–e31. doi: 10.1182/blood-2010-12-326355. PubMed DOI

Gren ST, Rasmussen TB, Janciauskiene S, Håkansson K, Gerwien JG, Grip O. A Single-Cell Gene-Expression Profile Reveals Inter-Cellular Heterogeneity within Human Monocyte Subsets. PLoS ONE. 2015;10(12):e0144351. doi: 10.1371/journal.pone.0144351. PubMed DOI PMC

Li S, et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat Immunol. 2014;15(2):195–204. PubMed PMC

Walsh G. Biopharmaceutical benchmarks 2010. Nat Biotechnol. 2010;28(9):917–924. doi: 10.1038/nbt0910-917. PubMed DOI

Walsh G. Biopharmaceutical benchmarks 2014. Nat Biotechnol. 2014;32(10):992–1000. doi: 10.1038/nbt.3040. PubMed DOI

Wolfe RM, Ang DC. Biologic Therapies for Autoimmune and Connective Tissue Diseases. Immunol Allergy Clin North Am. 2017;37(2):283–299. doi: 10.1016/j.iac.2017.01.005. PubMed DOI

Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7(9):678–689. doi: 10.1038/nrm2009. PubMed DOI

Saito T, et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity. 2003;18(5):675–685. doi: 10.1016/S1074-7613(03)00111-0. PubMed DOI

Benedito R, et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 2009;137(6):1124–1135. doi: 10.1016/j.cell.2009.03.025. PubMed DOI

Van de Walle I, et al. Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions. Blood. 2011;117(17):4449–4459. doi: 10.1182/blood-2010-06-290049. PubMed DOI PMC

Alvarez Y, et al. Notch- and transducin-like enhancer of split (TLE)-dependent histone deacetylation explain interleukin 12 (IL-12) p70 inhibition by zymosan. J Biol Chem. 2011;286(19):16583–16595. doi: 10.1074/jbc.M111.222158. PubMed DOI PMC

Hu X, et al. Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity. 2008;29(5):691–703. doi: 10.1016/j.immuni.2008.08.016. PubMed DOI PMC

Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood. 1989;74(7):2527–2534. PubMed

Mukherjee R, Kanti Barman P, Kumar Thatoi P, Tripathy R, Kumar Das B, Ravindran B. Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic Lupus Erythematous. Sci Rep. 2015;5:13886. PubMed PMC

Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–717. doi: 10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q. PubMed DOI

Kouwenhoven M, Teleshova N, Ozenci V, Press R, Link H. Monocytes in multiple sclerosis: phenotype and cytokine profile. J Neuroimmunol. 2001;112(1-2):197–205. doi: 10.1016/S0165-5728(00)00396-9. PubMed DOI

Makhlouf K, Weiner HL, Khoury SJ. Increased percentage of IL-12+ monocytes in the blood correlates with the presence of active MRI lesions in MS. J Neuroimmunol. 2001;119(1):145–149. doi: 10.1016/S0165-5728(01)00371-X. PubMed DOI

Chuluundorj D, Harding SA, Abernethy D, La Flamme AC. Expansion and preferential activation of the CD14(+)CD16(+) monocyte subset during multiple sclerosis. Immunol Cell Biol. 2014;92(6):509–517. doi: 10.1038/icb.2014.15. PubMed DOI

Waschbisch A, et al. Pivotal Role for CD16+ Monocytes in Immune Surveillance of the Central Nervous System. J Immunol. 2016;196(4):1558–1567. doi: 10.4049/jimmunol.1501960. PubMed DOI

Then Bergh F, Dayyani F, Ziegler-Heitbrock L. Impact of type-I-interferon on monocyte subsets and their differentiation to dendritic cells. An in vivo and ex vivo study in multiple sclerosis patients treated with interferon-beta. J Neuroimmunol. 2004;146(1-2):176–188. doi: 10.1016/j.jneuroim.2003.10.037. PubMed DOI

Sominanda A, Rot U, Suoniemi M, Deisenhammer F, Hillert J, Fogdell-Hahn A. Interferon beta preparations for the treatment of multiple sclerosis patients differ in neutralizing antibody seroprevalence and immunogenicity. Mult Scler. 2007;13(2):208–214. doi: 10.1177/1352458506070762. PubMed DOI

Li Z, Ju Z, Frieri M. The T-cell immunoglobulin and mucin domain (Tim) gene family in asthma, allergy, and autoimmunity. Allergy Asthma Proc. 2013;34(1):e21–e26. PubMed

Trabattoni D, et al. Costimulatory pathways in multiple sclerosis: distinctive expression of PD-1 and PD-L1 in patients with different patterns of disease. J Immunol. 2009;183(8):4984–4993. doi: 10.4049/jimmunol.0901038. PubMed DOI

Huang YM, Adikari S, Båve U, Sanna A, Alm G. Multiple sclerosis: interferon-beta induces CD123(+)BDCA2- dendritic cells that produce IL-6 and IL-10 and have no enhanced type I interferon production. J Neuroimmunol. 2005;158(1-2):204–212. doi: 10.1016/j.jneuroim.2004.08.014. PubMed DOI

Ding X, Cao F, Cui L, Ciric B, Zhang GX, Rostami A. IL-9 signaling affects central nervous system resident cells during inflammatory stimuli. Exp Mol Pathol. 2015;99(3):570–574. doi: 10.1016/j.yexmp.2015.07.010. PubMed DOI PMC

Bertolotto A, Gilli F. Interferon-beta responders and non-responders. A biological approach. Neurol Sci. 2008;29 Suppl 2:S216–S217. PubMed

Rani MR, et al. Heterogeneous, longitudinally stable molecular signatures in response to interferon-beta. Ann N Y Acad Sci. 2009;1182:58–68. doi: 10.1111/j.1749-6632.2009.05068.x. PubMed DOI PMC

Rudick RA, et al. Excessive biologic response to IFNβ is associated with poor treatment response in patients with multiple sclerosis. PLoS One. 2011;6(5):e19262. doi: 10.1371/journal.pone.0019262. PubMed DOI PMC

Comabella M, et al. A type I interferon signature in monocytes is associated with poor response to interferon-beta in multiple sclerosis. Brain. 2009;132(Pt 12):3353–3365. PubMed

Hegen H, et al. Cytokine profiles show heterogeneity of interferon-β response in multiple sclerosis patients. Neurol Neuroimmunol Neuroinflamm. 2016;3(2):e202. doi: 10.1212/NXI.0000000000000202. PubMed DOI PMC

Polman CH, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302. doi: 10.1002/ana.22366. PubMed DOI PMC

Uher T, et al. A Novel Semiautomated Pipeline to Measure Brain Atrophy and Lesion Burden in Multiple Sclerosis: A Long-Term Comparative Study. J Neuroimaging. 2017;27(6):620–629. doi: 10.1111/jon.12445. PubMed DOI

Hermanrud C, et al. Development and validation of cell-based luciferase reporter gene assays for measuring neutralizing anti-drug antibodies against interferon beta. J Immunol Methods. 2016;430:1–9. doi: 10.1016/j.jim.2016.01.004. PubMed DOI

BD Biosciences. Human and Mouse CD Marker Handbook. San Diego, California, USA: BD Biosciences; 2010. https://www.bdbiosciences.com/documents/cd_marker_handbook.pdf Accessed May 17, 2018.

Lebret R, et al. Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library. J Stat Software. 2015;67(6):1–29.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...