Monocyte NOTCH2 expression predicts IFN-β immunogenicity in multiple sclerosis patients
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, validační studie
PubMed
29875313
PubMed Central
PMC6124413
DOI
10.1172/jci.insight.99274
PII: 99274
Knihovny.cz E-zdroje
- Klíčová slova
- Immunology, Immunotherapy, Monocytes, Multiple sclerosis, Neuroscience,
- MeSH
- biologické markery analýza metabolismus MeSH
- dospělí MeSH
- interferon beta škodlivé účinky imunologie MeSH
- léková alergie krev diagnóza imunologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- monocyty metabolismus MeSH
- neutralizující protilátky krev imunologie MeSH
- prediktivní hodnota testů MeSH
- prognóza MeSH
- prospektivní studie MeSH
- průřezové studie MeSH
- receptor Notch2 analýza metabolismus MeSH
- roztroušená skleróza krev farmakoterapie imunologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- validační studie MeSH
- Názvy látek
- biologické markery MeSH
- interferon beta MeSH
- neutralizující protilátky MeSH
- NOTCH2 protein, human MeSH Prohlížeč
- receptor Notch2 MeSH
Multiple sclerosis (MS) is an autoimmune disease characterized by CNS inflammation leading to demyelination and axonal damage. IFN-β is an established treatment for MS; however, up to 30% of IFN-β-treated MS patients develop neutralizing antidrug antibodies (nADA), leading to reduced drug bioactivity and efficacy. Mechanisms driving antidrug immunogenicity remain uncertain, and reliable biomarkers to predict immunogenicity development are lacking. Using high-throughput flow cytometry, NOTCH2 expression on CD14+ monocytes and increased frequency of proinflammatory monocyte subsets were identified as baseline predictors of nADA development in MS patients treated with IFN-β. The association of this monocyte profile with nADA development was validated in 2 independent cross-sectional MS patient cohorts and a prospective cohort followed before and after IFN-β administration. Reduced monocyte NOTCH2 expression in nADA+ MS patients was associated with NOTCH2 activation measured by increased expression of Notch-responsive genes, polarization of monocytes toward a nonclassical phenotype, and increased proinflammatory IL-6 production. NOTCH2 activation was T cell dependent and was only triggered in the presence of serum from nADA+ patients. Thus, nADA development was driven by a proinflammatory environment that triggered activation of the NOTCH2 signaling pathway prior to first IFN-β administration.
Assistance Publique Hôpitaux de Paris Hôpital Paul Brousse Villejuif France
Centre d'Esclerosi Múltiple de Catalunya Hospital Universitari Vall d'Hebron Barcelona Spain
Clinical Department of Neurology Innsbruck Medical University Innsbruck Austria
Department of Rheumatology University College Hospital London United Kingdom
Neuroimmunology Laboratory DMSC Department of Neurology Rigshospitalet Region H Copenhagen Denmark
Translational Sciences Unit Sanofi R and D 91385 Chilly Mazarin Paris France
University Hospital Koeln Deptartment of Neurology Koeln Germany
Zobrazit více v PubMed
Brownlee WJ, Hardy TA, Fazekas F, Miller DH. Diagnosis of multiple sclerosis: progress and challenges. Lancet. 2017;389(10076):1336–1346. doi: 10.1016/S0140-6736(16)30959-X. PubMed DOI
Sawcer S, Franklin RJ, Ban M. Multiple sclerosis genetics. Lancet Neurol. 2014;13(7):700–709. doi: 10.1016/S1474-4422(14)70041-9. PubMed DOI
Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14(9):1142–1149. doi: 10.1038/nn.2887. PubMed DOI
Yamasaki R, et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med. 2014;211(8):1533–1549. doi: 10.1084/jem.20132477. PubMed DOI PMC
Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–558. doi: 10.1038/nri3871. PubMed DOI
Nikbin B, Bonab MM, Khosravi F, Talebian F. Role of B cells in pathogenesis of multiple sclerosis. Int Rev Neurobiol. 2007;79:13–42. PubMed
Lopez-Diego RS, Weiner HL. Novel therapeutic strategies for multiple sclerosis--a multifaceted adversary. Nat Rev Drug Discov. 2008;7(11):909–925. doi: 10.1038/nrd2358. PubMed DOI
Mishra MK, Yong VW. Myeloid cells - targets of medication in multiple sclerosis. Nat Rev Neurol. 2016;12(9):539–551. doi: 10.1038/nrneurol.2016.110. PubMed DOI
[No authors listed] Neutralizing antibodies during treatment of multiple sclerosis with interferon beta-1b: experience during the first three years. The IFNB Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group. Neurology. 1996;47(4):889–894. doi: 10.1212/WNL.47.4.889. PubMed DOI
Jacobs LD, et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG) Ann Neurol. 1996;39(3):285–294. doi: 10.1002/ana.410390304. PubMed DOI
Fisher E, et al. Eight-year follow-up study of brain atrophy in patients with MS. Neurology. 2002;59(9):1412–1420. doi: 10.1212/01.WNL.0000036271.49066.06. PubMed DOI
Applebee A, Panitch H. Early stage and long term treatment of multiple sclerosis with interferon-beta. Biologics. 2009;3:257–271. PubMed PMC
Bachelet D, et al. Occurrence of Anti-Drug Antibodies against Interferon-Beta and Natalizumab in Multiple Sclerosis: A Collaborative Cohort Analysis. PLoS One. 2016;11(11):e0162752. doi: 10.1371/journal.pone.0162752. PubMed DOI PMC
Sominanda A, Hillert J, Fogdell-Hahn A. In vivo bioactivity of interferon-beta in multiple sclerosis patients with neutralising antibodies is titre-dependent. J Neurol Neurosurg Psychiatry. 2008;79(1):57–62. doi: 10.1136/jnnp.2007.122549. PubMed DOI
Neumann TA, Foote M. Megakaryocyte growth and development factor (MGDF): an Mpl ligand and cytokine that regulates thrombopoiesis. Cytokines Cell Mol Ther. 2000;6(1):47–56. doi: 10.1080/13684730050515912. PubMed DOI
Sorensen PS. Neutralizing antibodies against interferon-Beta. Ther Adv Neurol Disord. 2008;1(2):125–141. doi: 10.1177/1756285608095144. PubMed DOI PMC
Schellekens H. The immunogenicity of biopharmaceuticals. Neurology. 2003;61(9 Suppl 5):S11–S12. PubMed
Link J, et al. Human leukocyte antigen genes and interferon beta preparations influence risk of developing neutralizing anti-drug antibodies in multiple sclerosis. PLoS One. 2014;9(3):e90479. doi: 10.1371/journal.pone.0090479. PubMed DOI PMC
et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—establishing disease prognosis and monitoring patients. Nat Rev Neurol. 2015;11(10):597–606. PubMed
Malhotra S, et al. Search for specific biomarkers of IFNβ bioactivity in patients with multiple sclerosis. PLoS One. 2011;6(8):e23634. doi: 10.1371/journal.pone.0023634. PubMed DOI PMC
Graessel A, et al. A Combined Omics Approach to Generate the Surface Atlas of Human Naive CD4+ T Cells during Early T-Cell Receptor Activation. Mol Cell Proteomics. 2015;14(8):2085–2102. doi: 10.1074/mcp.M114.045690. PubMed DOI PMC
Rugg-Gunn PJ, et al. Cell-surface proteomics identifies lineage-specific markers of embryo-derived stem cells. Dev Cell. 2012;22(4):887–901. doi: 10.1016/j.devcel.2012.01.005. PubMed DOI PMC
Ginhoux F, Jung S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6):392–404. doi: 10.1038/nri3671. PubMed DOI
Patel AA, et al. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med. 2017;214(7):1913–1923. doi: 10.1084/jem.20170355. PubMed DOI PMC
Gamrekelashvili J, et al. Regulation of monocyte cell fate by blood vessels mediated by Notch signalling. Nat Commun. 2016;7:12597. PubMed PMC
Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol. 2009;27:669–692. doi: 10.1146/annurev.immunol.021908.132557. PubMed DOI
Abeles RD, et al. CD14, CD16 and HLA-DR reliably identifies human monocytes and their subsets in the context of pathologically reduced HLA-DR expression by CD14(hi) /CD16(neg) monocytes: Expansion of CD14(hi) /CD16(pos) and contraction of CD14(lo) /CD16(pos) monocytes in acute liver failure. Cytometry A. 2012;81(10):823–834. PubMed
Ilagan MX, Kopan R. SnapShot: notch signaling pathway. Cell. 2007;128(6):1246. PubMed
Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137(2):216–233. doi: 10.1016/j.cell.2009.03.045. PubMed DOI PMC
Tsao PN, et al. Lipopolysaccharide-induced Notch signaling activation through JNK-dependent pathway regulates inflammatory response. J Biomed Sci. 2011;18:56. PubMed PMC
Wong KL, et al. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood. 2011;118(5):e16–e31. doi: 10.1182/blood-2010-12-326355. PubMed DOI
Gren ST, Rasmussen TB, Janciauskiene S, Håkansson K, Gerwien JG, Grip O. A Single-Cell Gene-Expression Profile Reveals Inter-Cellular Heterogeneity within Human Monocyte Subsets. PLoS ONE. 2015;10(12):e0144351. doi: 10.1371/journal.pone.0144351. PubMed DOI PMC
Li S, et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat Immunol. 2014;15(2):195–204. PubMed PMC
Walsh G. Biopharmaceutical benchmarks 2010. Nat Biotechnol. 2010;28(9):917–924. doi: 10.1038/nbt0910-917. PubMed DOI
Walsh G. Biopharmaceutical benchmarks 2014. Nat Biotechnol. 2014;32(10):992–1000. doi: 10.1038/nbt.3040. PubMed DOI
Wolfe RM, Ang DC. Biologic Therapies for Autoimmune and Connective Tissue Diseases. Immunol Allergy Clin North Am. 2017;37(2):283–299. doi: 10.1016/j.iac.2017.01.005. PubMed DOI
Bray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol. 2006;7(9):678–689. doi: 10.1038/nrm2009. PubMed DOI
Saito T, et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity. 2003;18(5):675–685. doi: 10.1016/S1074-7613(03)00111-0. PubMed DOI
Benedito R, et al. The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 2009;137(6):1124–1135. doi: 10.1016/j.cell.2009.03.025. PubMed DOI
Van de Walle I, et al. Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions. Blood. 2011;117(17):4449–4459. doi: 10.1182/blood-2010-06-290049. PubMed DOI PMC
Alvarez Y, et al. Notch- and transducin-like enhancer of split (TLE)-dependent histone deacetylation explain interleukin 12 (IL-12) p70 inhibition by zymosan. J Biol Chem. 2011;286(19):16583–16595. doi: 10.1074/jbc.M111.222158. PubMed DOI PMC
Hu X, et al. Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity. 2008;29(5):691–703. doi: 10.1016/j.immuni.2008.08.016. PubMed DOI PMC
Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood. 1989;74(7):2527–2534. PubMed
Mukherjee R, Kanti Barman P, Kumar Thatoi P, Tripathy R, Kumar Das B, Ravindran B. Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic Lupus Erythematous. Sci Rep. 2015;5:13886. PubMed PMC
Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–717. doi: 10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q. PubMed DOI
Kouwenhoven M, Teleshova N, Ozenci V, Press R, Link H. Monocytes in multiple sclerosis: phenotype and cytokine profile. J Neuroimmunol. 2001;112(1-2):197–205. doi: 10.1016/S0165-5728(00)00396-9. PubMed DOI
Makhlouf K, Weiner HL, Khoury SJ. Increased percentage of IL-12+ monocytes in the blood correlates with the presence of active MRI lesions in MS. J Neuroimmunol. 2001;119(1):145–149. doi: 10.1016/S0165-5728(01)00371-X. PubMed DOI
Chuluundorj D, Harding SA, Abernethy D, La Flamme AC. Expansion and preferential activation of the CD14(+)CD16(+) monocyte subset during multiple sclerosis. Immunol Cell Biol. 2014;92(6):509–517. doi: 10.1038/icb.2014.15. PubMed DOI
Waschbisch A, et al. Pivotal Role for CD16+ Monocytes in Immune Surveillance of the Central Nervous System. J Immunol. 2016;196(4):1558–1567. doi: 10.4049/jimmunol.1501960. PubMed DOI
Then Bergh F, Dayyani F, Ziegler-Heitbrock L. Impact of type-I-interferon on monocyte subsets and their differentiation to dendritic cells. An in vivo and ex vivo study in multiple sclerosis patients treated with interferon-beta. J Neuroimmunol. 2004;146(1-2):176–188. doi: 10.1016/j.jneuroim.2003.10.037. PubMed DOI
Sominanda A, Rot U, Suoniemi M, Deisenhammer F, Hillert J, Fogdell-Hahn A. Interferon beta preparations for the treatment of multiple sclerosis patients differ in neutralizing antibody seroprevalence and immunogenicity. Mult Scler. 2007;13(2):208–214. doi: 10.1177/1352458506070762. PubMed DOI
Li Z, Ju Z, Frieri M. The T-cell immunoglobulin and mucin domain (Tim) gene family in asthma, allergy, and autoimmunity. Allergy Asthma Proc. 2013;34(1):e21–e26. PubMed
Trabattoni D, et al. Costimulatory pathways in multiple sclerosis: distinctive expression of PD-1 and PD-L1 in patients with different patterns of disease. J Immunol. 2009;183(8):4984–4993. doi: 10.4049/jimmunol.0901038. PubMed DOI
Huang YM, Adikari S, Båve U, Sanna A, Alm G. Multiple sclerosis: interferon-beta induces CD123(+)BDCA2- dendritic cells that produce IL-6 and IL-10 and have no enhanced type I interferon production. J Neuroimmunol. 2005;158(1-2):204–212. doi: 10.1016/j.jneuroim.2004.08.014. PubMed DOI
Ding X, Cao F, Cui L, Ciric B, Zhang GX, Rostami A. IL-9 signaling affects central nervous system resident cells during inflammatory stimuli. Exp Mol Pathol. 2015;99(3):570–574. doi: 10.1016/j.yexmp.2015.07.010. PubMed DOI PMC
Bertolotto A, Gilli F. Interferon-beta responders and non-responders. A biological approach. Neurol Sci. 2008;29 Suppl 2:S216–S217. PubMed
Rani MR, et al. Heterogeneous, longitudinally stable molecular signatures in response to interferon-beta. Ann N Y Acad Sci. 2009;1182:58–68. doi: 10.1111/j.1749-6632.2009.05068.x. PubMed DOI PMC
Rudick RA, et al. Excessive biologic response to IFNβ is associated with poor treatment response in patients with multiple sclerosis. PLoS One. 2011;6(5):e19262. doi: 10.1371/journal.pone.0019262. PubMed DOI PMC
Comabella M, et al. A type I interferon signature in monocytes is associated with poor response to interferon-beta in multiple sclerosis. Brain. 2009;132(Pt 12):3353–3365. PubMed
Hegen H, et al. Cytokine profiles show heterogeneity of interferon-β response in multiple sclerosis patients. Neurol Neuroimmunol Neuroinflamm. 2016;3(2):e202. doi: 10.1212/NXI.0000000000000202. PubMed DOI PMC
Polman CH, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302. doi: 10.1002/ana.22366. PubMed DOI PMC
Uher T, et al. A Novel Semiautomated Pipeline to Measure Brain Atrophy and Lesion Burden in Multiple Sclerosis: A Long-Term Comparative Study. J Neuroimaging. 2017;27(6):620–629. doi: 10.1111/jon.12445. PubMed DOI
Hermanrud C, et al. Development and validation of cell-based luciferase reporter gene assays for measuring neutralizing anti-drug antibodies against interferon beta. J Immunol Methods. 2016;430:1–9. doi: 10.1016/j.jim.2016.01.004. PubMed DOI
BD Biosciences. Human and Mouse CD Marker Handbook. San Diego, California, USA: BD Biosciences; 2010. https://www.bdbiosciences.com/documents/cd_marker_handbook.pdf Accessed May 17, 2018.
Lebret R, et al. Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library. J Stat Software. 2015;67(6):1–29.