Dysregulated lipid metabolism networks modulate T-cell function in people with relapsing-remitting multiple sclerosis
Language English Country England, Great Britain Media print
Document type Journal Article
Grant support
076
MS Society project grant
PubMed
38625017
PubMed Central
PMC11239565
DOI
10.1093/cei/uxae032
PII: 7646407
Knihovny.cz E-resources
- Keywords
- CD4 + T cells, lipid metabolism, lipid rafts, liver X receptor, multiple sclerosis,
- MeSH
- CD4-Positive T-Lymphocytes * immunology metabolism MeSH
- Cholesterol metabolism MeSH
- Adult MeSH
- Glycosphingolipids metabolism MeSH
- Liver X Receptors * metabolism MeSH
- Middle Aged MeSH
- Humans MeSH
- Lipid Metabolism * MeSH
- Multiple Sclerosis, Relapsing-Remitting * immunology metabolism MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cholesterol MeSH
- Glycosphingolipids MeSH
- Liver X Receptors * MeSH
Altered cholesterol, oxysterol, sphingolipid, and fatty acid concentrations are reported in blood, cerebrospinal fluid, and brain tissue of people with relapsing-remitting multiple sclerosis (RRMS) and are linked to disease progression and treatment responses. CD4 + T cells are pathogenic in RRMS, and defective T-cell function could be mediated in part by liver X receptors (LXRs)-nuclear receptors that regulate lipid homeostasis and immunity. RNA-sequencing and pathway analysis identified that genes within the 'lipid metabolism' and 'signalling of nuclear receptors' pathways were dysregulated in CD4 + T cells isolated from RRMS patients compared with healthy donors. While LXRB and genes associated with cholesterol metabolism were upregulated, other T-cell LXR-target genes, including genes involved in cellular lipid uptake (inducible degrader of the LDL receptor, IDOL), and the rate-limiting enzyme for glycosphingolipid biosynthesis (UDP-glucosylceramide synthase, UGCG) were downregulated in T cells from patients with RRMS compared to healthy donors. Correspondingly, plasma membrane glycosphingolipids were reduced, and cholesterol levels increased in RRMS CD4 + T cells, an effect partially recapitulated in healthy T cells by in vitro culture with T-cell receptor stimulation in the presence of serum from RRMS patients. Notably, stimulation with LXR-agonist GW3965 normalized membrane cholesterol levels, and reduced proliferation and IL17 cytokine production in RRMS CD4 + T-cells. Thus, LXR-mediated lipid metabolism pathways were dysregulated in T cells from patients with RRMS and could contribute to RRMS pathogenesis. Therapies that modify lipid metabolism could help restore immune cell function.
Centre for Experimental and Translational Medicine Division of Medicine University College London UK
Centre for Rheumatology Division of Medicine University College London UK
See more in PubMed
Dobson R, Giovannoni G.. Multiple sclerosis—a review. Eur J Neurol 2019, 26, 27–40. doi: 10.1111/ene.13819 PubMed DOI
Tintore M, Vidal-Jordana A, Sastre-Garriga J.. Treatment of multiple sclerosis—success from bench to bedside. Nat Rev Neurol 2019, 15, 53–8. doi: 10.1038/s41582-018-0082-z PubMed DOI
Dendrou CA, Fugger L, Friese MA.. Immunopathology of multiple sclerosis. Nat Rev Immunol 2015, 15, 545–58. doi: 10.1038/nri3871 PubMed DOI
Jelcic I, Al Nimer F, Wang J, Lentsch V, Planas R, Jelcic I, et al. Memory B cells activate brain-homing, autoreactive CD4 PubMed DOI PMC
Baecher-Allan C, Kaskow BJ, Weiner HL.. Multiple sclerosis: mechanisms and immunotherapy. Neuron 2018, 97, 742–68. doi: 10.1016/j.neuron.2018.01.021 PubMed DOI
Lorincz B, Jury EC, Vrablik M, Ramanathan M, Uher T.. The role of cholesterol metabolism in multiple sclerosis: from molecular pathophysiology to radiological and clinical disease activity. Autoimmun Rev 2022, 21, 103088. doi: 10.1016/j.autrev.2022.103088 PubMed DOI
Pineda-Torra I, Siddique S, Waddington KE, Farrell R, Jury EC.. Disrupted lipid metabolism in multiple sclerosis: a role for liver X receptors? Front Endocrinol (Lausanne) 2021, 12, 639757. doi: 10.3389/fendo.2021.639757 PubMed DOI PMC
Waddington KE, Robinson GA, Rubio-Cuesta B, Chrifi-Alaoui E, Andreone S, Poon K-S, et al. LXR directly regulates glycosphingolipid synthesis and affects human CD4+ T cell function. Proc Natl Acad Sci USA 2021, 118, e2017394118. doi: 10.1073/pnas.2017394118 PubMed DOI PMC
Ito A, Hong C, Rong X, Zhu X, Tarling EJ, Hedde PN, et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. Elife 2015, 4, e08009. doi: 10.7554/eLife.08009 PubMed DOI PMC
Miguel L, Owen DM, Lim C, Liebig C, Evans J, Magee AI, et al. Primary human CD4+ T cells have diverse levels of membrane lipid order that correlate with their function. J Immunol 2011, 186, 3505–16. doi: 10.4049/jimmunol.1002980 PubMed DOI
Owen DM, Oddos S, Kumar S, Davis DM, Neil MAA, French PMW, et al. High plasma membrane lipid order imaged at the immunological synapse periphery in live T cells. Mol Membr Biol 2010, 27, 178–89. doi: 10.3109/09687688.2010.495353 PubMed DOI PMC
Simons K, Gerl MJ.. Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 2010, 11, 688–99. doi: 10.1038/nrm2977 PubMed DOI
Nakayama H, Nagafuku M, Suzuki A, Iwabuchi K, Inokuchi J-I.. The regulatory roles of glycosphingolipid-enriched lipid rafts in immune systems. FEBS Lett 2018, 592, 3921–42. doi: 10.1002/1873-3468.13275 PubMed DOI
McDonald G, Deepak S, Miguel L, Hall CJ, Isenberg DA, Magee AI, et al. Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients. J Clin Invest 2014, 124, 712–24. doi: 10.1172/JCI69571 PubMed DOI PMC
Yang W, Bai Y, Xiong Y, Zhang J, Chen S, Zheng X, et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature 2016, 531, 651–5. doi: 10.1038/nature17412 PubMed DOI PMC
Wang B, Tontonoz P.. Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol 2018, 14, 452–63. doi: 10.1038/s41574-018-0037-x PubMed DOI PMC
Bensinger SJ, Bradley MN, Joseph SB, Zelcer N, Janssen EM, Hausner MA, et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 2008, 134, 97–111. doi: 10.1016/j.cell.2008.04.052 PubMed DOI PMC
Waddington KE, Jury EC, Pineda-Torra I.. Liver X receptors in immune cell function in humans. Biochem Soc Trans 2015, 43, 752–7. doi: 10.1042/BST20150112 PubMed DOI
Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011, 69, 292–302. doi: 10.1002/ana.22366 PubMed DOI PMC
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019, 10, 1523. doi: 10.1038/s41467-019-09234-6 PubMed DOI PMC
Metsalu T, Vilo J.. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 2015, 43, W566–70. doi: 10.1093/nar/gkv468 PubMed DOI PMC
Waddington KE, Pineda-Torra I, Jury EC.. Analyzing T-cell plasma membrane lipids by flow cytometry. Methods Mol Biol 2019, 1951, 209–16. doi: 10.1007/978-1-4939-9130-3_16 PubMed DOI
Waddington KE, Papadaki A, Coelewij L, Adriani M, Nytrova P, Kubala Havrdova E, et al. Using serum metabolomics to predict development of anti-drug antibodies in multiple sclerosis patients treated with IFNβ. Front Immunol 2020, 11, 1527. doi: 10.3389/fimmu.2020.01527 PubMed DOI PMC
Walcher D, Kümmel A, Kehrle B, Bach H, Grüb M, Durst R, et al. LXR activation reduces proinflammatory cytokine expression in human CD4-positive lymphocytes. Arterioscler Thromb Vasc Biol 2006, 26, 1022–8. doi: 10.1161/01.ATV.0000210278.67076.8f PubMed DOI
Gurevich M, Miron G, Achiron A.. Optimizing multiple sclerosis diagnosis: gene expression and genomic association. Ann Clin Transl Neurol 2015, 2, 271–7. doi: 10.1002/acn3.174 PubMed DOI PMC
Kunkl M, Frascolla S, Amormino C, Volpe E, Tuosto L.. T helper cells: the modulators of inflammation in multiple sclerosis. Cells 2020, 9, 482. doi: 10.3390/cells9020482 PubMed DOI PMC
Salehi Z, Talebi S, Maleknia S, Palizban F, Naser Moghadasi A, Kavousi K, et al. RNA Sequencing of CD4(+) T cells in relapsing-remitting multiple sclerosis patients at relapse: deciphering the involvement of novel genes and pathways. J Mol Neurosci 2021, 71, 2628–45. doi: 10.1007/s12031-021-01878-8 PubMed DOI
Voskuhl RR, Itoh N, Tassoni A, Matsukawa MA, Ren E, Tse V, et al. Gene expression in oligodendrocytes during remyelination reveals cholesterol homeostasis as a therapeutic target in multiple sclerosis. Proc Natl Acad Sci USA 2019, 116, 10130–9. doi: 10.1073/pnas.1821306116 PubMed DOI PMC
Ramón-Vázquez A, de la Rosa JV, Tabraue C, Lopez F, Díaz-Chico BN, Bosca L, et al. Common and differential transcriptional actions of nuclear receptors liver X receptors α and β in macrophages. Mol Cell Biol 2019, 39, e00376–18. doi: 10.1128/MCB.00376-18 PubMed DOI PMC
Zelcer N, Hong C, Boyadjian R, Tontonoz P.. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science 2009, 325, 100–4. doi: 10.1126/science.1168974 PubMed DOI PMC
Sun Y, Hao M, Luo Y, Liang C-ping, Silver DL, Cheng C, et al. Stearoyl-CoA desaturase inhibits ATP-binding cassette transporter A1-mediated cholesterol efflux and modulates membrane domain structure. J Biol Chem 2003, 278, 5813–20. doi: 10.1074/jbc.M208687200 PubMed DOI
Nelson JK, Koenis DS, Scheij S, Cook ECL, Moeton M, Santos A, et al. EEPD1 is a novel LXR target gene in macrophages which regulates ABCA1 abundance and cholesterol efflux. Arterioscler Thromb Vasc Biol 2017, 37, 423–32. doi: 10.1161/ATVBAHA.116.308434 PubMed DOI PMC
Robinson GA, Peng J, Pineda-Torra I, Ciurtin C, Jury EC.. Metabolomics defines complex patterns of dyslipidaemia in juvenile-SLE patients associated with inflammation and potential cardiovascular disease risk. Metabolites 2022, 12, 3. doi: 10.3390/metabo12010003 PubMed DOI PMC
Smith E, Croca S, Waddington KE, et al. Cross-talk between iNKT cells and monocytes triggers an atheroprotective immune response in SLE patients with asymptomatic plaque. Sci Immunol 2016, 1, eaah4081. doi: 10.1126/sciimmunol.aah4081 [published Online First: 2017/08/08] PubMed DOI
Cui G, Qin X, Wu L, Zhang Y, Sheng X, Yu Q, et al. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J Clin Invest 2011, 121, 658–70. doi: 10.1172/JCI42974 PubMed DOI PMC
Chiricosta L, Blando S, D’Angiolini S, Gugliandolo A, Mazzon E.. A comprehensive exploration of the transcriptomic landscape in multiple sclerosis: a systematic review. Int J Mol Sci 2023, 24, 1448. doi: 10.3390/ijms24021448 PubMed DOI PMC
Brorson IS, Eriksson A, Leikfoss IS, Celius EG, Berg-Hansen P, Barcellos LF, et al. No differential gene expression for CD4(+) T cells of MS patients and healthy controls. Mult Scler J Exp Transl Clin 2019, 5, 2055217319856903. doi: 10.1177/2055217319856903 PubMed DOI PMC
Hrastelj J, Andrews R, Loveless S, Morgan J, Bishop SM, Bray NJ, et al. CSF-resident CD4+ T-cells display a distinct gene expression profile with relevance to immune surveillance and multiple sclerosis. Brain Commun 2021, 3, fcab155. doi: 10.1093/braincomms/fcab155 PubMed DOI PMC
Grassi S, Giussani P, Mauri L, Prioni S, Sonnino S, Prinetti A.. Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases: thematic review series: biology of lipid rafts. J Lipid Res 2020, 61, 636–54. doi: 10.1194/jlr.TR119000427 PubMed DOI PMC
Spann NJ, Glass CK.. Sterols and oxysterols in immune cell function. Nat Immunol 2013, 14, 893–900. doi: 10.1038/ni.2681 PubMed DOI
Jury EC, Isenberg DA, Mauri C, Ehrenstein MR.. Atorvastatin restores Lck expression and lipid raft-associated signaling in T cells from patients with systemic lupus erythematosus. J Immunol 2006, 177, 7416–22. doi: 10.4049/jimmunol.177.10.7416 PubMed DOI
Lochner M, Berod L, Sparwasser T.. Fatty acid metabolism in the regulation of T cell function. Trends Immunol 2015, 36, 81–91. doi: 10.1016/j.it.2014.12.005 PubMed DOI
Giorelli M, Livrea P, Minervini MG, Trojano M.. Immunomodulatory properties of increased levels of liver X receptor β in peripheral blood mononuclear cells from multiple sclerosis patients. Exp Neurol 2007, 204, 759–66. doi: 10.1016/j.expneurol.2007.01.013 PubMed DOI
Hoppmann N, Graetz C, Paterka M, Poisa-Beiro L, Larochelle C, Hasan M, et al. New candidates for CD4 T cell pathogenicity in experimental neuroinflammation and multiple sclerosis. Brain 2015, 138, 902–17. doi: 10.1093/brain/awu408 PubMed DOI
Hindinger C, Hinton DR, Kirwin SJ, Atkinson RD, Burnett ME, Bergmann CC, et al. Liver X receptor activation decreases the severity of experimental autoimmune encephalomyelitis. J Neurosci Res 2006, 84, 1225–34. doi: 10.1002/jnr.21038 PubMed DOI
Becares N, Gage MC, Pineda-Torra I.. Posttranslational modifications of lipid-activated nuclear receptors: focus on metabolism. Endocrinology 2016, 158, 213–25. doi: 10.1210/en.2016-1577 PubMed DOI PMC
Pehkonen P, Welter-Stahl L, Diwo J, Ryynänen J, Wienecke-Baldacchino A, Heikkinen S, et al. Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages. BMC Genomics 2012, 13, 50. doi: 10.1186/1471-2164-13-50 PubMed DOI PMC
Jin L, Martynowski D, Zheng S, Wada T, Xie W, Li Y.. Structural basis for hydroxycholesterols as natural ligands of orphan nuclear receptor RORgamma. Mol Endocrinol 2010, 24, 923–9. doi: 10.1210/me.2009-0507 PubMed DOI PMC
Radhakrishnan A, Ikeda Y, Kwon HJ, Brown MS, Goldstein JL.. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc Natl Acad Sci U S A 2007, 104, 6511–8. doi: 10.1073/pnas.0700899104 PubMed DOI PMC
Umetani M, Ghosh P, Ishikawa T, Umetani J, Ahmed M, Mineo C, et al. The cholesterol metabolite 27-hydroxycholesterol promotes atherosclerosis via proinflammatory processes mediated by estrogen receptor alpha. Cell Metab 2014, 20, 172–82. doi: 10.1016/j.cmet.2014.05.013 PubMed DOI PMC
Becares N, Gage MC, Voisin M, Shrestha E, Martin-Gutierrez L, Liang N, et al. Impaired LXRα Phosphorylation attenuates progression of fatty liver disease. Cell Rep 2019, 26, 984–95.e6. doi: 10.1016/j.celrep.2018.12.094 PubMed DOI PMC
Corvol JC, Pelletier D, Henry RG, Caillier SJ, Wang J, Pappas D, et al. Abrogation of T cell quiescence characterizes patients at high risk for multiple sclerosis after the initial neurological event. Proc Natl Acad Sci U S A 2008, 105, 11839–44. doi: 10.1073/pnas.0805065105 PubMed DOI PMC
Friess J, Hecker M, Roch L, Koczan D, Fitzner B, Angerer IC, et al. Fingolimod alters the transcriptome profile of circulating CD4+ cells in multiple sclerosis. Sci Rep 2017, 7, 42087. doi: 10.1038/srep42087 PubMed DOI PMC
Lötsch J, Schiffmann S, Schmitz K, Brunkhorst R, Lerch F, Ferreiros N, et al. Machine-learning based lipid mediator serum concentration patterns allow identification of multiple sclerosis patients with high accuracy. Sci Rep 2018, 8, 14884. doi: 10.1038/s41598-018-33077-8 PubMed DOI PMC
Kurz J, Brunkhorst R, Foerch C, Blum L, Henke M, Gabriel L, et al. The relevance of ceramides and their synthesizing enzymes for multiple sclerosis. Clin Sci (Lond) 2018, 132, 1963–76. doi: 10.1042/CS20180506 PubMed DOI
Chao CC, Gutiérrez-Vázquez C, Rothhammer V, Mayo L, Wheeler MA, Tjon EC, et al. Metabolic control of astrocyte pathogenic activity via cPLA2-MAVS. Cell 2019, 179, 1483–98.e22. doi: 10.1016/j.cell.2019.11.016 PubMed DOI PMC
Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S, Harmrolfs K, et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 2014, 20, 1327–33. doi: 10.1038/nm.3704 PubMed DOI
Furuhashi M, Hotamisligil GS.. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 2008, 7, 489–503. doi: 10.1038/nrd2589 PubMed DOI PMC
Reynolds JM, Liu Q, Brittingham KC, Liu Y, Gruenthal M, Gorgun CZ, et al. Deficiency of fatty acid-binding proteins in mice confers protection from development of experimental autoimmune encephalomyelitis. J Immunol 2007, 179, 313–21. doi: 10.4049/jimmunol.179.1.313 PubMed DOI
Rao E, Singh P, Li Y, Zhang Y, Chi Y-I, Suttles J, et al. Targeting epidermal fatty acid binding protein for treatment of experimental autoimmune encephalomyelitis. BMC Immunol 2015, 16, 28. doi: 10.1186/s12865-015-0091-2 PubMed DOI PMC
Cheng A, Jia W, Kawahata I, Fukunaga K.. A novel fatty acid-binding protein 5 and 7 inhibitor ameliorates oligodendrocyte injury in multiple sclerosis mouse models. eBioMedicine 2021, 72, 103582. doi: 10.1016/j.ebiom.2021.103582 PubMed DOI PMC
Pompura SL, Wagner A, Kitz A, LaPerche J, Yosef N, Dominguez-Villar M, et al. Oleic acid restores suppressive defects in tissue-resident FOXP3 Tregs from patients with multiple sclerosis. J Clin Invest 2021, 131, e138519. doi: 10.1172/JCI138519 PubMed DOI PMC
Herold M, Breuer J, Hucke S, Knolle P, Schwab N, Wiendl H, et al. Liver X receptor activation promotes differentiation of regulatory T cells. PLoS One 2017, 12, e0184985. doi: 10.1371/journal.pone.0184985 PubMed DOI PMC
Michaels AJ, Campbell C, Bou-Puerto R, Rudensky AY.. Nuclear receptor LXRβ controls fitness and functionality of activated T cells. J Exp Med 2020, 218, e20201311. doi: 10.1084/jem.20201311 PubMed DOI PMC
Duman M, Vaquié A, Nocera G, Heller M, Stumpe M, Siva Sankar D, et al. EEF1A1 deacetylation enables transcriptional activation of remyelination. Nat Commun 2020, 11, 3420. doi: 10.1038/s41467-020-17243-z PubMed DOI PMC
Couturier N, Bucciarelli F, Nurtdinov RN, Debouverie M, Lebrun-Frenay C, Defer G, et al. Tyrosine kinase 2 variant influences T lymphocyte polarization and multiple sclerosis susceptibility. Brain : J Neurol 2011, 134, 693–703. doi: 10.1093/brain/awr010 PubMed DOI
Clénet ML, Laurent C, Lemaitre F, Farzam-Kia N, Tastet O, Devergne O, et al. The IL-27/IL-27R axis is altered in CD4(+) and CD8(+) T lymphocytes from multiple sclerosis patients. Clin Transl Immunol 2021, 10, e1262. doi: 10.1002/cti2.1262 PubMed DOI PMC
Dang Eric V, Barbi J, Yang H-Y, et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 2011, 146, 772–84. doi: 10.1016/j.cell.2011.07.033 PubMed DOI PMC
Le Moan N, Baeten KM, Rafalski VA, Ryu JK, Rios Coronado PE, Bedard C, et al. Hypoxia inducible factor-1α in astrocytes and/or myeloid cells is not required for the development of autoimmune demyelinating disease. eNeuro 2015, 2, ENEURO.0050–14.2015. doi: 10.1523/ENEURO.0050-14.2015 PubMed DOI PMC
Ding X, Jo J, Wang C-Y, Cristobal CD, Zuo Z, Ye Q, et al. The Daam2–VHL–Nedd4 axis governs developmental and regenerative oligodendrocyte differentiation. Genes Develop 2020, 34, 1177–89. doi: 10.1101/gad.338046.120 PubMed DOI PMC
Norata D, Peri M, Giammalva GR, Lupica A, Paolini F, Incorvaia L, et al. Immunological aspects of Von Hippel-Lindau disease: a focus on neuro-oncology and myasthenia gravis. Diagnostics (Basel, Switzerland) 2023, 13, 144. doi: 10.3390/diagnostics13010144 PubMed DOI PMC
Fujii C, Kondo T, Ochi H, Okada Y, Hashi Y, Adachi T, et al. Altered T cell phenotypes associated with clinical relapse of multiple sclerosis patients receiving fingolimod therapy. Sci Rep 2016, 6, 35314. doi: 10.1038/srep35314 PubMed DOI PMC
Mutlu AS, Duffy J, Wang MC.. Lipid metabolism and lipid signals in aging and longevity. Dev Cell 2021, 56, 1394–407. doi: 10.1016/j.devcel.2021.03.034 PubMed DOI PMC
Papsdorf K, Brunet A.. Linking lipid metabolism to chromatin regulation in aging. Trends Cell Biol 2019, 29, 97–116. doi: 10.1016/j.tcb.2018.09.004 PubMed DOI PMC
Johnson AA, Stolzing A.. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 2019, 18, e13048. doi: 10.1111/acel.13048 PubMed DOI PMC
Gavini CK, Elshareif N, Aubert G, Germanwala AV, Calcutt NA, Mansuy-Aubert V.. LXR agonist improves peripheral neuropathy and modifies PNS immune cells in aged mice. J Neuroinflammation 2022, 19, 57. doi: 10.1186/s12974-022-02423-z PubMed DOI PMC
Oppong AE, Coelewij L, Robertson G, Martin-Gutierrez L, Waddington KE, Dönnes P, et al. Blood metabolomic and transcriptomic signatures stratify patient subgroups in multiple sclerosis according to disease severity. iScience 2024, 27, 109225. doi: 10.1016/j.isci.2024.109225 PubMed DOI PMC
Pihl-Jensen G, Tsakiri A, Frederiksen JL.. Statin treatment in multiple sclerosis: a systematic review and meta-analysis. CNS Drugs 2015, 29, 277–91. doi: 10.1007/s40263-015-0239-x PubMed DOI
Zhang X, Tao Y, Troiani L, Markovic-Plese S.. Simvastatin inhibits IFN regulatory factor 4 expression and Th17 cell differentiation in CD4+ T cells derived from patients with multiple sclerosis. J Immunol 2011, 187, 3431–7. doi: 10.4049/jimmunol.1100580 PubMed DOI
Eshaghi A, Kievit RA, Prados F, Sudre CH, Nicholas J, Cardoso MJ, et al. Applying causal models to explore the mechanism of action of simvastatin in progressive multiple sclerosis. Proc Natl Acad Sci U S A 2019, 116, 11020–7. doi: 10.1073/pnas.1818978116 PubMed DOI PMC
Yu H, Bai S, Hao Y, Guan Y.. Fatty acids role in multiple sclerosis as “metabokines”. J Neuroinflammation 2022, 19, 157. doi: 10.1186/s12974-022-02502-1 PubMed DOI PMC