Mitochondria on the move: Horizontal mitochondrial transfer in disease and health
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, komentáře
PubMed
36795453
PubMed Central
PMC9960264
DOI
10.1083/jcb.202211044
PII: 213873
Knihovny.cz E-zdroje
- MeSH
- energetický metabolismus MeSH
- fylogeneze MeSH
- mitochondrie * metabolismus MeSH
- nádory * genetika metabolismus MeSH
- savci MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- komentáře MeSH
- práce podpořená grantem MeSH
Mammalian genes were long thought to be constrained within somatic cells in most cell types. This concept was challenged recently when cellular organelles including mitochondria were shown to move between mammalian cells in culture via cytoplasmic bridges. Recent research in animals indicates transfer of mitochondria in cancer and during lung injury in vivo, with considerable functional consequences. Since these pioneering discoveries, many studies have confirmed horizontal mitochondrial transfer (HMT) in vivo, and its functional characteristics and consequences have been described. Additional support for this phenomenon has come from phylogenetic studies. Apparently, mitochondrial trafficking between cells occurs more frequently than previously thought and contributes to diverse processes including bioenergetic crosstalk and homeostasis, disease treatment and recovery, and development of resistance to cancer therapy. Here we highlight current knowledge of HMT between cells, focusing primarily on in vivo systems, and contend that this process is not only (patho)physiologically relevant, but also can be exploited for the design of novel therapeutic approaches.
1st Faculty of Medicine Charles University Prague Czech Republic
Faculty of Science Charles University Prague Czech Republic
Institute of Biotechnology Academy of Sciences of the Czech Republic Prague West Czech Republic
Malaghan Institute of Medical Research Wellington New Zealand
School of Medicine University of Paris East Creteil France
School of Pharmacy and Medical Sciences Griffith University Southport Australia
Zobrazit více v PubMed
Abounit, S., Bousset L., Loria F., Zhu S., de Chaumont F., Pieri L., Olivo-Marin J.C., Melki R., and Zurzolo C.. 2016. Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. EMBO J. 35:2120–2138. 10.15252/embj.201593411 PubMed DOI PMC
Acín-Pérez, R., Fernández-Silva P., Peleato M.L., Pérez-Martos A., and Enriquez J.A.. 2008. Respiratory active mitochondrial supercomplexes. Mol. Cell. 32:529–539. 10.1016/j.molcel.2008.10.021 PubMed DOI
Acquistapace, A., Bru T., Lesault P.F., Figeac F., Coudert A.E., le Coz O., Christov C., Baudin X., Auber F., Yiou R., et al. . 2011. Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells. 29:812–824. 10.1002/stem.632 PubMed DOI PMC
Aguilar, P.S., Baylies M.K., Fleissner A., Helming L., Inoue N., Podbilewicz B., Wang H., and Wong M.. 2013. Genetic basis of cell-cell fusion mechanisms. Trends Genet. 29:427–437. 10.1016/j.tig.2013.01.011 PubMed DOI PMC
Ahmad, T., Mukherjee S., Pattnaik B., Kumar M., Singh S., Kumar M., Rehman R., Tiwari B.K., Jha K.A., Barhanpurkar A.P., et al. . 2014. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 33:994–1010. 10.1002/embj.201386030 PubMed DOI PMC
Ali Pour, P., Kenney M.C., and Kheradvar A.. 2020. Bioenergetics consequences of mitochondrial transplantation in cardiomyocytes. J. Am. Heart Assoc. 9:e014501. 10.1161/JAHA.119.014501 PubMed DOI PMC
Alvarez-Dolado, M., Pardal R., Garcia-Verdugo J.M., Fike J.R., Lee H.O., Pfeffer K., Lois C., Morrison S.J., and Alvarez-Buylla A.. 2003. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature. 425:968–973. 10.1038/nature02069 PubMed DOI
Antanavičiūtė, I., Rysevaitė K., Liutkevičius V., Marandykina A., Rimkutė L., Sveikatienė R., Uloza V., and Skeberdis V.A.. 2014. Long-distance communication between laryngeal carcinoma cells. PLoS One. 9:e99196. 10.1371/journal.pone.0099196 PubMed DOI PMC
Area-Gomez, E., Guardia-Laguarta C., Schon E.A., and Przedborski S.. 2019. Mitochondria, OxPhos, and neurodegeneration: Cells are not just running out of gas. J. Clin. Invest. 129:34–45. 10.1172/JCI120848 PubMed DOI PMC
Ariazi, J., Benowitz A., De Biasi V., Den Boer M.L., Cherqui S., Cui H., Douillet N., Eugenin E.A., Favre D., Goodman S., et al. . 2017. Tunneling nanotubes and gap junctions—their role in long-range intercellular communication during development, health, and disease conditions. Front. Mol. Neurosci. 10:333. 10.3389/fnmol.2017.00333 PubMed DOI PMC
Aryaman, J., Johnston I.G., and Jones N.S.. 2019a. Mitochondrial heterogeneity. Front. Genet. 9:718. 10.3389/fgene.2018.00718 PubMed DOI PMC
Aryaman, J., Bowles C., Jones N.S., and Johnston I.G.. 2019b. Mitochondrial network state scales mtDNA genetic dynamics. Genetics. 212:1429–1443. 10.1534/genetics.119.302423 PubMed DOI PMC
Babenko, V.A., Silachev D.N., Zorova L.D., Pevzner I.B., Khutornenko A.A., Plotnikov E.Y., Sukhikh G.T., and Zorov D.B.. 2015. Improving the post-stroke therapeutic potency of mesenchymal multipotent stromal vells by cocultivation with cortical neurons: The role of crosstalk between cells. Stem Cells Transl. Med. 4:1011–1020. 10.5966/sctm.2015-0010 PubMed DOI PMC
Babenko, V.A., Silachev D.N., Popkov V.A., Zorova L.D., Pevzner I.B., Plotnikov E.Y., Sukhikh G.T., and Zorov D.B.. 2018. Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules. 23:687. 10.3390/molecules23030687 PubMed DOI PMC
Bagheri, H.S., Bani F., Tasoglu S., Zarebkohan A., Rahbarghazi R., and Sokullu E.. 2020. Mitochondrial donation in translational medicine; from imagination to reality. J. Transl. Med. 18:367. 10.1186/s12967-020-02529-z PubMed DOI PMC
Bajzikova, M., Kovarova J., Coelho A.R., Boukalova S., Oh S., Rohlenova K., Svec D., Hubackova S., Endaya B., Judasova K., et al. . 2019. Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metabol. 29:399–416.e10. 10.1016/j.cmet.2018.10.014 PubMed DOI PMC
Baris, O.R., Ederer S., Neuhaus J.F., von Kleist-Retzow J.C., Wunderlich C.M., Pal M., Wunderlich F.T., Peeva V., Zsurka G., Kunz W.S., et al. . 2015. Mosaic deficiency in mitochondrial oxidative metabolism promotes cardiac arrhythmia during aging. Cell Metabol. 21:667–677. 10.1016/j.cmet.2015.04.005 PubMed DOI
Barrasso, A.P., Tong X., and Poché R.A.. 2018. The mito:mKate2 mouse: A far-red fluorescent reporter mouse line for tracking mitochondrial dynamics in vivo. Genesis. 56:e23087. 10.1002/dvg.23087 PubMed DOI PMC
Bayona-Bafaluy, M.P., Acín-Pérez R., Mullikin J.C., Park J.S., Moreno-Loshuertos R., Hu P., Pérez-Martos A., Fernández-Silva P., Bai Y., and Enríquez J.A.. 2003. Revisiting the mouse mitochondrial DNA sequence. Nucleic Acids Res. 31:5349–5355. 10.1093/nar/gkg739 PubMed DOI PMC
Becker, A., Thakur B.K., Weiss J.M., Kim H.S., Peinado H., and Lyden D.. 2016. Extracellular vesicles in cancer: Cell-to-cell mediators of metastasis. Cancer Cell. 30:836–848. 10.1016/j.ccell.2016.10.009 PubMed DOI PMC
Bennett, C.F., Latorre-Muro P., and Puigserver P.. 2022. Mechanisms of mitochondrial respiratory adaptation. Nat. Rev. Mol. Cell Biol. 23:817–835. 10.1038/s41580-022-00506-6 PubMed DOI PMC
Berardi, M.J., and Fantin V.R.. 2011. Survival of the fittest: Metabolic adaptations in cancer. Curr. Opin. Genet. Dev. 21:59–66. 10.1016/j.gde.2010.10.001 PubMed DOI
Bergthorsson, U., Adams K.L., Thomason B., and Palmer J.D.. 2003. Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature. 424:197–201. 10.1038/nature01743 PubMed DOI
Berridge, M.V., Dong L., and Neuzil J.. 2015. Mitochondrial DNA in tumor initiation, progression and metastasis: Role of horizontal mtDNA transfer. Cancer Res. 75:3203–3208. 10.1158/0008-5472.CAN-15-0859 PubMed DOI
Berridge, M.V., Schneider R.T., and McConnell M.J.. 2016. Mitochondrial transfer from astrocytes to neurons following ischemic insult: Guilt by association? Cell Metabol. 24:376–378. 10.1016/j.cmet.2016.08.023 PubMed DOI
Berridge, M.V., Herst P.M., and Grasso C.. 2020. Mitochondrial Movement between Cells: An Emerging Physiological Phenomenon in the Human Mitochondrial Genome: from Biology to Disease. Porcelli A.-M., Gasparre G., editors. Elsevier Books, 20:515–545
Bettadapur, A., Miller H.W., and Ralston K.S.. 2020. Biting off what can be chewed: Trogocytosis in health, infection, and disease. Infect. Immun. 88:e00930-19. 10.1128/IAI.00930-19 PubMed DOI PMC
Bhattacharya, D., and Scimè A.. 2020. Mitochondrial function in muscle stem cell fates. Front. Cell Dev. Biol. 8:480. 10.3389/fcell.2020.00480 PubMed DOI PMC
Birky, C.W., Jr. 2001. The inheritance of genes in mitochondria and chloroplasts: Laws, mechanisms, and models. Annu. Rev. Genet. 35:125–148. 10.1146/annurev.genet.35.102401.090231 PubMed DOI
Birsoy, K., Wang T., Chen W.W., Freinkman E., Abu-Remaileh M., and Sabatini D.M.. 2015. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell. 162:540–551. 10.1016/j.cell.2015.07.016 PubMed DOI PMC
Boelens, M.C., Wu T.J., Nabet B.Y., Xu B., Qiu Y., Yoon T., Azzam D.J., Twyman-Saint Victor C., Wiemann B.Z., Ishwaran H., et al. . 2014. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell. 159:499–513. 10.1016/j.cell.2014.09.051 PubMed DOI PMC
Boschetti, C., Carr A., Crisp A., Eyres I., Wang-Koh Y., Lubzens E., Barraclough T.G., Micklem G., and Tunnacliffe A.. 2012. Biochemical diversification through foreign gene expression in bdelloid rotifers. PLoS Genet. 8:e1003035. 10.1371/journal.pgen.1003035 PubMed DOI PMC
Boudreau, L.H., Duchez A.C., Cloutier N., Soulet D., Martin N., Bollinger J., Paré A., Rousseau M., Naika G.S., Lévesque T., et al. . 2014. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood. 124:2173–2183. 10.1182/blood-2014-05-573543 PubMed DOI PMC
Boukalova, S., Hubackova S., Milosevic M., Ezrova Z., Neuzil J., and Rohlena J.. 2020. Dihydroorotate dehydrogenase in oxidative phosphorylation and cancer. Biochim. Biophys. Acta Mol. Basis Dis. 1866:165759. 10.1016/j.bbadis.2020.165759 PubMed DOI
Boukelmoune, N., Chiu G.S., Kavelaars A., and Heijnen C.J.. 2018. Mitochondrial transfer from mesenchymal stem cells to neural stem cells protects against the neurotoxic effects of cisplatin. Acta Neuropathol. Commun. 6:139. 10.1186/s40478-018-0644-8 PubMed DOI PMC
Brestoff, J.R., Wilen C.B., Moley J.R., Li Y., Zou W., Malvin N.P., Rowen M.N., Saunders B.T., Ma H., Mack M.R., et al. . 2021. Intercellular mitochondria transfer to macrophages regulates white adipose tissue homeostasis and is impaired in obesity. CellMetabol. 33:270–282.e8. 10.1016/j.cmet.2020.11.008 PubMed DOI PMC
Buck, M.D., O’Sullivan D., Klein Geltink R.I., Curtis J.D., Chang C.H., Sanin D.E., Qiu J., Kretz O., Braas D., van der Windt G.J., et al. . 2016. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell. 166:63–76. 10.1016/j.cell.2016.05.035 PubMed DOI PMC
Bukoreshtliev, N.V., Wang X., Hodneland E., Gurke S., Barroso J.F., and Gerdes H.H.. 2009. Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett. 583:1481–1488. 10.1016/j.febslet.2009.03.065 PubMed DOI
Burgstaller, J.P., Johnston I.G., Jones N.S., Albrechtová J., Kolbe T., Vogl C., Futschik A., Mayrhofer C., Klein D., Sabitzer S., et al. . 2014. MtDNA segregation in heteroplasmic tissues is common in vivo and modulated by haplotype differences and developmental stage. Cell Rep. 7:2031–2041. 10.1016/j.celrep.2014.05.020 PubMed DOI PMC
Burt, R., Dey A., Aref S., Aguiar M., Akarca A., Bailey K., Day W., Hooper S., Kirkwood A., Kirschner K., et al. . 2019. Activated stromal cells transfer mitochondria to rescue acute lymphoblastic leukemia cells from oxidative stress. Blood. 134:1415–1429. 10.1182/blood.2019001398 PubMed DOI PMC
Burté, F., Carelli V., Chinnery P.F., and Yu-Wai-Man P.. 2015. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 11:11–24. 10.1038/nrneurol.2014.228 PubMed DOI
Caicedo, A., Fritz V., Brondello J.M., Ayala M., Dennemont I., Abdellaoui N., de Fraipont F., Moisan A., Prouteau C.A., Boukhaddaoui H., et al. . 2015. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci. Rep. 5:9073. 10.1038/srep09073 PubMed DOI PMC
Caicedo, A., Aponte P.M., Cabrera F., Hidalgo C., and Khoury M.. 2017. Artificial mitochondria transfer: Current challenges, advances, and future applications. Stem Cells Int. 2017:7610414. 10.1155/2017/7610414 PubMed DOI PMC
Chang, J.C., Wu S.L., Liu K.H., Chen Y.H., Chuang C.S., Cheng F.C., Su H.L., Wei Y.H., Kuo S.J., and Liu C.S.. 2016. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: Restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity. Transl. Res 170:40–56.e3. 10.1016/j.trsl.2015.12.003 PubMed DOI
Chang, C.-Y., Liang M.-Z., and Chen L.. 2019. Current progress of mitochondrial transplantation that promotes neuronal regeneration. Transl. Neurodegener. 8:17. 10.1186/s40035-019-0158-8 PubMed DOI PMC
Chen, Y.H., Su C.C., Deng W., Lock L.F., Donovan P.J., Kayala M.A., Baldi P., Lee H.C., Chen Y., and Wang P.H.. 2019. Mitochondrial Akt signaling modulated reprogramming of somatic cells. Sci. Rep. 9:9919. 10.1038/s41598-019-46359-6 PubMed DOI PMC
Chinnery, H.R., and Keller K.E.. 2020. Tunneling nanotubes and the eye: Intercellular communication and implications for ocular health and disease. Biomed. Res. Int. 2020:7246785. 10.1155/2020/7246785 PubMed DOI PMC
Cho, Y.M., Kim J.H., Kim M., Park S.J., Koh S.H., Ahn H.S., Kang G.H., Lee J.B., Park K.S., and Lee H.K.. 2012. Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. PLoS One. 7:e32778. 10.1371/journal.pone.0032778 PubMed DOI PMC
Chou, S.H., Lan J., Esposito E., Ning M., Balaj L., Ji X., Lo E.H., and Hayakawa K.. 2017. Extracellular mitochondria in cerebrospinal fluid and neuro-logical recovery after subarachnoid hemorrhage. Stroke. 48:2231–2237. 10.1161/STROKEAHA.117.017758 PubMed DOI PMC
Chuang, Y.C., Liou C.W., Chen S.D., Wang P.W., Chuang J.H., Tiao M.M., Hsu T.Y., Lin H.Y., and Lin T.K.. 2017. Mitochondrial transfer from Wharton’s jelly mesenchymal stem cell to MERRF cybrid reduces oxidative stress and improves mitochondrial bioenergetics. Oxid. Med. Cell. Longev. 2017:5691215. 10.1155/2017/5691215 PubMed DOI PMC
Cocucci, E., and Meldolesi J.. 2015. Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends Cell Biol. 25:364–372. 10.1016/j.tcb.2015.01.004 PubMed DOI
Conner, S.D., and Schmid S.L.. 2003. Regulated portals of entry into the cell. Nature. 422:37–44. 10.1038/nature01451 PubMed DOI
Course, M.M., and Wang X.. 2016. Transporting mitochondria in neurons. F1000 Res. 5:1735. 10.12688/f1000research.7864.1 PubMed DOI PMC
Couvillion, M.T., Soto I.C., Shipkovenska G., and Churchman L.S.. 2016. Synchronized mitochondrial and cytosolic translation programs. Nature. 533:499–503. 10.1038/nature18015 PubMed DOI PMC
Cowan, D.B., Yao R., Akurathi V., Snay E.R., Thedsanamoorthy J.K., Zurakowski D., Ericsson M., Friehs I., Wu Y., Levitsky S., et al. . 2016. Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection. PLoS One. 11:e0160889. 10.1371/journal.pone.0160889 PubMed DOI PMC
Crewe, C., Funcke J.B., Li S., Joffin N., Gliniak C.M., Ghaben A.L., An Y.A., Sadek H.A., Gordillo R., Akgul Y., et al. . 2021. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metabol. 33:1853–1868.e11. 10.1016/j.cmet.2021.08.002 PubMed DOI PMC
Cselenyak, A., Pankotai E., Horvath E.M., Kiss L., and Lacza Z.. 2010. Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol. 11:29. 10.1186/1471-2121-11-29 PubMed DOI PMC
Cusulin, C., Monni E., Ahlenius H., Wood J., Brune J.C., Lindvall O., and Kokaia Z.. 2012. Embryonic stem cell-derived neural stem cells fuse with microglia and mature neurons. Stem Cells. 30:2657–2671. 10.1002/stem.1227 PubMed DOI
D'Souza, A., Burch A., Dave K.M., Sreeram A., Reynolds M.J., Dobbins D.X., Kamte Y.S., Zhao W., Sabatelle C., Joy J.M., et al. . 2021. Microvesicles transfer mitochondria and increase mitochondrial function in brain endothelial cells. J. Contr. Release. 338:505–526. 10.1016/j.jconrel.2021.08.038 PubMed DOI PMC
Davis, C.H., Kim K.Y., Bushong E.A., Mills E.A., Boassa D., Shih T., Kinebuchi M., Phan S., Zhou Y., Bihlmeyer N.A., et al. . 2014. Transcellular degradation of axonal mitochondria. Proc. Natl. Acad. Sci. USA. 111:9633–9638. 10.1073/pnas.1404651111 PubMed DOI PMC
Dejana, E. 2004. Endothelial cell-cell junctions: Happy together. Nat. Rev. Mol. Cell Biol. 5:261–270. 10.1038/nrm1357 PubMed DOI
Dickinson, A., Yeung K.Y., Donoghue J., Baker M.J., Kelly R.D., McKenzie M., Johns T.G., and St John J.C.. 2013. The regulation of mitochondrial DNA copy number in glioblastoma cells. Cell Death Differ. 20:1644–1653. 10.1038/cdd.2013.115 PubMed DOI PMC
Diebold, L.P., Gil H.J., Gao P., Martinez C.A., Weinberg S.E., and Chandel N.S.. 2019. Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nat. Metab. 1:158–171. 10.1038/s42255-018-0011-x PubMed DOI PMC
Domhan, S., Ma L., Tai A., Anaya Z., Beheshti A., Zeier M., Hlatky L., and Abdollahi A.. 2011. Intercellular communication by exchange of cytoplasmic material via tunneling nano-tube like structures in primary human renal epithelial cells. PLoS One. 6:e21283. 10.1371/journal.pone.0021283 PubMed DOI PMC
Dong, L.F., Kovarova J., Bajzikova M., Bezawork-Geleta A., Svec D., Endaya B., Schaphibulkij K., Coelho A., Sebkova N., Ruzickova A., et al. . 2017. Horizontal transfer of whole mitochondria recovers tumorigenic potential in mtDNA-deficient cells. Elife. 6:e22187. 10.7554/eLife.22187 PubMed DOI PMC
Doulamis, I.P., Guariento A., Duignan T., Orfany A., Kido T., Zurakowski D., Del Nido P.J., and McCully J.D.. 2020. Mitochondrial transplantation for myocardial protection in diabetic hearts. J. Cardio-Thoracic Surg. 57:836–845. 10.1093/ejcts/ezz326 PubMed DOI
Doyle, L.M., and Wang M.Z.. 2019. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 8:727. 10.3390/cells8070727 PubMed DOI PMC
EL Andaloussi, S., Mäger I., Breakefield X.O., and Wood M.J.A.. 2013. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12:347–357. 10.1038/nrd3978 PubMed DOI
Emani, S.M., and McCully J.D.. 2018. Mitochondrial transplantation: Applications for pediatric patients with congenital heart disease. Transl. Pediatr. 7:169–175. 10.21037/tp.2018.02.02 PubMed DOI PMC
English, K., Shepherd A., Uzor N.E., Trinh R., Kavelaars A., and Heijnen C.J.. 2020. Astrocytes rescue neuronal health after cisplatin treatment through mitochondrial transfer. Acta Neuropathol. Commun. 8:36. 10.1186/s40478-020-00897-7 PubMed DOI PMC
Eugenin, E.A., Gaskill P.J., and Berman J.W.. 2009. Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: A potential mechanism for intercellular HIV trafficking. Cell. Immunol. 254:142–148. 10.1016/j.cellimm.2008.08.005 PubMed DOI PMC
Falkenberg, M., Larsson N.G., and Gustafsson C.M.. 2007. DNA replication and transcription in mammalian mitochondria. Annu. Rev. Biochem. 76:679–699. 10.1146/annurev.biochem.76.060305.152028 PubMed DOI
Feng, Y., Zhu R., Shen J., Wu J., Lu W., Zhang J., Zhang J., and Liu K.. 2019. Human bone marrow mesenchymal stem cells rescue endothelial cells experiencing chemotherapy stress by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev. 28:674–682. 10.1089/scd.2018.0248 PubMed DOI
Fu, A., Shi X., Zhang H., and Fu B.. 2017. Mitotherapy for fatty liver by intravenous administration of exogenous mitochondria in male mice. Front. Pharmacol. 8:241. 10.3389/fphar.2017.0024 PubMed DOI PMC
Fu, A., Hou Y., Yu Z., Zhao Z., and Liu Z.. 2019. Healthy mitochondria inhibit the metastatic melanoma in lungs. Int. J. Biol. Sci. 15:2707–2718. 10.7150/ijbs.38104 PubMed DOI PMC
Gaetani, S., Galzignati L., Marcati M., Durazzi P., Cianella A., Mocheggiani V., Monaco F., Bracci M., Neuzil J., Tomasetti M., et al. . 2022. Mitochondrial function as related to psychological distress in health care professionals. Psychosom. Med. 84:40–49. 10.1097/PSY.0000000000001000 PubMed DOI
Gao, L., Zhang Z., Lu J., and Pei G.. 2019. Mitochondria are dynamically transferring between human neural cells and Alexander disease-associated GFAP mutations impair the astrocytic transfer. Front. Cell. Neurosci. 13:316. 10.3389/fncel.2019.00316 PubMed DOI PMC
Gerdes, H.H., and Carvalho R.N.. 2008. Intercellular transfer mediated by tunneling nanotubes. Curr. Opin. Cell Biol. 20:470–475. 10.1016/j.ceb.2008.03.005 PubMed DOI
Gerdes, H.H., Bukoreshtliev N.V., and Barroso J.F.. 2007. Tunneling nanotubes: A new route for the exchange of components between animal cells. FEBS Lett. 581:2194–2201. 10.1016/j.febslet.2007.03.071 PubMed DOI
Gladyshev, E.A., Meselson M., and Arkhipova I.R.. 2008. Massive horizontal gene transfer in bdelloid rotifers. Science. 320:1210–1213. 10.1126/science.1156407 PubMed DOI
Golan, K., Singh A.K., Kollet O., Bertagna M., Althoff M.J., Khatib-Massalha E., Petrovich-Kopitman E., Wellendorf A.M., Massalha H., Levin-Zaidman S., et al. . 2020. Bone marrow regeneration requires mitochondrial transfer from donor Cx43-expressing hematopoietic progenitors to stroma. Blood. 136:2607–2619. 10.1182/blood.2020005399 PubMed DOI PMC
Gollihue, J.L., and Rabchevsky A.G.. 2017. Prospects for therapeutic mitochondrial transplantation. Mitochondrion. 35:70–79. 10.1016/j.mito.2017.05.007 PubMed DOI PMC
Gollihue, J.L., Patel S.P., Eldahan K.C., Cox D.H., Donahue R.R., Taylor B.K., Sullivan P.G., and Rabchevsky A.G.. 2018. Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury. J. Neurotrauma. 35:1800–1818. 10.1089/neu.2017.5605 PubMed DOI PMC
Gomzikova, M.O., James V., and Rizvanov A.A.. 2021. Mitochondria donation by mesenchymal stem cells: Current understanding and mitochondria transplantation strategies. Front. Cell Dev. Biol. 9:653322. 10.3389/fcell.2021.653322 PubMed DOI PMC
Goodenough, D.A., and Paul D.L.. 2009. Gap junctions. Cold Spring Harb. Perspect. Biol. 1:a002576. 10.1101/cshperspect.a002576 PubMed DOI PMC
Gorman, G.S., McFarland R., Stewart J., Feeney C., and Turnbull D.M.. 2018. Mitochondrial donation: From test tube to clinic. Lancet. 392:1191–1192. 10.1016/S0140-6736(18)31868-3 PubMed DOI
Gousset, K., and Zurzolo C.. 2009. Tunnelling nanotubes: A highway for prion spreading? Prion. 3:94–98. 10.4161/pri.3.2.8917 PubMed DOI PMC
Gousset, K., Schiff E., Langevin C., Marijanovic Z., Caputo A., Browman D.T., Chenouard N., de Chaumont F., Martino A., Enninga J., et al. . 2009. Prions hijack tunnelling nanotubes for intercellular spread. Nat. Cell Biol. 11:328–336. 10.1038/ncb1841 PubMed DOI
Gozzelino, R., Jeney V., and Soares M.P.. 2010. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50:323–354. 10.1146/annurev.pharmtox.010909.105600 PubMed DOI
Gray, M.W., Burger G., and Lang B.F.. 1999. Mitochondrial evolution. Science. 283:1476–1481. 10.1126/science.283.5407.1476 PubMed DOI
Griessinger, E., Moschoi R., Biondani G., and Peyron J.F.. 2017. Mitochondrial transfer in the leukemia microenvironment. Trends Cancer. 3:828–839. 10.1016/j.trecan.2017.10.003 PubMed DOI
Gu, D., Zou X., Ju G., Zhang G., Bao E., and Zhu Y.. 2016a. Mesenchymal stromal cells derived extracellular vesicles ameliorate acute renal ischemia reperfusion injury by inhibition of mitochondrial fission through miR-30. Stem Cells Int. 2016:2093940. 10.1155/2016/2093940 PubMed DOI PMC
Gu, J., Wu M., Guo R., Yan K., Lei J., Gao N., and Yang M.. 2016b. The architecture of the mammalian respirasome. Nature. 537:639–643. 10.1038/nature19359 PubMed DOI
Guarás, A., Perales-Clemente E., Calvo E., Acín-Pérez R., Loureiro-Lopez M., Pujol C., Martínez-Carrascoso I., Nuñez E., García-Marqués F., Rodríguez-Hernández M.A., et al. . 2016. The CoQH2/CoQ ratio serves as a sensor of respiratory chain efficiency. Cell Rep. 15:197–209. 10.1016/j.celrep.2016.03.009 PubMed DOI
Guariento, A., Blitzer D., Doulamis I., Shin B., Moskowitzova K., Orfany A., Ramirez-Barbieri G., Staffa S.J., Zurakowski D., Del Nido P.J., and McCully J.D.. 2020. Preischemic autologous mitochondrial transplantation by intracoronary injection for myocardial protection. J. Thorac. Cardiovasc. Surg. 160:e15–e29. 10.1016/j.jtcvs.2019.06.111 PubMed DOI
Guha, M., Srinivasan S., Ruthel G., Kashina A.K., Carstens R.P., Mendoza A., Khanna C., Van Winkle T., and Avadhani N.G.. 2014. Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells. Oncogene. 33:5238–5250. 10.1038/onc.2013.467 PubMed DOI PMC
Guo, R., Davis D., and Fang Y.. 2018. Intercellular transfer of mitochondria rescues virus-induced cell death but facilitates cell-to-cell spreading of porcine reproductive and respiratory syndrome virus. Virology. 517:122–134. 10.1016/j.virol.2017.12.018 PubMed DOI
Gurke, S., Barroso J.F., and Gerdes H.H.. 2008. The art of cellular communication: Tunneling nanotubes bridge the divide. Histochem. Cell Biol. 129:539–550. 10.1007/s00418-008-0412-0 PubMed DOI PMC
Gustafsson, C.M., Falkenberg M., and Larsson N.G.. 2016. Maintenance and expression of mammalian mitochondrial DNA. Annu. Rev. Biochem. 85:133–160. 10.1146/annurev-biochem-060815-014402 PubMed DOI
Haimovich, G., Dasgupta S., and Gerst J.E.. 2021. RNA transfer through tunneling nanotubes. Biochem. Soc. Trans. 49:145–160. 10.1042/BST20200113 PubMed DOI
Han, H., Hu J., Yan Q., Zhu J., Zhu Z., Chen Y., Sun J., and Zhang R.. 2016. Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model. Mol. Med. Rep. 13:1517–1524. 10.3892/mmr.2015.4726 PubMed DOI PMC
Han, D., Zheng X., Wang X., Jin T., Cui L., and Chen Z.. 2020. Mesenchymal stem/stromal cell-mediated mitochondrial transfer and the therapeutic potential in treatment of neurological diseases. Stem Cells Int. 2020:8838046. 10.1155/2020/8838046 PubMed DOI PMC
Harding, C.V., Heuser J.E., and Stahl P.D.. 2013. Exosomes: Looking back three decades and into the future. J. Cell Biol. 200:367–371. 10.1083/jcb.201212113 PubMed DOI PMC
Hase, K., Kimura S., Takatsu H., Ohmae M., Kawano S., Kitamura H., Ito M., Watarai H., Hazelett C.C., Yeaman C., and Ohno H.. 2009. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat. Cell Biol. 11:1427–1432. 10.1038/ncb1990 PubMed DOI
Hayakawa, K., Esposito E., Wang X., Terasaki Y., Liu Y., Xing C., Ji X., and Lo E.H.. 2016. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 535:551–555. 10.1038/nature18928 PubMed DOI PMC
Hayakawa, K., Chan S.J., Mandeville E.T., Park J.H., Bruzzese M., Montaner J., Arai K., Rosell A., & Lo E.H.. 2018. Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells. 36:1404-1410. 10.1002/stem.2856 PubMed DOI PMC
He, K., Shi X., Zhang X., Dang S., Ma X., Liu F., Xu M., Lv Z., Han D., Fang X., and Zhang Y.. 2011. Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. Cardiovasc. Res. 92:39–47. 10.1093/cvr/cvr189 PubMed DOI
Henrichs, V., Grycova L., Barinka C., Nahacka Z., Neuzil J., Diez S., Rohlena J., Braun M., and Lansky Z.. 2020. Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments. Nat. Commun. 11:3123. 10.1038/s41467-020-16972-5 PubMed DOI PMC
Herst, P.M., Dawson R.H., and Berridge M.V.. 2018. Intercellular communication in tumor biology: A role for mitochondrial transfer. Front. Oncol. 8:344. 10.3389/fonc.2018.00344 PubMed DOI PMC
Hough, K.P., Trevor J.L., Strenkowski J.G., Wang Y., Chacko B.K., Tousif S., Chanda D., Steele C., Antony V.B., Dokland T., et al. . 2018. Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells. Redox Biol. 18:54–64. 10.1016/j.redox.2018.06.009 PubMed DOI PMC
Huang, P.J., Kuo C.C., Lee H.C., Shen C.I., Cheng F.C., Wu S.F., Chang J.C., Pan H.C., Lin S.Z., Liu C.S., and Su H.L.. 2016. Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains. Cell Transpl. 25:913–927. 10.3727/096368915X689785 PubMed DOI
Huang, Y., Zucker B., Zhang S., Elias S., Zhu Y., Chen H., Ding T., Li Y., Sun Y., Lou J., et al. . 2019. Migrasome formation is mediated by assembly of micron-scale tetraspanin macrodomains. Nat. Cell Biol. 21:991–1002. 10.1038/s41556-019-0367-5 PubMed DOI
Huang, T., Zhang T., Jiang X., Li A., Su Y., Bian Q., Wu H., Lin R., Li N., Cao H., et al. . 2021. Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy. Sci. Adv. 7:eabj0534. 10.1126/sciadv.abj0534 PubMed DOI PMC
Ippolito, L., Morandi A., Taddei M.L., Parri M., Comito G., Iscaro A., Raspollini M.R., Magherini F., Rapizzi E., Masquelier J., et al. . 2019. Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer. Oncogene. 38:5339–5355. 10.1038/s41388-019-0805-7 PubMed DOI
Isaac, R., Reis F.C.G., Ying W., and Olefsky J.M.. 2021. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 33:1744–1762. 10.1016/j.cmet.2021.08.006 PubMed DOI PMC
Ishikawa, K., Takenaga K., Akimoto M., Koshikawa N., Yamaguchi A., Imanishi H., Nakada K., Honma Y., and Hayashi J.. 2008. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 320:661–664. 10.1126/science.1156906 PubMed DOI
Islam, M.N., Das S.R., Emin M.T., Wei M., Sun L., Westphalen K., Rowlands D.J., Quadri S.K., Bhattacharya S., and Bhattacharya J.. 2012. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18:759–765. 10.1038/nm.2736 PubMed DOI PMC
Jackson, M.V., Morrison T.J., Doherty D.F., McAuley D.F., Matthay M.A., Kissenpfennig A., O’Kane C.M., and Krasnodembskaya A.D.. 2016a. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells. 34:2210–2223. 10.1002/stem.2372 PubMed DOI PMC
Jackson, M.V., Morrison T.J., McAuley D.F., Matthay M.A., O’Kane C.M., and Krasnodembskaya A.D.. 2016b. Mitochondrial transfer via tunnelling nanotubes (TNT) is a novel mechanism by which mesenchymal stromal cells enhance macrophage phagocytosis in in vivo models of acute lung injury. Am. J. Respir. Crit. Care Med. 193:A6607
Jackson, C.B., Turnbull D.M., Minczuk M., and Gammage P.A.. 2020. Therapeutic manipulation of mtDNA heteroplasmy: A shifting perspective. Trends Mol. Med. 26:698–709. 10.1016/j.molmed.2020.02.006 PubMed DOI
Jacoby, E., Bar-Yosef O., Gruber N., Lahav E., Varda-Bloom N., Bolkier Y., Bar D., Blumkin M.B., Barak S., Eisenstein E., et al. . 2022. Mitochondrial augmentation of hematopoietic stem cells in children with single large-scale mitochondrial DNA deletion syndromes. Sci. Transl. Med. 14:eabo3724. 10.1126/scitranslmed.abo3724 PubMed DOI
Jayaprakash, A.D., Benson E.K., Gone S., Liang R., Shim J., Lambertini L., Toloue M.M., Wigler M., Aaronson S.A., and Sachidanandam R.. 2015. Stable heteroplasmy at the single-cell level is facilitated by intercellular exchange of mtDNA. Nucleic Acids Res. 43:2177–2187. 10.1093/nar/gkv052 PubMed DOI PMC
Jiang, D., Gao F., Zhang Y., Wong D.S., Li Q., Tse H.F., Xu G., Yu Z., and Lian Q.. 2016. Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis. 7:e2467. 10.1038/cddis.2016.358 PubMed DOI PMC
Jiang, D., Xiong G., Feng H., Zhang Z., Chen P., Yan B., Chen L., Gandhervin K., Ma C., Li C., et al. . 2019. Donation of mitochondria by iPSC-derived mesenchymal stem cells protects retinal ganglion cells against mitochondrial complex I defect-induced degeneration. Theranostics. 9:2395–2410. 10.7150/thno.29422 PubMed DOI PMC
Jiao, H., Jiang D., Hu X., Du W., Ji L., Yang Y., Li X., Sho T., Wang X., Li Y., et al. . 2021. Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell. 184:2896–2910.e13. 10.1016/j.cell.2021.04.027 PubMed DOI
Jordan, M.A., Diener D.R., Stepanek L., and Pigino G.. 2018. The cryo-EM structure of intraflagellar transport trains reveals how dynein is inactivated to ensure unidirectional anterograde movement in cilia. Nat. Cell Biol. 20:1250–1255. 10.1038/s41556-018-0213-1 PubMed DOI
Kadiu, I. and Gendelman H.E.. 2011a. Human immunodeficiency virus type 1 endocytic trafficking through macrophage bridging conduits facilitates spread of infection. J. Neuroimmune Pharmacol. 6:658–675. 10.1007/s11481-011-9298-z PubMed DOI PMC
Kadiu, I. and Gendelman H.E.. 2011b. Macrophage bridging conduit trafficking of HIV-1 through the endoplasmic reticulum and Golgi network. J. Proteome Res. 10:3225–3238. 10.1021/pr200262q PubMed DOI PMC
Kanfer, G., Courthéoux T., Peterka M., Meier S., Soste M., Melnik A., Reis K., Aspenström P., Peter M., Picotti P., and Kornmann B.. 2015. Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat. Commun. 6:8015. 10.1038/ncomms9015 PubMed DOI PMC
Kapoor, A., Yao W., Ying H., Hua S., Liewen A., Wang Q., Zhong Y., Wu C.J., Sadanandam A., Hu B., et al. . 2014. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell. 158:185–197. 10.1016/j.cell.2014.06.003 PubMed DOI PMC
Karnkowska, A., Vacek V., Zubáčová Z., Treitli S.C., Petrželková R., Eme L., Novák L., Žárský V., Barlow L.D., Herman E.K., et al. . 2016. A eukaryote without a mitochondrial organelle. Curr. Biol. 26:1274–1284. 10.1016/j.cub.2016.03.053 PubMed DOI
Katrangi, E., D’Souza G., Boddapati S.V., Kulawiec M., Singh K.K., Bigger B., and Weissig V.. 2007. Xenogenic transfer of isolated murine mitochondria into human rho0 cells can improve respiratory function. Rejuvenation Res. 10:561–570. 10.1089/rej.2007.0575 PubMed DOI
Kaza, A.K., Wamala I., Friehs I., Kuebler J.D., Rathod R.H., Berra I., Ericsson M., Yao R., Thedsanamoorthy J.K., Zurakowski D., et al. . 2017. Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J. Thorac. Cardiovasc. Surg. 153:934–943. 10.1016/j.jtcvs.2016.10.077 PubMed DOI
Keeling, P.J., and Palmer J.D.. 2008. Horizontal gene transfer in eukaryotic evolution. Nat. Rev. Genet. 9:605–618. 10.1038/nrg2386 PubMed DOI
King, M.P., and Attardi G.. 1989. Human cells lacking mtDNA: Repopulation with exogenous mitochondria by complementation. Science. 246:500–503. 10.1126/science.2814477 PubMed DOI
Konari, N., Nagaishi K., Kikuchi S., and Fujimiya M.. 2019. Mitochondria transfer from mesenchymal stem cells structurally and functionally repairs renal proximal tubular epithelial cells in diabetic nephropathy in vivo. Sci. Rep. 9:5184. 10.1038/s41598-019-40163-y PubMed DOI PMC
Koppenol, W.H., Bounds P.L., and Dang C.V.. 2011. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer. 11:325–337. 10.1038/nrc3038 PubMed DOI
Koundinya, M., Sudhalter J., Courjaud A., Lionne B., Touyer G., Bonnet L., Menguy I., Schreiber I., Perrault C., Vougier S., et al. . 2018. Dependence on the pyrimidine biosynthetic enzyme DHODH is a synthetic lethal vulnerability in mutant KRAS-driven cancers. Cell Chem. Biol. 25:705–717.e11. 10.1016/j.chembiol.2018.03.005 PubMed DOI
Koyanagi, M., Brandes R.P., Haendeler J., Zeiher A.M., and Dimmeler S.. 2005. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: A novel mechanism for cell fate changes? Circ. Res. 96:1039–1041. 10.1161/01.RES.0000168650.23479.0c PubMed DOI
Krishnan, K.J., Reeve A.K., Samuels D.C., Chinnery P.F., Blackwood J.K., Taylor R.W., Wanrooij S., Spelbrink J.N., Lightowlers R.N., and Turnbull D.M.. 2008. What causes mitochondrial DNA deletions in human cells? Nat. Genet. 40:275–279. 10.1038/ng.f.94 PubMed DOI
Kukat, C., and Larsson N.G.. 2013. mtDNA makes a U-turn for the mitochondrial nucleoid. Trends Cell Biol. 23:457–463. 10.1016/j.tcb.2013.04.009 PubMed DOI
Kukat, C., Davies K.M., Wurm C.A., Spåhr H., Bonekamp N.A., Kühl I., Joos F., Polosa P.L., Park C.B., Posse V., et al. . 2015. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc. Natl. Acad. Sci. USA. 112:11288–11293. 10.1073/pnas.1512131112 PubMed DOI PMC
Kumar, A., Kim J.H., Ranjan P., Metcalfe M.G., Cao W., Mishina M., Gangappa S., Guo Z., Boyden E.S., Zaki S., et al. . 2017. Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Sci. Rep. 7:40360. 10.1038/srep40360 PubMed DOI PMC
Kumar, S., Karmacharya M., Michael I.J., Choi Y., Kim J., Kim I., and Cho Y.. 2021. Programmed exosome fusion for energy generation in living cells. Nat. Catal. 4:763–774. 10.1038/s41929-021-00669-z DOI
Kwon, Y.M., Gori K., Park N., Potts N., Swift K., Wang J., Stammnitz M.R., Cannell N., Baez-Ortega A., Comte S., et al. . 2020. Evolution and lineage dynamics of a transmissible cancer in Tasmanian devils. PLoS Biol. 18:e3000926. 10.1371/journal.pbio.3000926 PubMed DOI PMC
Lampinen, R., Belaya I., Saveleva L., Liddell J.R., Rait D., Huuskonen M.T., Giniatullina R., Sorvari A., Soppela L., Mikhailov N., et al. . 2022. Neuron-astrocyte transmitophagy is altered in Alzheimer’s disease. Neurobiol. Dis. 170:105753. 10.1016/j.nbd.2022.105753 PubMed DOI
Lapuente-Brun, E., Moreno-Loshuertos R., Acín-Pérez R., Latorre-Pellicer A., Colás C., Balsa E., Perales-Clemente E., Quirós P.M., Calvo E., Rodríguez-Hernández M.A., et al. . 2013. Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science. 340:1567–1570. 10.1126/science.1230381 PubMed DOI
Latorre-Pellicer, A., Lechuga-Vieco A.V., Johnston I.G., Hämäläinen R.H., Pellico J., Justo-Méndez R., Fernández-Toro J.M., Clavería C., Guaras A., Sierra R., et al. . 2019. Regulation of mother-to-offspring transmission of mtDNA heteroplasmy. Cell Metab. 30:1120–1130.e5. 10.1016/j.cmet.2019.09.007 PubMed DOI PMC
LeBleu, V.S., O’Connell J.T., Gonzalez Herrera K.N., Wikman H., Pantel K., Haigis M.C., de Carvalho F.M., Damascena A., Domingos Chinen L.T., Rocha R.M., et al. . 2014. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16:992–1003: 1–15. 10.1038/ncb3039 PubMed DOI PMC
Lee, W., Johnson J., Gough D.J., Donoghue J., Cagnone G.L., Vaghjiani V., Brown K.A., Johns T.G., and St John J.C.. 2015. Mitochondrial DNA copy number is regulated by DNA methylation and demethylation of POLGA in stem and cancer cells and their differentiated progeny. Cell Death Dis. 6:e1664. 10.1038/cddis.2015.34 PubMed DOI PMC
Lei, L., and Spradling A.C.. 2016. Mouse oocytes differentiate through organelle enrichment from sister cyst germ cells. Science. 352:95–99. 10.1126/science.aad2156 PubMed DOI PMC
Levoux, J., Prola A., Lafuste P., Gervais M., Chevallier N., Koumaiha Z., Kefi K., Braud L., Schmitt A., Yacia A., et al. . 2021. Platelets enhance pro-angiogenic activity of mesenchymal stem cells via mitochondrial transfer and metabolic remodeling. Cell Metab. 33:283–299. 10.1016/j.cmet.2020.12.006 PubMed DOI
Li, X., Zhang Y., Yeung S.C., Liang Y., Liang X., Ding Y., Ip M.S.M., Tse H.F., Mak J.C.W., and Lian Q.. 2014. Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am. J. Respir. Cell Mol. Biol. 51:455–465. 10.1165/rcmb.2013-0529OC PubMed DOI
Li, X., Michaeloudes C., Zhang Y., Wiegman C.H., Adcock I.M., Lian Q., Mak J.C.W., Bhavsar P.K., and Chung K.F.J.. 2018. Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways. J. Allergy Clin. Immunol. 141:1634–1645.e5. 10.1016/j.jaci.2017.08.017 PubMed DOI
Li, H., Wang C., He T., Zhao T., Chen Y.Y., Shen Y.L., Zhang X., and Wang L.L.. 2019. Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord injury rats via gap junction. Theranostics. 9:2017–2035. 10.7150/thno.29400 PubMed DOI PMC
Lightowlers, R.N., Taylor R.W., and Turnbull D.M.. 2015. Mutations causing mitochondrial disease: What is new and what challenges remain? Science. 349:1494–1499. 10.1126/science.aac7516 PubMed DOI
Lin, H.C., Liu S.Y., Lai H.S., and Lai I.R.. 2013. Isolated mitochondria infusion mitigates ischemia-reperfusion injury of the liver in rats. Shock. 39:304–310. 10.1097/SHK.0b013e318283035f PubMed DOI
Lippert, T., and Borlongan C.V.. 2019. Prophylactic treatment of hyperbaric oxygen treatment mitigates inflammatory response via mitochondria transfer. CNS Neurosci. Ther. 25:815–823. 10.1111/cns.13124 PubMed DOI PMC
Liu, Z., and Butow R.A.. 2006. Mitochondrial retrograde signaling. Annu. Rev. Genet. 40:159–185. 10.1146/annurev.genet.40.110405.090613 PubMed DOI
Liu, K., Ji K., Guo L., Wu W., Lu H., Shan P., and Yan C.. 2014. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc. Res. 92:10–18. 10.1016/j.mvr.2014.01.008 PubMed DOI
Liu, K., Guo L., Zhou Z., Pan M., and Yan C.. 2019. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc. Res. 123:74–80. 10.1016/j.mvr.2019.01.001 PubMed DOI
Liu, D., Gao Y., Liu J., Huang Y., Yin J., Feng Y., Shi L., Meloni B.P., Zhang C., Zheng M., and Gao J.. 2021. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct. Target. Ther. 6:65. 10.1038/s41392-020-00440-z PubMed DOI PMC
Ljubojevic, N., Henderson J.M., and Zurzolo C.. 2021. The ways of actin: Why tunneling nanotubes are unique cell protrusions. Trends Cell Biol. 31:130–142. 10.1016/j.tcb.2020.11.008 PubMed DOI
Lou, E., Fujisawa S., Morozov A., Barlas A., Romin Y., Dogan Y., Gholami S., Moreira A.L., Manova-Todorova K., and Moore M.A.. 2012. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS One. 7:e33093. 10.1371/journal.pone.0033093 PubMed DOI PMC
Louwagie, E.J., Larsen T.D., Wachal A.L., Gandy T.C.T., and Baack M.L.. 2021. Mitochondrial transfer improves cardiomyocyte bioenergetics and viability in male rats exposed to pregestational diabetes. Int. J. Mol. Sci. 22:2382. 10.3390/ijms22052382 PubMed DOI PMC
Lu, J., Zheng X., Li F., Yu Y., Chen Z., Liu Z., Wang Z., Xu H., and Yang W.. 2017. Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells. Oncotarget. 8:15539–15552. 10.18632/oncotarget.14695 PubMed DOI PMC
Lu, P., Liu R., Lu D., Xu Y., Yang X., Jiang Z., Yang C., Yu L., Lei X., and Chen Y.. 2020. Chemical screening identifies ROCK1 as a regulator of migrasome formation. Cell Discov. 6:51. 10.1038/s41421-020-0179-6 PubMed DOI PMC
Ma, L., Li Y., Peng J., Wu D., Zhao X., Cui Y., Chen L., Yan X., Du Y., and Yu L.. 2015. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 25:24–38. 10.1038/cr.2014.135 PubMed DOI PMC
Maas, S.L.N., Breakefield X.O., and Weaver A.M.. 2017. Extracellular vesicles: Unique intercellular delivery vehicles. Trends Cell Biol. 27:172–188. 10.1016/j.tcb.2016.11.003 PubMed DOI PMC
MacAskill, A.F., and Kittler J.T.. 2010. Control of mitochondrial transport and localization in neurons. Trends Cell Biol. 20:102–112. 10.1016/j.tcb.2009.11.002 PubMed DOI
Magalhaes-Novais, S., Blecha J., Naraine R., Mikesova J., Abaffy P., Pecinova A., Milosevic M., Bohuslavova R., Prochazka J., Khan S., et al. . 2022. Mitochondrial respiration supports autophagy to provide stress resistance during quiescence. Autophagy. 18:2409–2426. 10.1080/15548627.2022.2038898 PubMed DOI PMC
Mahrouf-Yorgov, M., Augeul L., Da Silva C.C., Jourdan M., Rigolet M., Manin S., Ferrera R., Ovize M., Henry A., Guguin A., et al. . 2017. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ. 24:1224–1238. 10.1038/cdd.2017.51 PubMed DOI PMC
Marlein, C.R., Zaitseva L., Piddock R.E., Robinson S.D., Edwards D.R., Shafat M.S., Zhou Z., Lawes M., Bowles K.M., and Rushworth S.A.. 2017. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood. 130:1649–1660. 10.1182/blood-2017-03-772939 PubMed DOI
Marlein, C.R., Piddock R.E., Mistry J.J., Zaitseva L., Hellmich C., Horton R.H., Zhou Z., Auger M.J., Bowles K.M., and Rushworth S.A.. 2019. CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma. Cancer Res. 79:2285–2297. 10.1158/0008-5472.CAN-18-0773 PubMed DOI
Marti Gutierrez, N., Mikhalchenko A., Ma H., Koski A., Li Y., Van Dyken C., Tippner-Hedges R., Yoon D., Liang D., Hayama T., et al. . 2022. Horizontal mtDNA transfer between cells is common during mouse development. iScience. 25:103901. 10.1016/j.isci.2022.103901 PubMed DOI PMC
Martínez-Reyes, I., Cardona L.R., Kong H., Vasan K., McElroy G.S., Werner M., Kihshen H., Reczek C.R., Weinberg S.E., Gao P., et al. . 2020. Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature. 585:288–292. 10.1038/s41586-020-2475-6 PubMed DOI PMC
Martin, T., Strickland S., Glenn M., Charpentier E., Guillemin H., Hsu K., and Mikhael J.. 2019. Phase I trial of isatuximab monotherapy in the treatment of refractory multiple myeloma. Blood Cancer J. 9:41. 10.1038/s41408-019-0198-4 PubMed DOI PMC
Masuzawa, A., Black K.M., Pacak C.A., Ericsson M., Barnett R.J., Drumm C., Seth P., Bloch D.B., Levitsky S., Cowan D.B., and McCully J.D.. 2013. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 304:H966–H982. 10.1152/ajpheart.00883.2012 PubMed DOI PMC
Matula, Z., Mikala G., Lukácsi S., Matkó J., Kovács T., Monostori É., Uher F., and Vályi-Nagy I.. 2021. Stromal cells serve drug resistance for multiple myeloma via mitochondrial transfer: A study on primary myeloma and stromal cells. Cancers. 13:3461. 10.3390/cancers13143461 PubMed DOI PMC
McCully, J.D., Cowan D.B., Pacak C.A., Toumpoulis I.K., Dayalan H., and Levitsky S.. 2009. Injection of isolated mitochondria during early reperfusion for cardioprotection. Am. J. Physiol. Heart Circ. Physiol. 296:H94–H105. 10.1152/ajpheart.00567.2008 PubMed DOI PMC
McCully, J.D., Cowan D.B., Emani S.M., and Del Nido P.J.. 2017. Mitochondrial transplantation: From animal models to clinical use in humans. Mitochondrion. 34:127–134. 10.1016/j.mito.2017.03.004 PubMed DOI
Melentijevic, I., Toth M.L., Arnold M.L., Guasp R.J., Harinath G., Nguyen K.C., Taub D., Parker J.A., Neri C., Gabel C.V., et al. . 2017. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature. 542:367–371. 10.1038/nature21362 PubMed DOI PMC
Misgeld, T., and Schwarz T.L.. 2017. Mitostasis in neurons: Maintaining mitochondria in an extended cellular architecture. Neuron. 96:651–666. 10.1016/j.neuron.2017.09.055 PubMed DOI PMC
Mistry, J.J., Marlein C.R., Moore J.A., Hellmich C., Wojtowicz E.E., Smith J.G.W., Macaulay I., Sun Y., Morfakis A., Patterson A., et al. . 2019. ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection. Proc. Natl. Acad. Sci. USA. 116:24610–24619. 10.1073/pnas.1913278116 PubMed DOI PMC
Mittelbrunn, M., and Sánchez-Madrid F.. 2012. Intercellular communication: Diverse structures for exchange of genetic information. Nat. Rev. Mol. Cell Biol. 13:328–335. 10.1038/nrm3335 PubMed DOI PMC
Mohammadalipour, A., Dumbali S.P., and Wenzel P.L.. 2020. Mitochondrial transfer and regulators of mesenchymal stromal cell function and therapeutic efficacy. Front. Cell Dev. Biol. 8:603292. 10.3389/fcell.2020.603292 PubMed DOI PMC
Monzio Compagnoni, G., Di Fonzo A., Corti S., Comi G.P., Bresolin N., and Masliah E.. 2020. The role of mitochondria in neurodegenerative diseases: The lesson from Alzheimer’s disease and Parkinson’s disease. Mol. Neurobiol. 57:2959–2980. 10.1007/s12035-020-01926-1 PubMed DOI PMC
Moreno, L., Perez C., Zabaleta A., Manrique I., Alignani D., Ajona D., Blanco L., Lasa M., Maiso P., Rodriguez I., et al. . 2019. The mechanism of action of the anti-CD38 monoclonal antibody isatuximab in multiple myeloma. Clin. Cancer Res. 25:3176–3187. 10.1158/1078-0432.CCR-18-1597 PubMed DOI
Moreno-Lastres, D., Fontanesi F., García-Consuegra I., Martín M.A., Arenas J., Barrientos A., and Ugalde C.. 2012. Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab. 15:324–335. 10.1016/j.cmet.2012.01.015 PubMed DOI PMC
Moreno-Loshuertos, R., Acín-Pérez R., Fernández-Silva P., Movilla N., Pérez-Martos A., Rodriguez de Cordoba S., Gallardo M.E., and Enríquez J.A.. 2006. Differences in reactive oxygen species production explain the phenotypes associated with common mouse mitochondrial DNA variants. Nat. Genet. 38:1261–1268. 10.1038/ng1897 PubMed DOI
Morrison, T.J., Jackson M.V., Cunningham E.K., Kissenpfennig A., McAuley D.F., O’Kane C.M., and Krasnodembskaya A.D.. 2017. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am. J. Respir. Crit. Care Med. 196:1275–1286. 10.1164/rccm.201701-0170OC PubMed DOI PMC
Moschoi, R., Imbert V., Nebout M., Chiche J., Mary D., Prebet T., Saland E., Castellano R., Pouyet L., Collette Y., et al. . 2016. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood. 128:253–264. 10.1182/blood-2015-07-655860 PubMed DOI
Moskowitzova, K., Shin B., Liu K., Ramirez-Barbieri G., Guariento A., Blitzer D., Thedsanamoorthy J.K., Yao R., Snay E.R., Inkster J.A.H., et al. . 2019. Mitochondrial transplantation prolongs cold ischemia time in murine heart transplantation. J. Heart Lung Transpl. 38:92–99. 10.1016/j.healun.2018.09.025 PubMed DOI PMC
Moskowitzova, K., Orfany A., Liu K., Ramirez-Barbieri G., Thedsanamoorthy J.K., Yao R., Guariento A., Doulamis I.P., Blitzer D., Shin B., et al. . 2020. Mitochondrial transplantation enhances murine lung viability and recovery after ischemia-reperfusion injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 318:L78–L88. 10.1152/ajplung.00221.2019 PubMed DOI PMC
Murchison, E.P., Tovar C., Hsu A., Bender H.S., Kheradpour P., Rebbeck C.A., Obendorf D., Conlan C., Bahlo M., Blizzard C.A., et al. . 2010. The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer. Science. 327:84–87. 10.1126/science.1180616 PubMed DOI PMC
Murchison, E.P., Schulz-Trieglaff O.B., Ning Z., Alexandrov L.B., Bauer M.J., Fu B., Hims M., Ding Z., Ivakhno S., Stewart C., et al. . 2012. Genome sequencing and analysis of the tasmanian devil and its transmissible cancer. Cell. 148:780–791. 10.1016/j.cell.2011.11.065 PubMed DOI PMC
Murchison, E.P., Wedge D.C., Alexandrov L.B., Fu B., Martincorena I., Ning Z., Tubio J.M.C., Werner E.I., Allen J., De Nardi A.B., et al. . 2014. Transmissible [corrected] dog cancer genome reveals the origin and history of an ancient cell lineage. Science. 343:437–440. 10.1126/science.1247167 PubMed DOI PMC
Murphy, M.P., and Chouchani E.T.. 2022. Why succinate? Physiological regulation by a mitochondrial coenzyme Q sentinel. Nat. Chem. Biol. 18:461–469. 10.1038/s41589-022-01004-8 PubMed DOI PMC
Nahacka, Z., Zobalova R., Dubisova M., Rohlena J., and Neuzil J.. 2021. Miro proteins connect mitochondrial transfer and function. Crit. Rev. Mol. Cell Biol. 56:401–425. 10.1080/10409238.2021.1925216 PubMed DOI
Nascimento-Dos-Santos, G., de-Souza-Ferreira E., Linden R., Galina A., and Petrs-Silva H.. 2021. Mitotherapy: Unraveling a promising treatment for disorders of the central nervous system and other systemic conditions. Cells. 10:1827. 10.3390/cells10071827 PubMed DOI PMC
Neupert, W., and Herrmann J.M.. 2007. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76:723–749. 10.1146/annurev.biochem.76.052705.163409 PubMed DOI
Ng, Y.S., Bindoff L.A., Gorman G.S., Klopstock T., Kornblum C., Mancuso M., McFarland R., Sue C.M., Suomalainen A., Taylor R.W., et al. . 2021. Mitochondrial disease in adults: Recent advances and future promise. Lancet Neurol. 20:573–584. 10.1016/S1474-4422(21)00098-3 PubMed DOI
Nguyen, T.T., Oh S.S., Weaver D., Lewandowska A., Maxfield D., Schuler M.H., Smith N.K., Macfarlane J., Saunders G., Palmer C.A., et al. . 2014. Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease. Proc. Natl. Acad. Sci. USA. 111:E3631–E3640. 10.1073/pnas.1402449111 PubMed DOI PMC
Nicolás-Ávila, J.A., Lechuga-Vieco A.V., Esteban-Martínez L., Sánchez-Díaz M., Díaz-García E., Santiago D.J., Rubio-Ponce A., Li J.L., Balachander A., Quintana J.A., et al. . 2020. A network of macrophages supports mitochondrial homeostasis in the heart. Cell. 183:94–109.e23. 10.1016/j.cell.2020.08.031 PubMed DOI
Nitzan, K., Benhamron S., Valitsky M., Kesner E.E., Lichtenstein M., Ben-Zvi A., Ella E., Segalstein Y., Saada A., Lorberboum-Galski H., and Rosenmann H.. 2019. Mitochondrial transfer ameliorates cognitive deficits, neuronal loss, and gliosis in Alzheimer’s disease mice. J. Alzheimers Dis. 72:587–604. 10.3233/JAD-190853 PubMed DOI
Norris, R.P. 2021. Transfer of mitochondria and endosomes between cells by gap junction internalization. Traffic. 22:174–179. 10.1111/tra.12786 PubMed DOI
Noubissi, F.K., Harkness T., Alexander C.M., and Ogle B.M.. 2015. Apoptosis-induced cancer cell fusion: A mechanism of breast cancer metastasis. FASEB J. 29:4036–4045. 10.1096/fj.15-271098 PubMed DOI
Nygren, J.M., Liuba K., Breitbach M., Stott S., Thorén L., Roell W., Geisen C., Sasse P., Kirik D., Björklund A., et al. . 2008. Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nat. Cell Biol. 10:584–592. 10.1038/ncb1721 PubMed DOI
Ohta, S. 2003. A multi-functional organelle mitochondrion is involved in cell death, proliferation and disease. Curr. Med. Chem. 10:2485–2494. 10.2174/0929867033456440 PubMed DOI
Okafo, G., Prevedel L., and Eugenin E.. 2017. Tunneling nanotubes (TNT) mediate long-range gap junctional communication: Implications for HIV cell to cell spread. Sci. Rep. 7:16660. 10.1038/s41598-017-16600-1 PubMed DOI PMC
Onfelt, B., Nedvetzki S., Benninger R.K., Purbhoo M.A., Sowinski S., Hume A.N., Seabra M.C., Neil M.A., French P.M., and Davis D.M.. 2006. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J. Immunol. 177:8476–8483. 10.4049/jimmunol.177.12.8476 PubMed DOI
Osswald, M., Jung E., Sahm F., Solecki G., Venkataramani V., Blaes J., Weil S., Horstmann H., Wiestler B., Syed M., et al. . 2015. Brain tumour cells interconnect to a functional and resistant network. Nature. 528:93–98. 10.1038/nature16071 PubMed DOI
Otsu, K., Das S., Houser S.D., Quadri S.K., Bhattacharya S., and Bhattacharya J.. 2009. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood. 113:4197–4205. 10.1182/blood-2008-09-176198 PubMed DOI PMC
Paliwal, S., Chaudhuri R., Agrawal A., and Mohanty S.. 2018. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J. Biomed. Sci. 25:31. 10.1186/s12929-018-0429-1 PubMed DOI PMC
Panasiuk, M., Rychłowski M., Derewońko N., and Bieńkowska-Szewczyk K.. 2018. Tunneling nanotubes as a novel route of cell-to-cell spread of herpesviruses. J. Virol. 92:92. 10.1128/JVI.00090-18 PubMed DOI PMC
Pasquier, J., Guerrouahen B.S., Al Thawadi H., Ghiabi P., Maleki M., Abu-Kaoud N., Jacob A., Mirshahi M., Galas L., Rafii S., et al. . 2013. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J. Transl. Med. 11:94. 10.1186/1479-5876-11-94 PubMed DOI PMC
Patananan, A.N., Wu T.-H., Chiou P.-Y., and Teitell M.A.. 2016. Modifying the mitochondrial genome. Cell Metab. 23:785–796. 10.1016/j.cmet.2016.04.004 PubMed DOI PMC
Petros, J.A., Baumann A.K., Ruiz-Pesini E., Amin M.B., Sun C.Q., Hall J., Lim S., Issa M.M., Flanders W.D., Hosseini S.H., et al. . 2005. mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl. Acad. Sci. USA. 102:719–724. 10.1073/pnas.0408894102 PubMed DOI PMC
Phinney, D.G., Di Giuseppe M., Njah J., Sala E., Shiva S., St Croix C.M., Stolz D.B., Watkins S.C., Di Y.P., Leikauf G.D., et al. . 2015. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat. Commun. 6:8472. 10.1038/ncomms9472 PubMed DOI PMC
Picard, M., Zhang J., Hancock S., Derbeneva O., Golhar R., Golik P., O’Hearn S., Levy S., Potluri P., Lvova M., et al. . 2014. Progressive increase in mtDNA 3243A>G heteroplasmy causes abrupt transcriptional reprogramming. Proc. Natl. Acad. Sci. USA. 111:E4033–E4042. 10.1073/pnas.1414028111 PubMed DOI PMC
Picard, M., McManus M.J., Gray J.D., Nasca C., Moffat C., Kopinski P.K., Seifert E.L., McEwen B.S., and Wallace D.C.. 2015. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc. Natl. Acad. Sci. USA. 112:E6614–E6623. 10.1073/pnas.1515733112 PubMed DOI PMC
Picard, M., Wallace D.C., and Burelle Y.. 2016. The rise of mitochondria in medicine. Mitochondrion. 30:105–116. 10.1016/j.mito.2016.07.003 PubMed DOI PMC
Pigino, G. 2021. Intraflagellar transport. Curr. Biol. 31:R530–R536. 10.1016/j.cub.2021.03.081 PubMed DOI
Pinto, G., Saenz-de-Santa-Maria I., Chastagner P., Perthame E., Delmas C., Toulas C., Moyal-Jonathan-Cohen E., Brou C., and Zurzolo C.. 2021. Patient-derived glioblastoma stem cells transfer mitochondria through tunneling nanotubes in tumor organoids. Biochem. J. 478:21–39. 10.1042/BCJ20200710 PubMed DOI PMC
Plotnikov, E.Y., Khryapenkova T.G., Vasileva A.K., Marey M.V., Galkina S.I., Isaev N.K., Sheval E.V., Polyakov V.Y., Sukhikh G.T., and Zorov D.B.. 2008. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J. Cell. Mol. Med. 12:1622–1631. 10.1111/j.1582-4934.2007.00205.x PubMed DOI PMC
Plotnikov, E.Y., Khryapenkova T.G., Galkina S.I., Sukhikh G.T., and Zorov D.B.. 2010. Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture. Exp. Cell Res. 316:2447–2455. 10.1016/j.yexcr.2010.06.009 PubMed DOI
Qin, Y., Jiang X., Yang Q., Zhao J., Zhou Q., and Zhou Y.. 2021. The functions, methods, and mobility of mitochondrial transfer between cells. Front. Oncol. 11:672781. 10.3389/fonc.2021.672781 PubMed DOI PMC
Rabas, N., Palmer S., Mitchell L., Ismail S., Gohlke A., Riley J.S., Tait S.W.G., Gammage P., Soares L.L., Macpherson I.R., and Norman J.C.. 2021. PINK1 drives production of mtDNA-containing extracellular vesicles to promote invasiveness. J. Cell Biol. 220:e202006049. 10.1083/jcb.202006049 PubMed DOI PMC
Rackham, C.L., Hubber E.L., Czajka A., Malik A.N., King A.J.F., and Jones P.M.. 2020. Optimizing beta cell function through mesenchymal stromal cell-mediated mitochondria transfer. Stem Cells. 38:574–584. 10.1002/stem.3134 PubMed DOI PMC
Rebbeck, C.A., Thomas R., Breen M., Leroi A.M., and Burt A.. 2009. Origins and evolution of a transmissible cancer. Evolution. 63:2340–2349. 10.1111/j.1558-5646.2009.00724. PubMed DOI
Rebbeck, C.A., Leroi A.M., and Burt A.. 2011. Mitochondrial capture by a transmissible cancer. Science. 331:303. 10.1126/science.1197696 PubMed DOI
Reichert, D., Scheinpflug J., Karbanová J., Freund D., Bornhäuser M., and Corbeil D.. 2016. Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells. Exp. Hematol. 44:1092–1112.e2. 10.1016/j.exphem.2016.07.006 PubMed DOI
Robicsek, O., Ene H.M., Karry R., Ytzhaki O., Asor E., McPhie D., Cohen B.M., Ben-Yehuda R., Weiner I., and Ben-Shachar D.. 2018. McPHIE, D., Cohen, B.M., Ben-Yehuda, R., Weiner, I., & Ben-Shachar, D. Isolated mitochondria transfer improves neuronal differentiation of schizophrenia-derived induced pluripotent stem cells and rescues deficits in a rat model of the disorder. Schizophr. Bull. 44:432–442. 10.1093/schbul/sbx077 PubMed DOI PMC
Rodríguez-Sinovas, A., Sánchez J.A., Valls-Lacalle L., Consegal M., and Ferreira-González I.. 2021. Connexins in the heart: Regulation, function and involvement in cardiac disease. Int. J. Mol. Sci. 22:4413. 10.3390/ijms22094413 PubMed DOI PMC
Roehlecke, C., and Schmidt M.H.H.. 2020. Tunneling nanotubes and tumor microtubes in cancer. Cancers. 12:857. 10.3390/cancers12040857 PubMed DOI PMC
Rogers, R.S., and Bhattacharya J.. 2013. When cells become organelle donors. Physiology. 28:414–422. 10.1152/physiol.00032.2013 PubMed DOI
Rosina, M., Ceci V., Turchi R., Chuan L., Borcherding N., Sciarretta F., Sánchez-Díaz M., Tortolici F., Karlinsey K., Chiurchiù V., et al. . 2022. Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue. Cell Metab. 34:533–548.e12. 10.1016/j.cmet.2022.02.016 PubMed DOI PMC
Rostami, J., Holmqvist S., Lindström V., Sigvardson J., Westermark G.T., Ingelsson M., Bergström J., Roybon L., and Erlandsson A.. 2017. Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes. J. Neurosci 37:11835–11853. 10.1523/JNEUROSCI.0983-17.2017 PubMed DOI PMC
Rustom, A. 2016. The missing link: Does tunnelling nanotube-based supercellularity provide a new understanding of chronic and lifestyle diseases? Open Biol. 6:160057. 10.1098/rsob.160057 PubMed DOI PMC
Rustom, A., Saffrich R., Markovic I., Walther P., and Gerdes H.H.. 2004. Nanotubular highways for intercellular organelle transport. Science. 303:1007–1010. 10.1126/science.1093133 PubMed DOI
Ryan, M.T., and Hoogenraad N.J.. 2007. Mitochondrial-nuclear communications. Annu. Rev. Biochem. 76:701–722. 10.1146/annurev.biochem.76.052305.091720 PubMed DOI
Saha, T., Dash C., Jayabalan R., Khiste S., Kulkarni A., Kurmi K., Mondal J., Majumder P.K., Bardia A., Jang H.L., and Sengupta S.. 2022. Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. Nat. Nanotechnol. 17:98–106. 10.1038/s41565-021-01000-4 PubMed DOI PMC
Schmidt-Pogoda, A., Strecker J.K., Liebmann M., Massoth C., Beuker C., Hansen U., König S., Albrecht S., Bock S., Breuer J., et al. . 2018. Dietary salt promotes ischemic brain injury and is associated with parenchymal migrasome formation. PLoS One. 13:e0209871. 10.1371/journal.pone.0209871 PubMed DOI PMC
Schon, E.A., DiMauro S., and Hirano M.. 2012. Human mitochondrial DNA: Roles of inherited and somatic mutations. Nat. Rev. Genet. 13:878–890. 10.1038/nrg3275 PubMed DOI PMC
Schulz, R., Görge P.M., Görbe A., Ferdinandy P., Lampe P.D., and Leybaert L.. 2015. Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacol. Ther. 153:90–106. 10.1016/j.pharmthera.2015.06.005 PubMed DOI PMC
Seo, B.J., Yoon S.H., and Do J.T.. 2018. Mitochondrial dynamics in stem cells and differentiation. Int. J. Mol. Sci. 19:3893. 10.3390/ijms19123893 PubMed DOI PMC
Sercel, A.J., Patananan A.N., Man T., Wu T.H., Yu A.K., Guyot G.W., Rabizadeh S., Niazi K.R., Chiou P.Y., and Teitell M.A.. 2021. Stable transplantation of human mitochondrial DNA by high-throughput, pressurized isolated mitochondrial delivery. Elife. 10:e63102. 10.7554/eLife.63102 PubMed DOI PMC
Shakoor, A., Wang B., Fan L., Kong L., Gao W., Sun J., Man K., Li G., and Sun D.. 2021. Automated optical tweezers manipulation to transfer mitochondria from fetal to adult MSCs to improve anti-aging gene expressions. Small. 17:e2103086. 10.1002/smll.202103086 PubMed DOI
Sharma, P., and Sampath H.. 2019. Mitochondrial DNA integrity: Role in health and disease. Cells. 8:100. 10.3390/cells8020100 PubMed DOI PMC
Sharma, N., Pasala M.S., and Prakash A.. 2019. Mitochondrial DNA: Epigenetics and environment. Environ. Mol. Mutagen. 60:668–682. 10.1002/em.22319 PubMed DOI PMC
She, Z., Xie M., Hun M., Abdirahman A.S., Li C., Wu F., Luo S., Wan W., Wen C., and Tian J.. 2021. Immunoregulatory effects of mitochondria transferred by extracellular vesicles. Front. Immunol. 11:628576. 10.3389/fimmu.2020.628576 PubMed DOI PMC
Shen, J., Zhang J.H., Xiao H., Wu J.M., He K.M., Lv Z.Z., Li Z.J., Xu M., and Zhang Y.Y.. 2018. Mitochondria are transported along microtubules in membrane nanotubes to rescue distressed cardiomyocytes from apoptosis. Cell Death Dis. 9:81. 10.1038/s41419-017-0145-x PubMed DOI PMC
Shi, X., Bai H., Zhao M., Li X., Sun X., Jiang H., and Fu A.. 2018. Treatment of acetaminophen-induced liver injury with exogenous mitochondria in mice. Transl. Res. 196:31–41. 10.1016/j.trsl.2018.02.003 PubMed DOI
Sinha, P., Islam M.N., Bhattacharya S., and Bhattacharya J.. 2016. Intercellular mitochondrial transfer: Bioenergetic crosstalk between cells. Curr. Opin. Genet. Dev. 38:97–101. 10.1016/j.gde.2016.05.002 PubMed DOI PMC
Smith, I.F., Shuai J., and Parker I.. 2011. Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes. Biophys. J 100:L37–L39. 10.1016/j.bpj.2011.03.007 PubMed DOI PMC
Sowinski, S., Jolly C., Berninghausen O., Purbhoo M.A., Chauveau A., Köhler K., Oddos S., Eissmann P., Brodsky F.M., Hopkins C., et al. . 2008. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat. Cell Biol. 10:211–219. 10.1038/ncb168 PubMed DOI
Spees, J.L., Olson S.D., Whitney M.J., and Prockop D.J.. 2006. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. USA. 103:1283–1288. 10.1073/pnas.0510511103 PubMed DOI PMC
Spinelli, J.B., and Haigis M.C.. 2018. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20:745–754. 10.1038/s41556-018-0124-1 PubMed DOI PMC
Stepanek, L., and Pigino G.. 2016. Microtubule doublets are double-track railways for intraflagellar transport trains. Science. 352:721–724. 10.1126/science.aaf4594 PubMed DOI
Stewart, J.B., and Chinnery P.F.. 2021. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat. Rev. Genet. 22:106–118. 10.1038/s41576-020-00284-x PubMed DOI
Stoorvogel, W., Kleijmeer M.J., Geuze H.J., and Raposo G.. 2002. The biogenesis and functions of exosomes. Traffic. 3:321–330. 10.1034/j.1600-0854.2002.30502.x PubMed DOI
Strakova, A., and Murchison E.P.. 2015. The cancer which survived: Insights from the genome of an 11000 year-old cancer. Curr. Opin. Genet. Dev. 30:49–55. 10.1016/j.gde.2015.03.005 PubMed DOI
Strakova, A., Ní Leathlobhair M., Wang G.D., Yin T.T., Airikkala-Otter I., Allen J.L., Allum K.M., Bansse-Issa L., Bisson J.L., Castillo Domracheva A., et al. . 2016. Mitochondrial genetic diversity, selection and recombination in a canine transmissible cancer. Elife. 5:e14552. 10.7554/eLife.14552 PubMed DOI PMC
Strakova, A., Nicholls T.J., Baez-Ortega A., Ní Leathlobhair M., Sampson A.T., Hughes K., Bolton I.A.G., Gori K., Wang J., Airikkala-Otter I., et al. . 2020. Recurrent horizontal transfer identifies mitochondrial positive selection in a transmissible cancer. Nat. Commun. 11:3059. 10.1038/s41467-020-16765-w PubMed DOI PMC
Sullivan, L.B., Gui D.Y., and Vander Heiden M.G.. 2016. Altered metabolite levels in cancer: Implications for tumour biology and cancer therapy. Nat. Rev. Cancer. 16:680–693. 10.1038/nrc.2016.85 PubMed DOI
Sun, T., Qiao H., Pan P.Y., Chen Y., and Sheng Z.H.. 2013. Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Rep. 4:413–419. 10.1016/j.celrep.2013.06.040 PubMed DOI PMC
Sun, X., Johnson J., and St John J.C.. 2018. Global DNA methylation synergistically regulates the nuclear and mitochondrial genomes in glioblastoma cells. Nucleic Acids Res. 46:5977–5995. 10.1093/nar/gky339 PubMed DOI PMC
Sun, C., Liu X., Wang B., Wang Z., Liu Y., Di C., Si J., Li H., Wu Q., Xu D., et al. . 2019. Endocytosis-mediated mitochondrial transplantation: Transferring normal human astrocytic mitochondria into glioma cells rescues aerobic respiration and enhances radiosensitivity. Theranostics. 9:3595–3607. 10.7150/thno.33100 PubMed DOI PMC
Suomalainen, A. 2019. Mitochondrial DNA inheritance in humans: Mix, match, and survival of the fittest. Cell Metab. 30:231–232. 10.1016/j.cmet.2019.07.009 PubMed DOI
Sykes, D.B., Kfoury Y.S., Mercier F.E., Wawer M.J., Law J.M., Haynes M.K., Lewis T.A., Schajnovitz A., Jain E., Lee D., et al. . 2016. Inhibition of dihydroorotate dehydrogenase overcomes differentiation blockade in acute myeloid leukemia. Cell. 167:171–186.e15. 10.1016/j.cell.2016.08.057 PubMed DOI PMC
Takenaga, K., Koshikawa N., and Nagase H.. 2021. Intercellular transfer of mitochondrial DNA carrying metastasis-enhancing pathogenic mutations from high- to low-metastatic tumor cells and stromal cells via extracellular vesicles. BMC Mol. Cell Biol. 22:52. 10.1186/s12860-021-00391-5 PubMed DOI PMC
Tan, A.S., Baty J.W., Dong L.F., Bezawork-Geleta A., Endaya B., Goodwin J., Bajzikova M., Kovarova J., Peterka M., Yan B., et al. . 2015. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 21:81–94. 10.1016/j.cmet.2014.12.003 PubMed DOI
Tavi, P., Korhonen T., Hänninen S.L., Bruton J.D., Lööf S., Simon A., and Westerblad H.. 2010. Myogenic skeletal muscle satellite cells communicate by tunnelling nanotubes. J. Cell. Physiol. 223:376–383. 10.1002/jcp.22044 PubMed DOI
Terada, N., Hamazaki T., Oka M., Hoki M., Mastalerz D.M., Nakano Y., Meyer E.M., Morel L., Petersen B.E., and Scott E.W.. 2002. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 416:542–545. 10.1038/nature730 PubMed DOI
Thayanithy, V., Babatunde V., Dickson E.L., Wong P., Oh S., Ke X., Barlas A., Fujisawa S., Romin Y., Moreira A.L., et al. . 2014. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells. Exp. Cell Res. 323:178–188. 10.1016/j.yexcr.2014.01.014 PubMed DOI PMC
Tiwari, V., Koganti R., Russell G., Sharma A., and Shukla D.. 2021. Role of tunneling nanotubes in viral infection, neurodegenerative disease, and cancer. Front. Immunol. 12:680891. 10.3389/fimmu.2021.680891 PubMed DOI PMC
Todkar, K., Chikhi L., Desjardins V., El-Mortada F., Pépin G., and Germain M.. 2021. Selective packaging of mitochondrial proteins into extracellular vesicles prevents the release of mitochondrial DAMPs. Nat. Commun. 12:1971. 10.1038/s41467-021-21984-w PubMed DOI PMC
Tomasetti, M., Lee W., Santarelli L., and Neuzil J.. 2017. Exosome-derived microRNAs in cancer metabolism: Possible implications in cancer diagnostics and therapy. Exp. Mol. Med. 49:e285. 10.1038/emm.2016.153 PubMed DOI PMC
Torralba, D., Baixauli F., and Sánchez-Madrid F.. 2016. Mitochondria know no boundaries: Mechanisms and functions of intercellular mitochondrial transfer. Front. Cell Dev. Biol 4:107. 10.3389/fcell.2016.00107 PubMed DOI PMC
Tseng, N., Lambie S.C., Huynh C.Q., Sanford B., Patel M., Herson P.S., and Ormond D.R.. 2021. Mitochondrial transfer from mesenchymal stem cells improves neuronal metabolism after oxidant injury in vitro: The role of Miro1. J. Cereb. Blood Flow Metab. 41:761–770. 10.1177/0271678X20928147 PubMed DOI PMC
Valdebenito, S., Malik S., Luu R., Loudig O., Mitchell M., Okafo G., Bhat K., Prideaux B., and Eugenin E.A.. 2021. Tunneling nanotubes, TNT, communicate glioblastoma with surrounding non-tumor astrocytes to adapt them to hypoxic and metabolic tumor conditions. Sci. Rep. 11:14556. 10.1038/s41598-021-93775-8 PubMed DOI PMC
Valenti, D., Vacca R.A., Moro L., and Atlante A.. 2021. Mitochondria can cross cell boundaries: An overview of the biological relevance, pathophysiological implications and therapeutic perspectives of intercellular mitochondrial transfer. Int. J. Mol. Sci. 22:8312. 10.3390/ijms22158312 PubMed DOI PMC
Vallabhaneni, K.C., Haller H., and Dumler I.. 2012. Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev. 21:3104–3113. 10.1089/scd.2011.0691 PubMed DOI PMC
van Solinge, T.S., Nieland L., Chiocca E.A., and Broekman M.L.D.. 2022. Advances in local therapy for glioblastoma - taking the fight to the tumour. Nat. Rev. Neurol. 18:221–236. 10.1038/s41582-022-00621-0 PubMed DOI PMC
Vander Heiden, M.G., Cantley L.C., and Thompson C.B.. 2009. Understanding the warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 10.1126/science.1160809 PubMed DOI PMC
Veranic, P., Lokar M., Schütz G.J., Weghuber J., Wieser S., Hägerstrand H., Kralj-Iglic V., and Iglic A.. 2008. Different types of cell-to-cell connections mediated by nanotubular structures. Biophys. J. 95:4416–4425. 10.1529/biophysj.108.131375 PubMed DOI PMC
Viale, A., Pettazzoni P., Lyssiotis C.A., Ying H., Sánchez N., Marchesini M., Carugo A., Green T., Seth S., Giuliani V., et al. . 2014. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 514:628–632. 10.1038/nature13611 PubMed DOI PMC
Vignais, M.L., Caicedo A., Brondello J.M., and Jorgensen C.. 2017. Cell connections by tunneling nanotubes: Effects of mitochondrial trafficking on target cell metabolism, homeostasis, and response to therapy. Stem Cells Int. 2017:6917941. 10.1155/2017/6917941 PubMed DOI PMC
Visvader, J.E., and Lindeman G.J.. 2012. Cancer stem cells: Current status and evolving complexities. Cell Stem Cell. 10:717–728. 10.1016/j.stem.2012.05.007 PubMed DOI
Wallace, D.C. 2012. Mitochondria and cancer. Nat. Rev. Cancer. 12:685–698. 10.1038/nrc3365 PubMed DOI PMC
Wang, X., and Gerdes H.H.. 2015. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 22:1181–1191. 10.1038/cdd.2014.211 PubMed DOI PMC
Wang, X., Veruki M.L., Bukoreshtliev N.V., Hartveit E., and Gerdes H.H.. 2010. Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proc. Natl. Acad. Sci. USA. 107:17194–17199. 10.1073/pnas.1006785107 PubMed DOI PMC
Wang, Y., Cui J., Sun X., and Zhang Y.. 2011. Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ. 18:732–742. 10.1038/cdd.2010.147 PubMed DOI PMC
Wang, J., Liu X., Qiu Y., Shi Y., Cai J., Wang B., Wei X., Ke Q., Sui X., Wang Y., et al. . 2018. Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. J. Hematol. Oncol. 11:11. 10.1186/s13045-018-0554-z PubMed DOI PMC
Wang, Y., Ni J., Gao C., Xie L., Zhai L., Cui G., and Yin X.. 2019. Mitochondrial transplantation attenuates lipopolysaccharide- induced depression-like behaviors. Prog. Neuropsychopharmacol. Biol. Psychiatry. 93:240–249. 10.1016/j.pnpbp.2019.04.010 PubMed DOI
Watkins, S.C., and Salter R.D.. 2005. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity. 23:309–318. 10.1016/j.immuni.2005.08.009 PubMed DOI
Wei, W., Tuna S., Keogh M.J., Smith K.R., Aitman T.J., Beales P.L., Bennett D.L., Gale D.P., Bitner-Glindzicz M.A.K., Black G.C., et al. . 2019. Germline selection shapes human mitochondrial DNA diversity. Science. 364:eaau6520. 10.1126/science.aau6520 PubMed DOI
Weimann, J.M., Johansson C.B., Trejo A., and Blau H.M.. 2003. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat. Cell Biol. 5:959–966. 10.1038/ncb1053 PubMed DOI
White, I.J., Bailey L.M., Aghakhani M.R., Moss S.E., and Futter C.E.. 2006. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J. 25:1–12. 10.1038/sj.emboj.7600759 PubMed DOI PMC
Wittig, D., Wang X., Walter C., Gerdes H.H., Funk R.H.W., and Roehlecke C.. 2012. Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes. PLoS One. 7:e33195. 10.1371/journal.pone.0033195 PubMed DOI PMC
Wu, J., Lu Z., Jiang D., Guo Y., Qiao H., Zhang Y., Zhu T., Cai Y., Zhang X., Zhanghao K., et al. . 2021a. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale. Cell. 184:3318–3332.e17. 10.1016/j.cell.2021.04.029 PubMed DOI
Wu, Y., Han X., Su Y., Glidewell M., Daniels J.S., Liu J., Sengupta T., Rey-Suarez I., Fischer R., Patel A., et al. . 2021b. Multiview confocal super-resolution microscopy. Nature. 600:279–284. 10.1038/s41586-021-04110-0 PubMed DOI PMC
Yáñez-Mó, M., Siljander P.R.-M., Andreu Z., Zavec A.B., Borràs F.E., Buzas E.I., Buzas K., Casal E., Cappello F., Carvalho J., et al. . 2015. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles. 4:27066. 10.3402/jev.v4.27066 PubMed DOI PMC
Yao, Y., Fan X.L., Jiang D., Zhang Y., Li X., Xu Z.B., Fang S.B., Chiu S., Tse H.F., Lian Q., and Fu Q.L.. 2018. Connexin 43-mediated mitochondrial transfer of iPSC-MSCs alleviates asthma inflammation. Stem Cell Rep. 11:1120–1135. 10.1016/j.stemcr.2018.09.012 PubMed DOI PMC
Yasuda, K., Park H.C., Ratliff B., Addabbo F., Hatzopoulos A.K., Chander P., and Goligorsky M.S.. 2010. Adriamycin nephropathy: A failure of endothelial progenitor cell-induced repair. Am. J. Pathol. 176:1685–1695. 10.2353/ajpath.2010.091071 PubMed DOI PMC
Yi, Y.C., Chen M.J., Ho J.Y., Guu H.F., and Ho E.S.C.. 2007. Mitochondria transfer can enhance the murine embryo development. J. Assist. Reprod. Genet. 24:445–449. 10.1007/s10815-007-9161-6 PubMed DOI PMC
Yu, S., and Yu L.. 2022. Migrasome biogenesis and functions. FEBS J. 289:7246–7254. 10.1111/febs.16183 PubMed DOI PMC
Zaborowski, M.P., Balaj L., Breakefield X.O., and Lai C.P.-K.. 2015. (Extracellular vesicles: Composition, biological relevance, and methods of study. Bioscience. 65:783–797. 10.1093/biosci/biv084 PubMed DOI PMC
Zampieri, L.X., Silva-Almeida C., Rondeau J.D., and Sonveaux P.. 2021. Mitochondrial transfer in cancer: A comprehensive review. Int. J. Mol. Sci. 22:3245. 10.3390/ijms22063245 PubMed DOI PMC
Zhang, Q., Raoof M., Chen Y., Sumi Y., Sursal T., Junger W., Brohi K., Itagaki K., and Hauser C.J.. 2010. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 464:104–107. 10.1038/nature08780 PubMed DOI PMC
Zhang, Y., Yu Z., Jiang D., Liang X., Liao S., Zhang Z., Yue W., Li X., Chiu S.M., Chai Y.H., et al. . 2016. iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF-α yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy. Stem Cell Rep. 7:749–763. 10.1016/j.stemcr.2016.08.009 PubMed DOI PMC
Zhang, Z., Ma Z., Yan C., Pu K., Wu M., Bai J., Li Y., and Wang Q.. 2019. Muscle-derived autologous mitochondrial transplantation: A novel strategy for treating cerebral ischemic injury. Behav. Brain Res. 356:322–331. 10.1016/j.bbr.2018.09.005 PubMed DOI
Zhao, Z., Yu Z., Hou Y., Zhang L., and Fu A.. 2020. Improvement of cognitive and motor performance with mitotherapy in aged mice. Int. J. Biol. Sci. 16:849–858. 10.7150/ijbs.40886 PubMed DOI PMC
Zheng, Y.R., Zhang X.N., and Chen Z.. 2019. Mitochondrial transport serves as a mitochondrial quality control strategy in axons: Implications for central nervous system disorders. CNS Neurosci. Ther. 25:876–886. 10.1111/cns.13122 PubMed DOI PMC
Zhu, S., Victoria G.S., Marzo L., Ghosh R., and Zurzolo C.. 2015. Prion aggregates transfer through tunneling nanotubes in endocytic vesicles. Prion. 9:125–135. 10.1080/19336896.2015.1025189 PubMed DOI PMC
Zou, X., Kwon S.H., Jiang K., Ferguson C.M., Puranik A.S., Zhu X., and Lerman L.O.. 2018. Renal scattered tubular-like cells confer protective effects in the stenotic murine kidney mediated by release of extracellular vesicles. Sci. Rep. 8:1263. 10.1038/s41598-018-19750-y PubMed DOI PMC
Zurzolo, C. 2021. Tunneling nanotubes: Reshaping connectivity. Curr. Opin. Cell Biol. 71:139–147. 10.1016/j.ceb.2021.03.003 PubMed DOI