In Vitro Reconstitution of Molecular Motor-Driven Mitochondrial Transport
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
- Klíčová slova
- Adaptor proteins, Interference reflection microscopy, Kinesin-1, Mitochondria, Molecular motors, Motility assay, TIRF microscopy, TRAK,
- MeSH
- biologický transport MeSH
- kineziny * MeSH
- mikrotubuly * metabolismus MeSH
- mitochondrie metabolismus MeSH
- organely MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kineziny * MeSH
Intracellular trafficking of organelles driven by molecular motors underlies essential cellular processes. Mitochondria, the powerhouses of the cell, are one of the major cargoes of molecular motors. Efficient distribution of mitochondria ensures cellular fitness while defects in this process contribute to severe pathologies, such as neurodegenerative diseases. Reconstitution of the mitochondrial microtubule-based transport in vitro in a bottom-up approach provides a powerful tool to investigate the mitochondrial trafficking machinery in a controlled environment in the absence of complex intracellular interactions. In this chapter, we describe the procedures for achieving such reconstitution of mitochondrial transport.
Zobrazit více v PubMed
Tanaka Y, Kanai Y, Okada Y et al (1998) Targeted disruption of mouse conventional kinesin heavy chain kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93:1147–1158. https://doi.org/10.1016/S0092-8674(00)81459-2 PubMed DOI
Chang DTW, Reynolds IJ (2006) Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol 80:241–268. https://doi.org/10.1016/j.pneurobio.2006.09.003 PubMed DOI
Correia SC, Perry G, Moreira PI (2016) Mitochondrial traffic jams in Alzheimer’s disease—pinpointing the roadblocks. Biochim Biophys Acta Mol basis Dis 1862:1909–1917. https://doi.org/10.1016/j.bbadis.2016.07.010 DOI
Hsieh C-H, Shaltouki A, Gonzalez AE et al (2016) Functional impairment in Miro degradation and Mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell 19:709–724. https://doi.org/10.1016/j.stem.2016.08.002 PubMed DOI PMC
Ahmad T, Mukherjee S, Pattnaik B et al (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 33:994–1010. https://doi.org/10.1002/embj.201386030 PubMed DOI PMC
Dong L-F, Kovarova J, Bajzikova M et al (2017) Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. Elife 6:e22187. https://doi.org/10.7554/eLife.22187 PubMed DOI PMC
Rustom A, Saffrich R, Markovic I et al (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010. https://doi.org/10.1126/science.1093133 PubMed DOI
Bajzikova M, Kovarova J, Coelho AR et al (2019) Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab 29:399–416.e10. https://doi.org/10.1016/j.cmet.2018.10.014 PubMed DOI
Tan AS, Baty JW, Dong L-F et al (2015) Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab 21:81–94. https://doi.org/10.1016/j.cmet.2014.12.003 PubMed DOI
Wang X, Schwarz TL (2009) The mechanism of Ca PubMed DOI PMC
Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75. https://doi.org/10.1038/317073a0 PubMed DOI
Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50. https://doi.org/10.1016/s0092-8674(85)80099-4 PubMed DOI PMC
Vale RD, Schnapp BJ, Mitchison T et al (1985) Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell 43:623–632. https://doi.org/10.1016/0092-8674(85)90234-X PubMed DOI
Stowers RS, Megeath LJ, Górska-Andrzejak J et al (2002) Axonal transport of mitochondria to synapses depends on Milton, a novel drosophila protein. Neuron 36:1063–1077. https://doi.org/10.1016/S0896-6273(02)01094-2 PubMed DOI
Brickley K, Smith MJ, Beck M, Stephenson FA (2005) GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: association in vivo and in vitro with kinesin. J Biol Chem 280:14723–14732. https://doi.org/10.1074/jbc.M409095200 PubMed DOI
Fransson Å, Ruusala A, Aspenström P (2006) The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun 344:500–510. https://doi.org/10.1016/j.bbrc.2006.03.163 PubMed DOI
Glater EE, Megeath LJ, Stowers RS, Schwarz TL (2006) Axonal transport of mitochondria requires Milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173:545–557. https://doi.org/10.1083/jcb.200601067 PubMed DOI PMC
van Spronsen M, Mikhaylova M, Lipka J et al (2013) TRAK/Milton Motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77:485–502. https://doi.org/10.1016/j.neuron.2012.11.027 PubMed DOI
Brickley K, Stephenson FA (2011) Trafficking kinesin protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons. J Biol Chem 286:18079–18092 DOI
Guo X, Macleod GT, Wellington A et al (2005) The GTPase dMiro is required for axonal transport of mitochondria to drosophila synapses. Neuron 47:379–393. https://doi.org/10.1016/j.neuron.2005.06.027 PubMed DOI
Liu X, Hajnóczky G (2009) Ca2+−dependent regulation of mitochondrial dynamics by the Miro-Milton complex. Int J Biochem Cell Biol 41:1972–1976. https://doi.org/10.1016/j.biocel.2009.05.013 PubMed DOI PMC
MacAskill AF, Rinholm JE, Twelvetrees AE et al (2009) Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61:541–555. https://doi.org/10.1016/j.neuron.2009.01.030 PubMed DOI PMC
Desai SP, Bhatia SN, Toner M, Irimia D (2013) Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophys J 104:2077–2088 DOI
Nguyen TT, Oh SS, Weaver D et al (2014) Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease. Proc Natl Acad Sci 111:E3631–E3640 PubMed PMC
Gell C, Bormuth V, Brouhard GJ et al (2010) Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Methods Cell Biol 95:221–245. https://doi.org/10.1016/S0091-679X(10)95013-9 PubMed DOI
Mahamdeh M, Howard J (2019) Implementation of interference reflection microscopy for label-free, high-speed imaging of microtubules. J Vis Exp:e59520. https://doi.org/10.3791/59520
Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682 DOI
Ruhnow F, Kloβ L, Diez S (2017) Challenges in estimating the motility parameters of single processive motor proteins. Biophys J 113:2433–2443 DOI
Henrichs V, Grycova L, Barinka C et al (2020) Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments. Nat Commun 11:3123. https://doi.org/10.1038/s41467-020-16972-5 PubMed DOI PMC