In Vitro Reconstitution of Molecular Motor-Driven Mitochondrial Transport

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35412296

Intracellular trafficking of organelles driven by molecular motors underlies essential cellular processes. Mitochondria, the powerhouses of the cell, are one of the major cargoes of molecular motors. Efficient distribution of mitochondria ensures cellular fitness while defects in this process contribute to severe pathologies, such as neurodegenerative diseases. Reconstitution of the mitochondrial microtubule-based transport in vitro in a bottom-up approach provides a powerful tool to investigate the mitochondrial trafficking machinery in a controlled environment in the absence of complex intracellular interactions. In this chapter, we describe the procedures for achieving such reconstitution of mitochondrial transport.

Zobrazit více v PubMed

Tanaka Y, Kanai Y, Okada Y et al (1998) Targeted disruption of mouse conventional kinesin heavy chain kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93:1147–1158. https://doi.org/10.1016/S0092-8674(00)81459-2 PubMed DOI

Chang DTW, Reynolds IJ (2006) Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol 80:241–268. https://doi.org/10.1016/j.pneurobio.2006.09.003 PubMed DOI

Correia SC, Perry G, Moreira PI (2016) Mitochondrial traffic jams in Alzheimer’s disease—pinpointing the roadblocks. Biochim Biophys Acta Mol basis Dis 1862:1909–1917. https://doi.org/10.1016/j.bbadis.2016.07.010 DOI

Hsieh C-H, Shaltouki A, Gonzalez AE et al (2016) Functional impairment in Miro degradation and Mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell 19:709–724. https://doi.org/10.1016/j.stem.2016.08.002 PubMed DOI PMC

Ahmad T, Mukherjee S, Pattnaik B et al (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 33:994–1010. https://doi.org/10.1002/embj.201386030 PubMed DOI PMC

Dong L-F, Kovarova J, Bajzikova M et al (2017) Horizontal transfer of whole mitochondria restores tumorigenic potential in mitochondrial DNA-deficient cancer cells. Elife 6:e22187. https://doi.org/10.7554/eLife.22187 PubMed DOI PMC

Rustom A, Saffrich R, Markovic I et al (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010. https://doi.org/10.1126/science.1093133 PubMed DOI

Bajzikova M, Kovarova J, Coelho AR et al (2019) Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab 29:399–416.e10. https://doi.org/10.1016/j.cmet.2018.10.014 PubMed DOI

Tan AS, Baty JW, Dong L-F et al (2015) Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab 21:81–94. https://doi.org/10.1016/j.cmet.2014.12.003 PubMed DOI

Wang X, Schwarz TL (2009) The mechanism of Ca PubMed DOI PMC

Brady ST (1985) A novel brain ATPase with properties expected for the fast axonal transport motor. Nature 317:73–75. https://doi.org/10.1038/317073a0 PubMed DOI

Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42:39–50. https://doi.org/10.1016/s0092-8674(85)80099-4 PubMed DOI PMC

Vale RD, Schnapp BJ, Mitchison T et al (1985) Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell 43:623–632. https://doi.org/10.1016/0092-8674(85)90234-X PubMed DOI

Stowers RS, Megeath LJ, Górska-Andrzejak J et al (2002) Axonal transport of mitochondria to synapses depends on Milton, a novel drosophila protein. Neuron 36:1063–1077. https://doi.org/10.1016/S0896-6273(02)01094-2 PubMed DOI

Brickley K, Smith MJ, Beck M, Stephenson FA (2005) GRIF-1 and OIP106, members of a novel gene family of coiled-coil domain proteins: association in vivo and in vitro with kinesin. J Biol Chem 280:14723–14732. https://doi.org/10.1074/jbc.M409095200 PubMed DOI

Fransson Å, Ruusala A, Aspenström P (2006) The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun 344:500–510. https://doi.org/10.1016/j.bbrc.2006.03.163 PubMed DOI

Glater EE, Megeath LJ, Stowers RS, Schwarz TL (2006) Axonal transport of mitochondria requires Milton to recruit kinesin heavy chain and is light chain independent. J Cell Biol 173:545–557. https://doi.org/10.1083/jcb.200601067 PubMed DOI PMC

van Spronsen M, Mikhaylova M, Lipka J et al (2013) TRAK/Milton Motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 77:485–502. https://doi.org/10.1016/j.neuron.2012.11.027 PubMed DOI

Brickley K, Stephenson FA (2011) Trafficking kinesin protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons. J Biol Chem 286:18079–18092 DOI

Guo X, Macleod GT, Wellington A et al (2005) The GTPase dMiro is required for axonal transport of mitochondria to drosophila synapses. Neuron 47:379–393. https://doi.org/10.1016/j.neuron.2005.06.027 PubMed DOI

Liu X, Hajnóczky G (2009) Ca2+−dependent regulation of mitochondrial dynamics by the Miro-Milton complex. Int J Biochem Cell Biol 41:1972–1976. https://doi.org/10.1016/j.biocel.2009.05.013 PubMed DOI PMC

MacAskill AF, Rinholm JE, Twelvetrees AE et al (2009) Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 61:541–555. https://doi.org/10.1016/j.neuron.2009.01.030 PubMed DOI PMC

Desai SP, Bhatia SN, Toner M, Irimia D (2013) Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophys J 104:2077–2088 DOI

Nguyen TT, Oh SS, Weaver D et al (2014) Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease. Proc Natl Acad Sci 111:E3631–E3640 PubMed PMC

Gell C, Bormuth V, Brouhard GJ et al (2010) Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy. Methods Cell Biol 95:221–245. https://doi.org/10.1016/S0091-679X(10)95013-9 PubMed DOI

Mahamdeh M, Howard J (2019) Implementation of interference reflection microscopy for label-free, high-speed imaging of microtubules. J Vis Exp:e59520. https://doi.org/10.3791/59520

Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682 DOI

Ruhnow F, Kloβ L, Diez S (2017) Challenges in estimating the motility parameters of single processive motor proteins. Biophys J 113:2433–2443 DOI

Henrichs V, Grycova L, Barinka C et al (2020) Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments. Nat Commun 11:3123. https://doi.org/10.1038/s41467-020-16972-5 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...