Mitochondrial Function as Related to Psychological Distress in Health Care Professionals
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
34419997
DOI
10.1097/psy.0000000000001000
PII: 00006842-202201000-00006
Knihovny.cz E-zdroje
- MeSH
- leukocyty mononukleární * metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mitochondriální DNA genetika metabolismus MeSH
- mitochondrie metabolismus MeSH
- psychický distres * MeSH
- zdravotnický personál MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mitochondriální DNA MeSH
OBJECTIVE: The present study evaluated the association of psychological distress and radiation exposure as a work-related stressor with mitochondrial function in health care professionals. METHODS: Health care professionals at a regional hospital in Italy were evaluated for physical health and psychological measures using self-report questionnaires (n = 41; mean age = 47.6 [13.1] years; 66% women). In a second sample, individuals exposed to elevated levels of ionizing radiation (IR; likely effective dose exceeding 6 mSv/y; n = 63, mean age = 45.8 [8.8] years; 62% women) were compared with health care workers with low IR (n = 57; mean age = 47.2 [9.5] years; 65% women) because exposure to a toxic agent might act as a (work-related) stressor. Associations were examined between psychological factors (12-item General Health Questionnaire, Perceived Stress Scale), work ability (Work Ability Index), and IR exposure at the workplace with markers of mitochondrial function, including mitochondrial redox activity, mitochondrial membrane potential, mitochondrial DNA (mtDNA) copy number, biogenesis, and mtDNA damage response measured from peripheral blood mononuclear cells. RESULTS: All participants were in good physical health. Individuals reporting high levels of psychological distress showed lower mitochondrial biogenesis as indicated by peroxisome proliferator-activated receptor-γ coactivator 1-α and lower nuclear factor erythroid 2-related factor 2 (NRF2) expression (2.5 [1.0] versus 1.0 [0.9] relative expression [rel exp], p = .035, and 31.5 [5.0] versus 19.4 [6.9] rel exp, p = .013, respectively). However, exposure to toxic agents (IR) was primarily associated with mitochondrial metabolism and reduced mtDNA integrity. Participants with IR exposure displayed higher mitochondrial redox activity (4480 [1202] mean fluorescence intensity [MFI]/min versus 3376 [983] MFI/min, p < .001) and lower mitochondrial membrane potential (0.89 [0.09] MFI versus 0.95 [0.11] MFI, p = .001), and reduced mtDNA integrity (1.18 [0.21] rel exp versus 3.48 [1.57] rel exp, p < .001) compared with nonexposed individuals. CONCLUSIONS: This study supports the notion that psychological distress and potential stressors related to toxic agents might influence various aspects of mitochondrial biology, and that chronic stress exposure can lead to molecular and functional recalibrations among mitochondria.
Zobrazit více v PubMed
Østergaard L, Jørgensen MB, Knudsen GM. Low on energy? An energy supply-demand perspective on stress and depression. Neurosci Biobehav Rev 2018;94:248–70. doi:10.1016/j.neubiorev.2018.08.007. DOI
Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, Babenko VA, Zorov SD, Balakireva AV, Juhaszova M, Sollott SJ, Zorov DB. Mitochondrial membrane potential. Anal Biochem 2018;552:50–9. doi:10.1016/j.ab.2017.07.009. DOI
Kulkarni CA, Brookes PS. Cellular compartmentation and the redox/nonredox functions of NAD. Antioxid Redox Signal 2019;31:623–42. doi:10.1089/ars.2018.7722. DOI
Nicholls DG, Brand MD, Gerencser AA. Mitochondrial bioenergetics and neuronal survival modelled in primary neuronal culture and isolated nerve terminals. J Bioenerg Biomembr 2015;47:63–74. doi:10.1007/s10863-014-9573-9. DOI
Wai T, Langer T. Mitochondrial dynamics and metabolic regulation. Trends Endocrinol Metab 2016;27:105–17. doi:10.1016/j.tem.2015.12.001. DOI
Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 1999;98:115–24.
Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol 2020;15:235–59. doi:10.1146/annurev-pathmechdis-012419-032711. DOI
Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell 2012;148:1145–59. doi:10.1016/j.cell.2012.02.035. DOI
Daniels TE, Olsen EM, Tyrka AR. Stress and psychiatric disorders: the role of mitochondria. Annu Rev Clin Psychol 2020;16:165–86. doi:10.1146/annurev-clinpsy-082719-104030. DOI
Picard M, McEwen BS, Epel ES, Sandi C. An energetic view of stress: focus on mitochondria. Front Neuroendocrinol 2018;49:72–85. doi:10.1016/j.yfrne.2018.01.001. DOI
Salvagioni DAJ, Melanda FN, Mesas AE, González AD, Gabani FL, Andrade SM. Physical, psychological and occupational consequences of job burnout: a systematic review of prospective studies. PLoS One 2017;12:e0185781. doi:10.1371/journal.pone.0185781. DOI
Amati M, Tomasetti M, Ciuccarelli M, Mariotti L, Tarquini LM, Bracci M, Baldassari M, Balducci C, Alleva R, Borghi B, Mocchegiani E, Copertaro A, Santarelli L. Relationship of job satisfaction, psychological distress and stress-related biological parameters among healthy nurses: a longitudinal study. J Occup Health 2010;52:31–8.
Dobrakowski M, Pawlas N, Kasperczyk A, Kozłowska A, Olewińska E, Machoń-Grecka A, Kasperczyk S. Oxidative DNA damage and oxidative stress in lead-exposed workers. Hum Exp Toxicol 2017;36:744–54. doi:10.1177/0960327116665674. DOI
Patil PS, Aithala M, Das KK. Effect of occupational exposure on blood cell counts, electrocardiogram and blood pressure in rice mill workers. J Clin Diagn Res 2015;9:CC01–3. doi:10.7860/JCDR/2015/15344.6711. DOI
Gaetani S, Monaco F, Bracci M, Ciarapica V, Impollonia G, Valentino M, Tomasetti M, Santarelli L, Amati M. DNA damage response in workers exposed to low-dose ionising radiation. Occup Environ Med 2018;75:724–9. doi:10.1136/oemed-2018-105094. DOI
Raczkiewicz D, Bojar I, Wdowiak A, Rzeźnicki A, Krakowiak J. Stress at intellectual work and cardiovascular diseases in women at non-mobility working age. Ann Agric Environ Med 2019;26:456–61. doi:10.26444/aaem/105142. DOI
Siegrist J, Li J. Work stress and altered biomarkers: a synthesis of findings based on the effort-reward imbalance model. Int J Environ Res Public Health 2017;14:E1373. doi:10.3390/ijerph14111373. DOI
Li L, Ai H, Gao L, Zhou H, Liu X, Zhang Z, Sun T, Fan L. Moderating effects of coping on work stress and job performance for nurses in tertiary hospitals: a cross-sectional survey in China. BMC Health Serv Res 2017;17:401. doi:10.1186/s12913-017-2348-3. DOI
Romppel M, Braehler E, Roth M, Glaesmer H. What is the General Health Questionnaire-12 assessing? Dimensionality and psychometric properties of the General Health Questionnaire-12 in a large scale German population sample. Compr Psychiatry 2013;54:406–13. doi:10.1016/j.comppsych.2012.10.010. DOI
Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav 1983;24:385–96.
de Zwart BC, Frings-Dresen MH, van Duivenbooden JC. Test-retest reliability of the Work Ability Index questionnaire. Occup Med (Lond) 2002;52:177–81.
Marklund S, Mienna CS, Wahlström J, Englund E, Wiesinger B. Work ability and productivity among dentists: associations with musculoskeletal pain, stress, and sleep. Int Arch Occup Environ Health 2020;93:271–8. doi:10.1007/s00420-019-01478-5. DOI
Tomasetti M, Alleva R, Borghi B, Collins AR. In vivo supplementation with coenzyme Q10 enhances the recovery of human lymphocytes from oxidative DNA damage. FASEB J 2001;15:1425–7.
Abu-Amero KK, Bosley TM. Detection of mitochondrial respiratory dysfunction in circulating lymphocytes using resazurin. Arch Pathol Lab Med 2005;129:1295–8.
Aleshin VA, Artiukhov AV, Oppermann H, Kazantsev AV, Lukashev NV, Bunik VI. Mitochondrial impairment may increase cellular NAD(P)H: resazurin oxidoreductase activity, perturbing the NAD(P)H-based viability assays. Cell 2015;4:427–51. doi:10.3390/cells4030427. DOI
Santos JH, Meyer JN, Mandavilli BS, Van Houten B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol Biol 2006;314:183–99.
Gonzalez-Hunt CP, Rooney JP, Ryde IT, Anbalagan C, Joglekar R, Meyer JN. PCR-based analysis of mitochondrial DNA copy number, mitochondrial DNA damage, and nuclear DNA damage. Curr Protoc Toxicol 2016;67:20.11.1–25. doi:10.1002/0471140856.tx2011s67. DOI
Collins AR, Dusinská M, Horváthová E, Munro E, Savio M, Stetina R. Inter-individual differences in repair of DNA base oxidation, measured in vitro with the comet assay. Mutagenesis 2001;16:297–301.
Srivastava S. The mitochondrial basis of aging and age-related disorders. Genes (Basel) 2017;8:E398. doi:10.3390/genes8120398. DOI
Harrell CS, Gillespie CF, Neigh GN. Energetic stress: the reciprocal relationship between energy availability and the stress response. Physiol Behav 2016;166:43–55. doi:10.1016/j.physbeh.2015.10.009. DOI
Picard M, McEwen BS. Psychological stress and mitochondria: a systematic review. Psychosom Med 2018;80:141–53. doi:10.1097/PSY.0000000000000545. DOI
Han LKM, Verhoeven JE, Tyrka AR, Penninx BWJH, Wolkowitz OM, Månsson KNT, Lindqvist D, Boks MP, Révész D, Mellon SH, Picard M. Accelerating research on biological aging and mental health: current challenges and future directions. Psychoneuroendocrinology 2019;106:293–311.
Picard M, McEwen BS. Psychological stress and mitochondria: a conceptual framework. Psychosom Med 2018;80:126–40. doi:10.1097/PSY.0000000000000544. DOI
Hagan KA, Wu T, Rimm EB, Eliassen AH, Okereke OI. Phobic anxiety and plasma levels of global oxidative stress in women. Eur J Psychiatry 2015;29:7–20.
Quick JC, Henderson DF. Occupational stress: preventing suffering, enhancing wellbeing. Int J Environ Res Public Health 2016;13:459.
Grey JFE, Townley AR, Everitt NM, Campbell-Ritchie A, Wheatley SP. A cost-effective, analytical method for measuring metabolic load of mitochondria. Metabol Open 2019;4:100020. doi:10.1016/j.metop.2019.100020. DOI
Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 1997;94:514–9. doi:10.1073/pnas.94.2.514. DOI
Takahashi PY, Jenkins GD, Welkie BP, McDonnell SK, Evans JM, Cerhan JR, Olson JE, Thibodeau SN, Cicek MS, Ryu E. Association of mitochondrial DNA copy number with self-rated health status. Appl Clin Genet 2018;11:121–7. doi:10.2147/TACG.S167640. DOI
Wu IC, Lin CC, Liu CS, Hsu CC, Chen CY, Hsiung CA. Interrelations between mitochondrial DNA copy number and inflammation in older adults. J Gerontol A Biol Sci Med Sci 2017;72:937–44. doi:10.1093/gerona/glx033. DOI
Fazzini F, Lamina C, Fendt L, Schultheiss UT, Kotsis F, Hicks AA, Meiselbach H, Weissensteiner H, Forer L, Krane V, Eckardt KU, Köttgen A, Kronenberg F; GCKD Investigators. Mitochondrial DNA copy number is associated with mortality and infections in a large cohort of patients with chronic kidney disease. Kidney Int 2019;96:480–8. doi:10.1016/j.kint.2019.04.021. DOI
Pyle A, Anugrha H, Kurzawa-Akanbi M, Yarnall A, Burn D, Hudson G. Reduced mitochondrial DNA copy number is a biomarker of Parkinson’s disease. Neurobiol Aging 2016;38:216.e7–216.e10. doi:10.1016/j.neurobiolaging.2015.10.033. DOI
Ammal Kaidery N, Ahuja M, Thomas B. Crosstalk between Nrf2 signaling and mitochondrial function in Parkinson’s disease. Mol Cell Neurosci 2019;101:103413. doi:10.1016/j.mcn.2019.103413. DOI
Bouraoui S, Mougou S, Drira A, Tabka F, Bouali N, Mrizek N, Elghezal H, Saad A. A cytogenetic approach to the effects of low levels of ionizing radiation (IR) on the exposed Tunisian hospital workers. Int J Occup Med Environ Health 2013;26:144–54. doi:10.2478/s13382-013-0084-4. DOI
Shimura T, Kunugita N. Mitochondrial reactive oxygen species–mediated genomic instability in low-dose irradiated human cells through nuclear retention of cyclin D1. Cell Cycle 2016;15:1410–4. doi:10.1080/15384101.2016.1170271. DOI
Kam WW, Banati RB. Effects of ionizing radiation on mitochondria. Free Radic Biol Med 2013;65:607–19. doi: 10.1016/j.freeradbiomed.2013.07.024. DOI
Mitochondria on the move: Horizontal mitochondrial transfer in disease and health