Cryptic infection of a broad taxonomic and geographic diversity of tadpoles by Perkinsea protists
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26261337
PubMed Central
PMC4553764
DOI
10.1073/pnas.1500163112
PII: 1500163112
Knihovny.cz E-zdroje
- Klíčová slova
- alveolates, emerging disease, frog decline, molecular diversity, parasite,
- MeSH
- Alveolata klasifikace patogenita MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- larva klasifikace parazitologie MeSH
- obojživelníci klasifikace růst a vývoj MeSH
- zeměpis * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The decline of amphibian populations, particularly frogs, is often cited as an example in support of the claim that Earth is undergoing its sixth mass extinction event. Amphibians seem to be particularly sensitive to emerging diseases (e.g., fungal and viral pathogens), yet the diversity and geographic distribution of infectious agents are only starting to be investigated. Recent work has linked a previously undescribed protist with mass-mortality events in the United States, in which infected frog tadpoles have an abnormally enlarged yellowish liver filled with protist cells of a presumed parasite. Phylogenetic analyses revealed that this infectious agent was affiliated with the Perkinsea: a parasitic group within the alveolates exemplified by Perkinsus sp., a "marine" protist responsible for mass-mortality events in commercial shellfish populations. Using small subunit (SSU) ribosomal DNA (rDNA) sequencing, we developed a targeted PCR protocol for preferentially sampling a clade of the Perkinsea. We tested this protocol on freshwater environmental DNA, revealing a wide diversity of Perkinsea lineages in these environments. Then, we used the same protocol to test for Perkinsea-like lineages in livers of 182 tadpoles from multiple families of frogs. We identified a distinct Perkinsea clade, encompassing a low level of SSU rDNA variation different from the lineage previously associated with tadpole mass-mortality events. Members of this clade were present in 38 tadpoles sampled from 14 distinct genera/phylogroups, from five countries across three continents. These data provide, to our knowledge, the first evidence that Perkinsea-like protists infect tadpoles across a wide taxonomic range of frogs in tropical and temperate environments, including oceanic islands.
Department of Environmental Sciences University of Basel CH 4056 Basel Switzerland;
Department of Life Sciences The Natural History Museum London SW7 5BD United Kingdom;
Odum School of Ecology The University of Georgia Athens GA 30602;
Zobrazit více v PubMed
Wake DB, Vredenburg VT. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci USA. 2008;105(Suppl 1):11466–11473. PubMed PMC
Monastersky R. Biodiversity: Life—A status report. Nature. 2014;516(7530):158–161. PubMed
Rohr JR, Raffel TR. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proc Natl Acad Sci USA. 2010;107(18):8269–8274. PubMed PMC
Johnson PTJ, et al. Aquatic eutrophication promotes pathogenic infection in amphibians. Proc Natl Acad Sci USA. 2007;104(40):15781–15786. PubMed PMC
Collins JP, Storfer A. Global amphibian declines: Sorting the hypotheses. Divers Distrib. 2003;9(2):89–98.
Pounds JA, et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature. 2006;439(7073):161–167. PubMed
Crawford AJ, Lips KR, Bermingham E. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proc Natl Acad Sci USA. 2010;107(31):13777–13782. PubMed PMC
Lips KR, et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci USA. 2006;103(9):3165–3170. PubMed PMC
Fisher MC, Garner TW, Walker SF. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol. 2009;63:291–310. PubMed
Daszak P, et al. Emerging infectious diseases and amphibian population declines. Emerg Infect Dis. 1999;5(6):735–748. PubMed PMC
Duffus ALJ, Pauli BD, Wozney K, Brunetti CR, Berrill M. Frog virus 3-like infections in aquatic amphibian communities. J Wildl Dis. 2008;44(1):109–120. PubMed
Davis AK, Yabsley MJ, Keel MK, Maerz JC. Discovery of a novel alveolate pathogen affecting Southern Leopard frogs in Georgia: Description of the disease and host effects. EcoHealth. 2007;4:310–317.
Green DE, Feldman SH, Wimsatt J. Emergence of a Perkinsus-like agent in anuran liver during die-offs of local populations: PCR detection and phylogenetic characterization. Proc Am Assoc Zoo Vet. 2003;2003:120–121.
Azevedo C. Fine structure of Perkinsus atlanticus n. sp. (Apicomplexa, Perkinsea) parasite of the clam Ruditapes decussatus from Portugal. J Parasitol. 1989;75(4):627–635. PubMed
Lester RJG, Davis GHG. A new Perkinsus species (Apicomplexa, Perkinsea) from the abalone, Haliotis ruber. J Invertebr Pathol. 1981;37:181–187.
Bachvaroff TR, et al. Dinoflagellate phylogeny revisited: Using ribosomal proteins to resolve deep branching dinoflagellate clades. Mol Phylogenet Evol. 2014;70(0):314–322. PubMed PMC
Brugerolle G. Apicomplexan parasite Cryptophagus renamed Rastrimonas gen. nov. Eur J Protistol. 2003;39:101.
Brugerolle G. Cryptophagus subtilis: A new parasite of cryptophytes affiliated with the Perkinsozoa lineage. Eur J Protistol. 2002;37:379–390.
Mackin JG. Histopathology of infection of Crassostrea virginica (Gmelin) by Dermocystidium marinum Mackin, Owen and Collier. Bull Mar Sci. 1951;1(1):72–87.
Park MG, Yih W, Coats DW. Parasites and phytoplankton, with special emphasis on dinoflagellate infections. J Eukaryot Microbiol. 2004;51(2):145–155. PubMed
Lefranc M, Thénot A, Lepère C, Debroas D. Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl Environ Microbiol. 2005;71(10):5935–5942. PubMed PMC
Lepère C, Domaizon I, Debroas D. Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl Environ Microbiol. 2008;74(10):2940–2949. PubMed PMC
Mangot JF, Lepère C, Bouvier C, Debroas D, Domaizon I. Community structure and dynamics of small eukaryotes targeted by new oligonucleotide probes: New insight into the lacustrine microbial food web. Appl Environ Microbiol. 2009;75(19):6373–6381. PubMed PMC
Bråte J, et al. Freshwater Perkinsea and marine-freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA. ISME J. 2010;4(9):1144–1153. PubMed
Chambouvet A, et al. Diverse molecular signatures for ribosomally ‘active’ Perkinsea in marine sediments. BMC Microbiol. 2014;14(1):110. PubMed PMC
Fredricks DN, Relman DA. Sequence-based identification of microbial pathogens: A reconsideration of Koch’s postulates. Clin Microbiol Rev. 1996;9(1):18–33. PubMed PMC
Relman DA, Schmidt TM, MacDermott RP, Falkow S. Identification of the uncultured bacillus of Whipple’s disease. N Engl J Med. 1992;327(5):293–301. PubMed
Anderson BE, Dawson JE, Jones DC, Wilson KH. Ehrlichia chaffeensis, a new species associated with human ehrlichiosis. J Clin Microbiol. 1991;29(12):2838–2842. PubMed PMC
Wuyts J, et al. Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA. Nucleic Acids Res. 2000;28(23):4698–4708. PubMed PMC
Richards TA, Vepritskiy AA, Gouliamova DE, Nierzwicki-Bauer SA. The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environ Microbiol. 2005;7(9):1413–1425. PubMed
Lefèvre E, et al. Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: Evidence from a molecular diversity study in a deep meromictic lake. Environ Microbiol. 2007;9(1):61–71. PubMed
Lefèvre E, Roussel B, Amblard C, Sime-Ngando T. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS One. 2008;3(6):e2324. PubMed PMC
Villalba A, Reece KS, Ordás MC, Casas SM, Figueras A. Perkinsosis in molluscs: A review. Aquat Living Resour. 2004;17:411–432.
Stern RF, et al. Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker. PLoS One. 2012;7(8):e42780. PubMed PMC
Galluzzi L, et al. Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a Dinoflagellate) Appl Environ Microbiol. 2004;70(2):1199–1206. PubMed PMC
McCutchan TF, et al. Primary sequences of two small subunit ribosomal RNA genes from Plasmodium falciparum. Mol Biochem Parasitol. 1988;28(1):63–68. PubMed
Nishimoto Y, et al. Evolution and phylogeny of the heterogeneous cytosolic SSU rRNA genes in the genus Plasmodium. Mol Phylogenet Evol. 2008;47(1):45–53. PubMed
Jones MEB, Armién AG, Rothermel BB, Pessier AP. Granulomatous myositis associated with a novel alveolate pathogen in an adult southern leopard frog (Lithobates sphenocephalus) Dis Aquat Organ. 2012;102(2):163–167. PubMed
Cook JO. 2008. Transmission and Occurence of Dermomycoides sp. in Rana sevosa and Other Ranids in the North Central Gulf of Mexico States. Master's thesis (University of Southern Mississippi)
Palumbi SR, et al. 1991. The Simple Fool’s Guide to PCR: A Collection of PCR Protocols (University of Hawaii, Honolulu), Version 2.
Vences M, Thomas M, van der Meijden A, Chiari Y, Vieites DR. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool. 2005;2(1):5. PubMed PMC
Gahl MK. 2007. Spatial and temporal patterns of amphibian disease in Acadia National Park wetlands. PhD dissertation (The University of Maine, Orono, Maine)
Landsberg JH, et al. Co-infection by alveolate parasites and frog virus 3-like ranavirus during an amphibian larval mortality event in Florida, USA. Dis Aquat Organ. 2013;105(2):89–99. PubMed
Rollins-Smith LA. Metamorphosis and the amphibian immune system. Immunol Rev. 1998;166(1):221–230. PubMed
Casas SM, La Peyre JF, Reece KS, Azevedo C, Villalba A. Continuous in vitro culture of the carpet shell clam Tapes decussatus protozoan parasite Perkinsus atlanticus. Dis Aquat Organ. 2002;52(3):217–231. PubMed
Chu FLE, La Peyre JF. Perkinsus marinus susceptibility and defense-related activities in Eastern oysters Crassostrea virginica: Temperature effects. Dis Aquat Organ. 1993;16:223–234.
Cook T, Folli M, Klinck J, Ford S, Miller J. The relationship between increasing sea surface temperature and the northward spread of Perkinsus marinus (Dermo) disease epizootics in oysters. Estuar Coast Shelf Sci. 1998;40:587–597.
Andrews JD. Epizootiology of the disease caused by the oyster pathogen Perkinsus marinus and its effects on the oyster industry. Am Fish Soc Spec Publ. 1988;18:47–63.
Garcés E, Alacid E, Bravo I, Fraga S, Figueroa RI. Parvilucifera sinerae (Alveolata, Myzozoa) is a generalist parasitoid of dinoflagellates. Protist. 2013;164(2):245–260. PubMed
Young BE, et al. Population declines and priorities for amphibian conservation in Latin America. Conserv Biol. 2001;15:1213–1223.
Buckley J, Beebee TJC, Schmidt BR. Monitoring amphibian declines: Population trends of an endangered species over 20 years in Britain. Anim Conserv. 2014;17:27–34.
Duffus AL. Chytrid blinders: What other disease risks to amphibians are we missing? EcoHealth. 2009;6(3):335–339. PubMed
Ludwig W, et al. ARB: A software environment for sequence data. Nucleic Acids Res. 2004;32(4):1363–1371. PubMed PMC
Pruesse E, et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35(21):7188–7196. PubMed PMC
Edgar RC. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113. PubMed PMC
Galtier N, Gouy M, Gautier C. SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci. 1996;12(6):543–548. PubMed
Frost DR, et al. 2006. The Amphibian Tree of Life (American Museum of Natural History, New York), Bulletin No. 297, pp 1–291.
Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McInerney JO. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol. 2006;6:29. PubMed PMC
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572–1574. PubMed
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. PubMed PMC
Lockhart PJ, Steel MA, Hendy MD, Penny D. Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol. 1994;11(4):605–612. PubMed
Krzywinski M, et al. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–1645. PubMed PMC
Letunic I, Bork P. Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23(1):127–128. PubMed
Expanded host and geographic range of tadpole associations with the Severe Perkinsea Infection group
Genetic tool development in marine protists: emerging model organisms for experimental cell biology
Diverse alveolate infections of tadpoles, a new threat to frogs?