Cryptic infection of a broad taxonomic and geographic diversity of tadpoles by Perkinsea protists

. 2015 Aug 25 ; 112 (34) : E4743-51. [epub] 20150810

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26261337

The decline of amphibian populations, particularly frogs, is often cited as an example in support of the claim that Earth is undergoing its sixth mass extinction event. Amphibians seem to be particularly sensitive to emerging diseases (e.g., fungal and viral pathogens), yet the diversity and geographic distribution of infectious agents are only starting to be investigated. Recent work has linked a previously undescribed protist with mass-mortality events in the United States, in which infected frog tadpoles have an abnormally enlarged yellowish liver filled with protist cells of a presumed parasite. Phylogenetic analyses revealed that this infectious agent was affiliated with the Perkinsea: a parasitic group within the alveolates exemplified by Perkinsus sp., a "marine" protist responsible for mass-mortality events in commercial shellfish populations. Using small subunit (SSU) ribosomal DNA (rDNA) sequencing, we developed a targeted PCR protocol for preferentially sampling a clade of the Perkinsea. We tested this protocol on freshwater environmental DNA, revealing a wide diversity of Perkinsea lineages in these environments. Then, we used the same protocol to test for Perkinsea-like lineages in livers of 182 tadpoles from multiple families of frogs. We identified a distinct Perkinsea clade, encompassing a low level of SSU rDNA variation different from the lineage previously associated with tadpole mass-mortality events. Members of this clade were present in 38 tadpoles sampled from 14 distinct genera/phylogroups, from five countries across three continents. These data provide, to our knowledge, the first evidence that Perkinsea-like protists infect tadpoles across a wide taxonomic range of frogs in tropical and temperate environments, including oceanic islands.

Biosciences College of Life and Environmental Sciences University of Exeter Exeter EX4 4QD United Kingdom;

Biosciences College of Life and Environmental Sciences University of Exeter Exeter EX4 4QD United Kingdom; CIFAR Program in Integrated Microbial Biodiversity Canadian Institute for Advanced Research Toronto ON Canada M5G 1Z8

Biosciences College of Life and Environmental Sciences University of Exeter Exeter EX4 4QD United Kingdom; Department of Life Sciences The Natural History Museum London SW7 5BD United Kingdom;

Department of Environmental Sciences University of Basel CH 4056 Basel Switzerland;

Department of Life Sciences The Natural History Museum London SW7 5BD United Kingdom;

Department of Life Sciences The Natural History Museum London SW7 5BD United Kingdom; Genetics Ecology and Evolution University College London London WC1E 6BT United Kingdom;

Department of Life Sciences The Natural History Museum London SW7 5BD United Kingdom; School of Geography University of Leeds Leeds LS2 9JT United Kingdom; School of Biology University of Leeds Leeds LS2 9JT United Kingdom;

Institute of Parasitology Biology Centre Czech Academy of Sciences 370 05 Ceske Budejovice Czech Republic;

Odum School of Ecology The University of Georgia Athens GA 30602;

Warnell School of Forestry and Natural Resources The University of Georgia Athens GA 30602; Southeastern Cooperative Wildlife Disease Study Department of Population Health College of Veterinary Medicine The University of Georgia Athens GA 30602;

Zobrazit více v PubMed

Wake DB, Vredenburg VT. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci USA. 2008;105(Suppl 1):11466–11473. PubMed PMC

Monastersky R. Biodiversity: Life—A status report. Nature. 2014;516(7530):158–161. PubMed

Rohr JR, Raffel TR. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proc Natl Acad Sci USA. 2010;107(18):8269–8274. PubMed PMC

Johnson PTJ, et al. Aquatic eutrophication promotes pathogenic infection in amphibians. Proc Natl Acad Sci USA. 2007;104(40):15781–15786. PubMed PMC

Collins JP, Storfer A. Global amphibian declines: Sorting the hypotheses. Divers Distrib. 2003;9(2):89–98.

Pounds JA, et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature. 2006;439(7073):161–167. PubMed

Crawford AJ, Lips KR, Bermingham E. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proc Natl Acad Sci USA. 2010;107(31):13777–13782. PubMed PMC

Lips KR, et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci USA. 2006;103(9):3165–3170. PubMed PMC

Fisher MC, Garner TW, Walker SF. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol. 2009;63:291–310. PubMed

Daszak P, et al. Emerging infectious diseases and amphibian population declines. Emerg Infect Dis. 1999;5(6):735–748. PubMed PMC

Duffus ALJ, Pauli BD, Wozney K, Brunetti CR, Berrill M. Frog virus 3-like infections in aquatic amphibian communities. J Wildl Dis. 2008;44(1):109–120. PubMed

Davis AK, Yabsley MJ, Keel MK, Maerz JC. Discovery of a novel alveolate pathogen affecting Southern Leopard frogs in Georgia: Description of the disease and host effects. EcoHealth. 2007;4:310–317.

Green DE, Feldman SH, Wimsatt J. Emergence of a Perkinsus-like agent in anuran liver during die-offs of local populations: PCR detection and phylogenetic characterization. Proc Am Assoc Zoo Vet. 2003;2003:120–121.

Azevedo C. Fine structure of Perkinsus atlanticus n. sp. (Apicomplexa, Perkinsea) parasite of the clam Ruditapes decussatus from Portugal. J Parasitol. 1989;75(4):627–635. PubMed

Lester RJG, Davis GHG. A new Perkinsus species (Apicomplexa, Perkinsea) from the abalone, Haliotis ruber. J Invertebr Pathol. 1981;37:181–187.

Bachvaroff TR, et al. Dinoflagellate phylogeny revisited: Using ribosomal proteins to resolve deep branching dinoflagellate clades. Mol Phylogenet Evol. 2014;70(0):314–322. PubMed PMC

Brugerolle G. Apicomplexan parasite Cryptophagus renamed Rastrimonas gen. nov. Eur J Protistol. 2003;39:101.

Brugerolle G. Cryptophagus subtilis: A new parasite of cryptophytes affiliated with the Perkinsozoa lineage. Eur J Protistol. 2002;37:379–390.

Mackin JG. Histopathology of infection of Crassostrea virginica (Gmelin) by Dermocystidium marinum Mackin, Owen and Collier. Bull Mar Sci. 1951;1(1):72–87.

Park MG, Yih W, Coats DW. Parasites and phytoplankton, with special emphasis on dinoflagellate infections. J Eukaryot Microbiol. 2004;51(2):145–155. PubMed

Lefranc M, Thénot A, Lepère C, Debroas D. Genetic diversity of small eukaryotes in lakes differing by their trophic status. Appl Environ Microbiol. 2005;71(10):5935–5942. PubMed PMC

Lepère C, Domaizon I, Debroas D. Unexpected importance of potential parasites in the composition of the freshwater small-eukaryote community. Appl Environ Microbiol. 2008;74(10):2940–2949. PubMed PMC

Mangot JF, Lepère C, Bouvier C, Debroas D, Domaizon I. Community structure and dynamics of small eukaryotes targeted by new oligonucleotide probes: New insight into the lacustrine microbial food web. Appl Environ Microbiol. 2009;75(19):6373–6381. PubMed PMC

Bråte J, et al. Freshwater Perkinsea and marine-freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA. ISME J. 2010;4(9):1144–1153. PubMed

Chambouvet A, et al. Diverse molecular signatures for ribosomally ‘active’ Perkinsea in marine sediments. BMC Microbiol. 2014;14(1):110. PubMed PMC

Fredricks DN, Relman DA. Sequence-based identification of microbial pathogens: A reconsideration of Koch’s postulates. Clin Microbiol Rev. 1996;9(1):18–33. PubMed PMC

Relman DA, Schmidt TM, MacDermott RP, Falkow S. Identification of the uncultured bacillus of Whipple’s disease. N Engl J Med. 1992;327(5):293–301. PubMed

Anderson BE, Dawson JE, Jones DC, Wilson KH. Ehrlichia chaffeensis, a new species associated with human ehrlichiosis. J Clin Microbiol. 1991;29(12):2838–2842. PubMed PMC

Wuyts J, et al. Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA. Nucleic Acids Res. 2000;28(23):4698–4708. PubMed PMC

Richards TA, Vepritskiy AA, Gouliamova DE, Nierzwicki-Bauer SA. The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environ Microbiol. 2005;7(9):1413–1425. PubMed

Lefèvre E, et al. Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: Evidence from a molecular diversity study in a deep meromictic lake. Environ Microbiol. 2007;9(1):61–71. PubMed

Lefèvre E, Roussel B, Amblard C, Sime-Ngando T. The molecular diversity of freshwater picoeukaryotes reveals high occurrence of putative parasitoids in the plankton. PLoS One. 2008;3(6):e2324. PubMed PMC

Villalba A, Reece KS, Ordás MC, Casas SM, Figueras A. Perkinsosis in molluscs: A review. Aquat Living Resour. 2004;17:411–432.

Stern RF, et al. Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker. PLoS One. 2012;7(8):e42780. PubMed PMC

Galluzzi L, et al. Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a Dinoflagellate) Appl Environ Microbiol. 2004;70(2):1199–1206. PubMed PMC

McCutchan TF, et al. Primary sequences of two small subunit ribosomal RNA genes from Plasmodium falciparum. Mol Biochem Parasitol. 1988;28(1):63–68. PubMed

Nishimoto Y, et al. Evolution and phylogeny of the heterogeneous cytosolic SSU rRNA genes in the genus Plasmodium. Mol Phylogenet Evol. 2008;47(1):45–53. PubMed

Jones MEB, Armién AG, Rothermel BB, Pessier AP. Granulomatous myositis associated with a novel alveolate pathogen in an adult southern leopard frog (Lithobates sphenocephalus) Dis Aquat Organ. 2012;102(2):163–167. PubMed

Cook JO. 2008. Transmission and Occurence of Dermomycoides sp. in Rana sevosa and Other Ranids in the North Central Gulf of Mexico States. Master's thesis (University of Southern Mississippi)

Palumbi SR, et al. 1991. The Simple Fool’s Guide to PCR: A Collection of PCR Protocols (University of Hawaii, Honolulu), Version 2.

Vences M, Thomas M, van der Meijden A, Chiari Y, Vieites DR. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool. 2005;2(1):5. PubMed PMC

Gahl MK. 2007. Spatial and temporal patterns of amphibian disease in Acadia National Park wetlands. PhD dissertation (The University of Maine, Orono, Maine)

Landsberg JH, et al. Co-infection by alveolate parasites and frog virus 3-like ranavirus during an amphibian larval mortality event in Florida, USA. Dis Aquat Organ. 2013;105(2):89–99. PubMed

Rollins-Smith LA. Metamorphosis and the amphibian immune system. Immunol Rev. 1998;166(1):221–230. PubMed

Casas SM, La Peyre JF, Reece KS, Azevedo C, Villalba A. Continuous in vitro culture of the carpet shell clam Tapes decussatus protozoan parasite Perkinsus atlanticus. Dis Aquat Organ. 2002;52(3):217–231. PubMed

Chu FLE, La Peyre JF. Perkinsus marinus susceptibility and defense-related activities in Eastern oysters Crassostrea virginica: Temperature effects. Dis Aquat Organ. 1993;16:223–234.

Cook T, Folli M, Klinck J, Ford S, Miller J. The relationship between increasing sea surface temperature and the northward spread of Perkinsus marinus (Dermo) disease epizootics in oysters. Estuar Coast Shelf Sci. 1998;40:587–597.

Andrews JD. Epizootiology of the disease caused by the oyster pathogen Perkinsus marinus and its effects on the oyster industry. Am Fish Soc Spec Publ. 1988;18:47–63.

Garcés E, Alacid E, Bravo I, Fraga S, Figueroa RI. Parvilucifera sinerae (Alveolata, Myzozoa) is a generalist parasitoid of dinoflagellates. Protist. 2013;164(2):245–260. PubMed

Young BE, et al. Population declines and priorities for amphibian conservation in Latin America. Conserv Biol. 2001;15:1213–1223.

Buckley J, Beebee TJC, Schmidt BR. Monitoring amphibian declines: Population trends of an endangered species over 20 years in Britain. Anim Conserv. 2014;17:27–34.

Duffus AL. Chytrid blinders: What other disease risks to amphibians are we missing? EcoHealth. 2009;6(3):335–339. PubMed

Ludwig W, et al. ARB: A software environment for sequence data. Nucleic Acids Res. 2004;32(4):1363–1371. PubMed PMC

Pruesse E, et al. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35(21):7188–7196. PubMed PMC

Edgar RC. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113. PubMed PMC

Galtier N, Gouy M, Gautier C. SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci. 1996;12(6):543–548. PubMed

Frost DR, et al. 2006. The Amphibian Tree of Life (American Museum of Natural History, New York), Bulletin No. 297, pp 1–291.

Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McInerney JO. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol. 2006;6:29. PubMed PMC

Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572–1574. PubMed

Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. PubMed PMC

Lockhart PJ, Steel MA, Hendy MD, Penny D. Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol. 1994;11(4):605–612. PubMed

Krzywinski M, et al. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–1645. PubMed PMC

Letunic I, Bork P. Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23(1):127–128. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace