Diverse alveolate infections of tadpoles, a new threat to frogs?
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
Grantová podpora
T32 OD010423
NIH HHS - United States
PubMed
32053700
PubMed Central
PMC7017987
DOI
10.1371/journal.ppat.1008107
PII: PPATHOGENS-D-19-01207
Knihovny.cz E-zdroje
- MeSH
- Alveolata * patogenita fyziologie MeSH
- infekce MeSH
- larva MeSH
- protozoální infekce zvířat parazitologie MeSH
- žáby parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Biosciences Living Systems Institute University of Exeter Exeter United Kingdom
CNRS Univ Brest IRD Ifremer LEMAR Plouzané France
Department of Life Sciences Natural History Museum London United Kingdom
Department of Zoology University of Oxford Oxford United Kingdom
Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Wake DB, Vredenburg VT. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl. Acad. Sci. USA. 2008;105: 11466–11473. 10.1073/pnas.0801921105 PubMed DOI PMC
Chanson J, Hoffmann M, Cox N, Stuart S. The state of the world’s amphibians Threatened Amphibians of the World. Stuart et al. Barcelona/Gland/Arlington: Lynx Edicions/IUCN/Conservation International; 2008. pp. 33–52.
Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science. 2019;363: 1459–1463. 10.1126/science.aav0379 PubMed DOI
Davis AK, Yabsley MJ, Kevin Keel M, Maerz JC. Discovery of a novel alveolate pathogen affecting southern leopard frogs in Georgia: Description of the disease and host effects. EcoHealth. 2007;4: 310–317.
Jirků M, Jirků M, Oborník M, Lukeš J, Modrý D. Goussia Labbé, 1896 (Apicomplexa, Eimeriorina) in amphibia: Diversity, biology, molecular phylogeny and comments on the status of the genus. Protist. 2009;160: 123–136. 10.1016/j.protis.2008.08.003 PubMed DOI
Chambouvet A, Valigurová A, Pinheiro LM, Richards TA, Jirků M. Nematopsis temporariae (Gregarinasina, Apicomplexa, Alveolata) is an intracellular infectious agent of tadpole livers. Environ. Microbiol. Rep. 2016;8: 675–679. 10.1111/1758-2229.12421 PubMed DOI
Fredericks DN, Relman DA. Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin. Microbiol. Rev. 1996;9: 18–33. PubMed PMC
Gray M, Miller D, Hoverman J. Ecology and pathology of amphibian ranaviruses. Dis. Aquat. Org. 2009;87: 243–266. 10.3354/dao02138 PubMed DOI
Gower DJ, Doherty-Bone T, Loader SP, Wilkinson M, Kouete MT, Tapley B, et al. Batrachochytrium dendrobatidis infection and lethal chytridiomycosis in caecilian amphibians (Gymnophiona). EcoHealth. 2013;10: 173–183. 10.1007/s10393-013-0831-9 PubMed DOI
Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Fisher MC, et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc. Natl. Acad. Sci. USA. 2013;110: 15325–15329. 10.1073/pnas.1307356110 PubMed DOI PMC
O’Hanlon SJ, Rieux A, Farrer RA, Rosa GM, Waldman B, Bataille A, et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science. 2018;360: 621–627. 10.1126/science.aar1965 PubMed DOI PMC
Densmore CL, Green DE. Diseases of amphibians. Ilar J. 2007;48: 235–254. 10.1093/ilar.48.3.235 PubMed DOI
Pasquier LD, Schwager J, Flajnik MF. The immune system of Xenopus. Annu. Rev. Immunol. 1989;7: 251–275. 10.1146/annurev.iy.07.040189.001343 PubMed DOI
Marantelli G, Berger L, Speare R, Keegan L. Distribution of the amphibian chytrid Batrachochytrium dendrobatidis and keratin during tadpole development. Pac. Conserv. Biol. 2004;10: 173.
Mikhailov KV, Janouškovec J, Tikhonenkov DV, Mirzaeva GS, Diakin AYu, Simdyanov TG, et al. A complex distribution of elongation family GTPases EF1A and EFL in basal alveolate lineages. Genome Biol. Evol. 2014;6: 2361–2367. 10.1093/gbe/evu186 PubMed DOI PMC
Isidoro-Ayza M, Lorch JM, Grear DA, Winzeler M, Calhoun DL, Barichivich WJ. Pathogenic lineage of Perkinsea associated with mass mortality of frogs across the United States. Sci. Rep. 2017;7. PubMed PMC
Chambouvet A, Gower DJ, Jirků M, Yabsley MJ, Davis AK, Leonard G, et al. Cryptic infection of a broad taxonomic and geographic diversity of tadpoles by Perkinsea protists. Proc. Natl. Acad. Sci. USA. 2015;112: E4743–E4751. 10.1073/pnas.1500163112 PubMed DOI PMC
Landsberg J, Kiryu Y, Tabuchi M, Waltzek T, Enge K, Reintjes-Tolen S, et al. Co-infection by alveolate parasites and frog virus 3-like ranavirus during an amphibian larval mortality event in Florida, USA. Dis. Aquat. Org. 2013;105: 89–99. 10.3354/dao02625 PubMed DOI
Jirků M, Jirků M, Oborník M, Lukeš J, Modrý D. A model for taxonomic work on homoxenous coccidia: redescription, host specificity, and molecular phylogeny of Eimeria ranae Dobell, 1909, with a Review of anuran-host Eimeria (Apicomplexa: Eimeriorina). J. Eukaryot. Microbiol. 2009;56: 39–51. 10.1111/j.1550-7408.2008.00362.x PubMed DOI
Paperna I, Ogara W, Schein M. Goussia hyperolisi n. sp.: a coccidian infection in reed frog Hyperolis viridiflavus tadpoles which expires towards metamorphosis. Dis. Aquat. Org. 1997;31: 79–88.
Expanded host and geographic range of tadpole associations with the Severe Perkinsea Infection group