Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28677659
PubMed Central
PMC5535920
DOI
10.3390/ijms18071429
PII: ijms18071429
Knihovny.cz E-zdroje
- Klíčová slova
- cultivation, economic survey, extraction, industrial compounds, industrial effluents, microalgae, organic solvents,
- MeSH
- biomasa MeSH
- chemický průmysl MeSH
- energetický metabolismus účinky léků MeSH
- mikrořasy účinky léků růst a vývoj metabolismus MeSH
- organické látky škodlivé účinky MeSH
- průmyslový odpad MeSH
- rozpouštědla škodlivé účinky MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- organické látky MeSH
- průmyslový odpad MeSH
- rozpouštědla MeSH
In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.
Zobrazit více v PubMed
Heimann K., Huerlimann R. Microalgal Classification: Major Classes and Genera of Commercial Microalgal Species. In: Kim S.-K., editor. Handbook of Marine Microalgae. Elsevier Inc.; Amsterdam, The Netherlands: 2015. DOI
O’Neill E.C., Trick M., Henrissat B., Field R.A. Euglena in time: Evolution, controlof central metabolic processes andmulti-domain proteins in carbohydrateand natural product biochemistry. Perspect. Sci. 2015;6:84–93. doi: 10.1016/j.pisc.2015.07.002. DOI
Yamada K., Suzuki H., Takeuchi T., Kazama Y., Mitra S., Abe T., Goda K., Suzuki K., Iwata O. Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting. Sci. Rep. 2016;6:26327. doi: 10.1038/srep26327. PubMed DOI PMC
Lloyd D., Chance B. Electron Transport in Mitochondria Isolated from the Flagellate Polytomella caeca. Biochem. J. 1968;107:829–837. doi: 10.1042/bj1070829. PubMed DOI PMC
Miazek K., Remacle C., Richel A., Goffin D. Effect of Lignocellulose Related Compounds on Microalgae Growth and Product Biosynthesis: A Review. Energies. 2014;7:4446–4481. doi: 10.3390/en7074446. DOI
Chen P., Min M., Chen Y., Wang L., Li Y., Chen Q., Wang C., Wan Y., Wang X., Cheng Y., et al. Review of the biological and engineering aspects of algae to fuels approach. Int. J. Agric. Biol. Eng. 2009;2:2–30. doi: 10.3965/j.issn.1934-6344.2009.04.001-030. DOI
Guedes A.C., Amaro H.M., Malcata F.X. Microalgae as Sources of Carotenoids. Mar. Drugs. 2011;9:625–644. doi: 10.3390/md9040625. PubMed DOI PMC
Christenson L., Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 2011;29:686–702. doi: 10.1016/j.biotechadv.2011.05.015. PubMed DOI
Úbeda B., Gálvez J.Á., Michel M., Bartual A. Microalgae cultivation in urban wastewater: Coelastrum cf. pseudomicroporum as a novel carotenoid source and a potential microalgae harvesting tool. Bioresour. Technol. 2017;228:210–217. doi: 10.1016/j.biortech.2016.12.095. PubMed DOI
Ji M.K., Yun H.S., Hwang B.S., Kabra A.N., Jeon B.H., Choi J. Mixotrophic cultivation of Nephroselmis sp. using industrial wastewater for enhanced microalgal biomass production. Ecol. Eng. 2016;95:527–533. doi: 10.1016/j.ecoleng.2016.06.017. DOI
Gupta S.K., Ansari F.A., Shriwastav A., Sahoo N.K., Rawat I., Bux F. Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J. Clean. Prod. 2016;115:255–264. doi: 10.1016/j.jclepro.2015.12.040. DOI
Edmundson S.J., Wilkie A.C. Landfill leachate—A water and nutrient resource for algae-based biofuels. Environ. Technol. 2013;34:1849–1857. doi: 10.1080/09593330.2013.826256. PubMed DOI
Guo J., Selby K., Boxall A.B.A. Effects of Antibiotics on the Growth and Physiology of Chlorophytes, Cyanobacteria, and a Diatom. Arch. Environ. Contam. Toxicol. 2016 doi: 10.1007/s00244-016-0305-5. PubMed DOI PMC
Ma J., Wang P., Chen J., Sun Y., Che J. Differential Response of Green Algal Species Pseudokirchneriella subcapitata, Scenedesmus quadricauda, Scenedesmus obliquus, Chlorella vulgaris and Chlorella pyrenoidosa to Six Pesticides. Pol. J. Environ. Stud. 2007;16:847–851.
Miazek K., Iwanek W., Remacle C., Richel A., Goffin D. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review. Int. J. Mol. Sci. 2015;16:23929–23969. doi: 10.3390/ijms161023929. PubMed DOI PMC
Chen C.Y., Wang Y.J., Yang C.F. Estimating low-toxic-effect concentrations in closed-system algal toxicity tests. Ecotoxicol. Environ. Saf. 2009;72:1514–1522. doi: 10.1016/j.ecoenv.2009.02.011. PubMed DOI
Pham T.P., Cho C.W., Yun Y.S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 2010;44:352–372. doi: 10.1016/j.watres.2009.09.030. PubMed DOI
Grodowska K., Parczewski A. Organic Solvents in the Pharmaceutical Industry. Acta Poloniae Pharm. Drug Res. 2010;67:3–12. PubMed
Ghandi K. A Review of Ionic Liquids, Their Limits and Applications. Green Sustain. Chem. 2014;4:44–53. doi: 10.4236/gsc.2014.41008. DOI
Plechkova N.V., Seddon K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008;37:123–150. doi: 10.1039/B006677J. PubMed DOI
Orr V.C.A., Rehmann L. Ionic liquids for the fractionation of microalgae biomass. Curr. Opin. Green Sustain. Chem. 2016;2:22–27. doi: 10.1016/j.cogsc.2016.09.006. DOI
Cuellar-Bermudez S.P., Aguilar-Hernandez I., Cardenas-Chavez D.L., Ornelas-Soto N., Romero-Ogawa M.A., Parra-Saldivar R. Extraction and purification of high-value metabolites from microalgae: Essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol. 2014;8:190–209. doi: 10.1111/1751-7915.12167. PubMed DOI PMC
Amde M., Liu J.F., Pang L. Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review. Environ. Sci. Technol. 2015;49:12611–12627. doi: 10.1021/acs.est.5b03123. PubMed DOI
Inderjit A.C., Kakuta H. Phytotoxicity and fate of 1,1,2-trichloroethylene: A laboratory study. J. Chem. Ecol. 2003;29:1329–1335. doi: 10.1023/A:1024205201720. PubMed DOI
Rodriguez-Caballero A., Ramond J.B., Welz P.J., Cowan D.A., Odlare M., Burton S.G. Treatment of high ethanol concentration wastewater by biological sand filters: Enhanced COD removal and bacterial community dynamics. J. Environ. Manag. 2012;109:54–60. doi: 10.1016/j.jenvman.2012.05.005. PubMed DOI
Badshah M., Parawira W., Mattiasson B. Anaerobic treatment of methanol condensate from pulp mill compared with anaerobic treatment of methanol using mesophilic UASB reactors. Bioresour. Technol. 2012;125:318–327. doi: 10.1016/j.biortech.2012.08.109. PubMed DOI
Sibirny V.A., Gonchar M.V., Grabek-Lejko D., Pavlishko H.M., Csoregi E., Sibirny A.A. Photometric assay of methanol and formaldehyde in industrial waste-waters using alcohol oxidase and 3-methyl-2-benzothiazolinone hydrazine. Int. J. Environ. Anal. Chem. 2008;88:289–301. doi: 10.1080/03067310701593615. DOI
Esmaeili A., Loghmani K. Removal of Monoethylene Glycol from Gas Field Wastewater Using Aspergillus tubingensis and a New Bioreactor. Waste Biomass Valor. 2016;7:151–156. doi: 10.1007/s12649-015-9430-z. DOI
Bayat M., Mehrnia M.R., Hosseinzadeh M., Sheikh-Sofla R. Petrochemical wastewater treatment and reuse by MBR: A pilot study for ethylene oxide/ethylene glycol and olefin units. J. Ind. Eng. Chem. 2015;25:265–271. doi: 10.1016/j.jiec.2014.11.003. DOI
Tobiszewski M., Tsakovski S., Simeonov V., Namiesnik J. Chlorinated solvents in a petrochemical wastewater treatment plant: An assessment of their removal using self-organising maps. Chemosphere. 2012;87:962–968. doi: 10.1016/j.chemosphere.2012.01.057. PubMed DOI
Enright A.M., McHugh S., Collins G., O’Flaherty V. Low-temperature anaerobic biological treatment of solvent containing pharmaceutical wastewater. Water Res. 2005;39:4587–4596. doi: 10.1016/j.watres.2005.08.037. PubMed DOI
Svojitka J., Dvorak L., Studer M., Straub J.O., Fromelt H., Wintgens T. Performance of an anaerobic membrane bioreactor for pharmaceutical wastewater treatment. Bioresour. Technol. 2017;229:180–189. doi: 10.1016/j.biortech.2017.01.022. PubMed DOI
Huang C., Yang X.Y., Xiong L., Guo H.J., Luo J., Wang B., Zhang H.R., Lin X.Q., Chen X.D. Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett. Appl. Microbiol. 2015;60:491–496. doi: 10.1111/lam.12396. PubMed DOI
Stepnowski P., Blotevogel K.H., Ganczarek P., Fischer U., Jastorff B. Total recycling of chromatographic solvents—Applied management of methanol and acetonitrile waste. Resour. Conserv. Recycl. 2002;35:163–175. doi: 10.1016/S0921-3449(01)00119-7. DOI
Neves C.M.S.S., Freire M.G., Coutinho J.A.P. Improved recovery of ionic liquids from contaminated aqueous streams using aluminium-based salts. RSC Adv. 2012;2:10882–10890. doi: 10.1039/c2ra21535g. DOI
Markiewicz M., Piszora M., Caicedo N., Jungnickel C., Stolte S. Toxicity of ionic liquid cations and anions towards activated sewage sludge organisms from different sources—Consequences for biodegradation testing and wastewater treatment plant operation. Water Res. 2013;47:2921–2928. doi: 10.1016/j.watres.2013.02.055. PubMed DOI
Gendaszewska D., Liwarska-Bizukojc E., Maton C., Stevens C.V. Influence of newly synthesized imidazolium ionic liquids on activated sludge process. Arch. Environ. Prot. 2015;41:40–48. doi: 10.1515/aep-2015-0038. DOI
Kilroy A.C., Gray N.F. The toxicity of four organic solvents commonly used in the pharmaceutical industry to activated sludge. Water Res. 1992;26:887–892. doi: 10.1016/0043-1354(92)90193-8. DOI
Cooper G.M. Transport of Small Molecules. Chapter 12. The Cell Surface. The Cell: A Molecular Approach. 2nd ed. Sinauer Associates; Sunderland, MA, USA: 2000.
Kotzabasis K., Hatziathanasiou A., Bengoa-Ruigomez M.V., Kentouri M., Divanach P. Methanol as alternative carbon source for quicker efficient production of the microalgae Chlorella minutissima: Role of the concentration and frequence of administration. J. Biotechnol. 1999;70:357–362. doi: 10.1016/S0168-1656(99)00088-7. DOI
Choi W.Y., Oh S.H., Seo Y.C., Kim G.B., Kang D.H., Lee S.Y., Jung K.H., Cho J.S., Ahn J.H., Choi G.P., et al. Effects of methanol on cell growth and lipid production from mixotrophic cultivation of Chlorella sp. Biotechnol. Bioprocess Eng. 2011;16:946–955. doi: 10.1007/s12257-010-0394-3. DOI
Stepanov S.S., Zolotareva E.K. Methanol-induced stimulation of growth, intracellular amino acids, and protein content in Chlamydomonas reinhardtii. J. Appl. Phycol. 2015;27:1509–1516. doi: 10.1007/s10811-014-0445-9. DOI
Hunt R.W., Chinnasamy S., Bhatnagar A., Das K.C. Effect of Biochemical Stimulants on Biomass Productivity and Metabolite Content of the Microalga, Chlorella sorokiniana. Appl. Biochem. Biotechnol. 2010;162:2400–2414. doi: 10.1007/s12010-010-9012-2. PubMed DOI
Navakoudis E., Ioannidis N.E., Dörnemann D., Kotzabasis K. Changes in the LHCII-mediated energy utilization and dissipation adjust the methanol-induced biomass increase. Biochim. Biophys. Acta. 2007;1767:948–955. doi: 10.1016/j.bbabio.2007.05.003. PubMed DOI
Nonomura A.M., Benson A.A. The path of carbon in photosynthesis: Improved crop yields with methanol. Proc. Natl. Acad. Sci. USA. 1992;89:9794–9798. doi: 10.1073/pnas.89.20.9794. PubMed DOI PMC
El Jay A. Toxic Effects of Organic Solvents on the Growth of Chlorella vulgaris and Selenastrum capricornutum. Bull. Environ. Contam. Toxicol. 1996;57:191–198. doi: 10.1007/s001289900174. PubMed DOI
Costa S.P.F., Pinto P.C.A.G., Saraiva M.L.M.F.S., Rocha F.R.P., Santos J.R.P., Monteiro R.T.R. The aquatic impact of ionic liquids on freshwater organisms. Chemosphere. 2015;139:288–294. doi: 10.1016/j.chemosphere.2015.05.100. PubMed DOI
Ma J., Chen J. How to accurately assay the algal toxicity of pesticides with low water solubility. Environ. Pollut. 2005;136:267–273. doi: 10.1016/j.envpol.2005.01.005. PubMed DOI
Okumura Y., Koyama J., Takaku H., Satoh H. Influence of Organic Solvents on the Growth of Marine Microalgae. Arch. Environ. Contam. Toxicol. 2001;41:123–128. doi: 10.1007/s002440010229. PubMed DOI
Yoval-Sánchez B., Jasso-Chávez R., Lira-Silva E., Moreno-Sánchez R., Rodríguez-Zavala J.S. Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis. J. Bioenerg. Biomembr. 2011;43:519–530. doi: 10.1007/s10863-011-9373-4. PubMed DOI
Ono K., Kawanaka Y., Izumi Y., Inui H., Miyatake K., Kitaoka S., Nakano Y. Mitochondrial Alcohol Dehydrogenase from Ethanol-Grown Euglena gracilis. J. Biochem. 1995;117:1178–1182. doi: 10.1093/oxfordjournals.jbchem.a124841. PubMed DOI
Fujita T., Aoyagi H., Ogbonna J.C., Tanaka H. Effect of mixed organic substrate on α-tocopherol production by Euglena gracilis in photoheterotrophic culture. Appl. Microbiol. Biotechnol. 2008;79:371–378. doi: 10.1007/s00253-008-1443-0. PubMed DOI
Mokrosnop V.M., Polishchuk A.V., Zolotareva E.K. Accumulation of α-tocopherol and β-carotene in Euglena gracilis Cells under Autotrophic and Mixotrophic Culture Conditions. Appl. Biochem. Microbiol. 2016;52:216–221. doi: 10.1134/S0003683816020101. PubMed DOI
Afiukwa C.A., Ogbonna J.C. Effects of mixed substrates on growth and vitamin production by Euglena gracilis. Afr. J. Biotechnol. 2007;6:2612–2615.
Bezerra R.P., Matsudo M.C., Pérez-Mora L.S., Sato S., Carvalho J.C.M. Ethanol effect on batch and fed-batch Arthrospira platensis growth. J. Ind. Microbiol. Biotechnol. 2014;41:687–692. doi: 10.1007/s10295-014-1404-9. PubMed DOI
Matsudo M.C., Sousa T.F., Pérez-Mora L.S., Bezerra R.P., Sato S., Carvalho J.C.M. Ethanol as complementary carbon source in Scenedesmus obliquus cultivation. J. Chem. Technol. Biotechnol. 2016 doi: 10.1002/jctb.5059. DOI
Samkhaniyani F., Najafpour G.D., Ardestani F. Evaluation of effective nutritional parameters for Scenedesmus sp. microalgae culturing in a photobioreactor for biodiesel production. Int. J. Environ. Sci. Technol. 2017 doi: 10.1007/s13762-016-1212-z. DOI
Wu C., Wang W., Yue L., Yang Z., Fu Q., Ye Q. Enhancement effect of ethanol on lipid and fatty acid accumulation and composition of Scenedesmus sp. Bioresour. Technol. 2013;140:120–125. doi: 10.1016/j.biortech.2013.04.079. PubMed DOI
Fang X., Wei C., Zhao-Ling C., Fan O. Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J. Appl. Phycol. 2004;16:499–503. doi: 10.1007/s10811-004-5520-1. DOI
Wang Y., Chen T., Qin S. Differential fatty acid profiles of Chlorella kessleri grown with organic materials. J. Chem. Technol. Biotechnol. 2013;88:651–657. doi: 10.1002/jctb.3881. DOI
Tadros M.G., Philips J., Patel H., Pandiripally V. Differential Response of Green Algal Species to Solvents. Bull. Environ. Contam. Toxicol. 1994;52:333–337. doi: 10.1007/BF00197817. PubMed DOI
Tadros M.G., Philips J., Patel H., Pandiripally V. Differential Response of Marine Diatoms to Solvents. Bull. Environ. Contam. Toxicol. 1995;54:924–929. doi: 10.1007/BF00197980. PubMed DOI
Wardas M., Wardas W., Mazurek U., Lechotycka E. The effect of some organic solvents on the growth of Chlorella algae, strain 366. Oceanologia. 1983;17:21–28.
Monfils A.K., Triemer R.E., Bellairs E.F. Characterization of paramylon morphological diversity in photosynthetic euglenoids (Euglenales, Euglenophyta) Phycologia. 2011;50:156–169. doi: 10.2216/09-112.1. DOI
Rodrıguez-Zavala J.S., Ortiz-Cruz M.A., Mendoza-Hernandez G., Moreno-Sanchez R. Increased synthesis of a-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J. Appl. Microbiol. 2010;109:2160–2172. doi: 10.1111/j.1365-2672.2010.04848.x. PubMed DOI
De Swaaf M.E., Pronk J.T., Sijtsma L. Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl. Microbiol. Biotechnol. 2003;61:40–43. doi: 10.1007/s00253-002-1118-1. PubMed DOI
Atteia A., van Lis R., Ramirez J., Gonzalez-Halphen D. Polytomella spp. growth on ethanol. Extracellular pH affects the accumulation of mitochondrial cytochrome c550. Eur. J. Biochem. 2000;267:2850–2858. doi: 10.1046/j.1432-1327.2000.01288.x. PubMed DOI
Andemichael H., Lee J.W. Toxicological study of biofuel ethanol with blue green alga Spirulina platensis. Algal Res. 2016;18:110–115. doi: 10.1016/j.algal.2016.05.032. DOI
Qiao J., Wang J., Chen L., Tian X., Huang S., Ren X., Zhang W. Quantitative iTRAQ LC-MS/MS Proteomics Reveals Metabolic Responses to Biofuel Ethanol in Cyanobacterial Synechocystis sp. PCC 6803. J. Proteome Res. 2012;11:5286–5300. doi: 10.1021/pr300504w. PubMed DOI
Bosma R., Miazek K., Willemsen S.M., Vermue M.H., Wijffels R.H. Growth Inhibition of Monodus subterraneus by Free Fatty Acids. Biotechnol. Bioeng. 2008;101:1108–1114. doi: 10.1002/bit.21963. PubMed DOI
Kämäräinen J., Knoop H., Stanford N.J., Guerrero F., Akhtar M.K., Aro E.M., Steuer R., Jones P.R. Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production. J. Biotechnol. 2012;162:67–74. doi: 10.1016/j.jbiotec.2012.07.193. PubMed DOI
Leon R., Garbayo I., Hernandez R., Vigara J., Vilchez C. Organic solvent toxicity in photoautotrophic unicellular microorganisms. Enzyme Microb. Technol. 2001;29:173–180. doi: 10.1016/S0141-0229(01)00370-2. DOI
Cho C.W., Pham T.P.T., Kim S., Kim Y.R., Jeon Y.C., Yun Y.S. Toxicity assessment of common organic solvents using a biosensor based on algal photosynthetic activity measurement. J. Appl. Phycol. 2009;21:683–689. doi: 10.1007/s10811-009-9401-5. DOI
Tsai K.P., Chen C.Y. An algal toxicity database of organic toxicants derived by a closed-system technique. Environ. Toxicol. Chem. 2007;26:1931–1939. doi: 10.1897/06-612R.1. PubMed DOI
Aruoja V., Moosus M., Kahru A., Sihtmae M., Maran U. Measurement of baseline toxicity and QSAR analysis of 50 non-polar and 58 polar narcotic chemicals for the alga Pseudokirchneriella subcapitata. Chemosphere. 2014;96:23–32. doi: 10.1016/j.chemosphere.2013.06.088. PubMed DOI
Kohler A., Hellweg S., Escher B., Hungerbuhler K. Organic pollutant removal versus toxicity reduction in industrial wastewater treatment: The example of wastewater from fluorescent whitening agent production. Environ. Sci. Technol. 2006;40:3395–3401. doi: 10.1021/es060555f. PubMed DOI
Hu L.X., Tian F., Martin F.L., Ying G.G. Biochemical alterations in duckweed and algae induced by carrier solvents: Selection of an appropriate solvent in toxicity testing. Environ. Toxicol. Chem. 2017 doi: 10.1002/etc.3804. PubMed DOI
Cho C.W., Jeon Y.C., Pham T.P.T., Vijayaraghavan K., Yun Y.S. The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicol. Environ. Saf. 2008;71:166–171. doi: 10.1016/j.ecoenv.2007.07.001. PubMed DOI
Hughes J.S., Vilkas A.G. Toxicity of N,N-Dimethylformamide Used as a Solvent in Toxicity Tests with the Green Alga, Selenastrum capricornutum. Bull. Environ. Contam. Toxicol. 1983;31:98–104. doi: 10.1007/BF01608773. PubMed DOI
Stratton G.W. Toxic Effects of Organic Solvents on the Growth of Blue-Green Algae. Bull. Environ. Contain. Toxicol. 1987;38:1012–1019. doi: 10.1007/BF01609089. PubMed DOI
McEvoy E., Wright P.C., Bustard M.T. The effect of high concentration isopropanol on the growth of a solvent-tolerant strain of Chlorella vulgaris. Enzyme Microb. Technol. 2004;35:140–146. doi: 10.1016/j.enzmictec.2004.01.012. DOI
Wise D.L. Carbon Nutrition and Metabolism of Polytomella caeca. J. Protozool. 1959;6:19–23. doi: 10.1111/j.1550-7408.1959.tb03921.x. DOI
Pillard D.A., DuFresne D.L. Toxicity of Formulated Glycol Deicers and Ethylene and Propylene Glycol to Lactuca sativa, Lolium perenne, Selenastrum capricornutum, and Lemna minor. Arch. Environ. Contam. Toxicol. 1999;37:29–35. doi: 10.1007/s002449900486. PubMed DOI
Devillers J., Chezeau A., Thybaud E., Poulsen V., Porcher J.M., Graff L., Vasseur P., Mouchet F., Ferrier V., Quiniou F. Ecotoxicity of ethylene glycol monobutyl ether and its acetate. Toxicol. Mech. Methods. 2002;12:255–263. doi: 10.1080/15376520208951162. PubMed DOI
Kishi M., Kawai M., Toda T. Heterotrophic utilization of ethylene glycol and propylene glycol by Chlorella protothecoides. Algal Res. 2015;11:428–434. doi: 10.1016/j.algal.2015.04.020. DOI
Canadian Council of Ministers of the Environment Canadian water quality guidelines for the protection of aquatic life: 1,4-Dioxane. Adapted from Bringmann G and Kuhn R. Limiting values of the harmful action of water endangering substances on bacteria (Pseudomonas putida) and green algae (Scenedesmus quadricauda) in the cell multiplication inhibition test. Z. Wasser Abwasser Forsch. 1977b;10:87–98.
Hook I.L., Ryan S., Sheridan H. Biotransformation of aliphatic and aromatic ketones, including several monoterpenoid ketones and their derivatives by five species of marine microalgae. Phytochemistry. 2003;63:31–36. doi: 10.1016/S0031-9422(02)00699-4. PubMed DOI
Wu S., Zhang H., Yu X., Qiu L. Toxicological Responses of Chlorella vulgaris to Dichloromethane and Dichloroethane. Environ. Eng. Sci. 2014;31:9–17. doi: 10.1089/ees.2013.0038. PubMed DOI PMC
Ando T., Otsuka S., Nishiyama M., Senoo K., Watanabe M.M., Matsumoto S. Toxic Effects of Dichloromethane and Trichloroethylene on the Growth of Planktonic Green Algae, Chlorella vulgaris NIES227, Selenastrum capricornutum NIES35, and Volvulina steinii NIES545. Microbes Environ. 2003;18:43–46. doi: 10.1264/jsme2.18.43. DOI
Brack W., Rottler H. Toxicity Testing of Highly Volatile—A New Assay Chemicals with Green Algae. Environ. Sci. Pollut. Res. 1994;4:223–228. doi: 10.1007/BF02986534. PubMed DOI
Bacsi I., Torok T., B-Beres V., Torok P., Tothmeresz B., Nagy A.S., Vasas G. Laboratory and microcosm experiments testing the toxicity of chlorinated hydrocarbons on a cyanobacterium strain (Synechococcus PCC 6301) and on natural phytoplankton assemblages. Hydrobiologia. 2013;710:189–203. doi: 10.1007/s10750-012-1364-x. DOI
Lukavsky J., Furnadzhieva S., Dittrt F. Toxicity of Trichloroethylene (TCE) on Some Algae and Cyanobacteria. Bull. Environ. Contam. Toxicol. 2011;86:226–231. doi: 10.1007/s00128-011-0195-1. PubMed DOI
Zhang S., Lin D., Wu F. The effect of natural organic matter on bioaccumulation and toxicity of chlorobenzenes to green algae. J. Hazard. Mater. 2016;311:186–193. doi: 10.1016/j.jhazmat.2016.03.017. PubMed DOI
Sicko-Goad L., Lazinsky D., Hall J., Simmons M.S. Effects of Chlorinated Benzenes on Diatom Fatty Acid Composition and Quantitative Morphology. I. 1,2,4-Trichlorobenzene. Arch. Environ. Contam. Toxicol. 1989;18:629–637. doi: 10.1007/BF01225001. PubMed DOI
Sicko-Goad L., Andresen N.A. Effect of Lipid Composition on the Toxicity of Trichlorobenzene Isomers to Diatoms. I. Short-Term Effects of 1,3,5-Trichlorobenzene. Arch. Environ. Contam. Toxicol. 1993;24:236–242. doi: 10.1007/BF01141353. DOI
Dunstan W.M., Atkinson L.P., Natoli J. Stimulation and Inhibition of Phytoplankton Growth by Low Molecular Weight Hydrocarbons. Mar. Biol. 1975;31:305–310. doi: 10.1007/BF00392087. DOI
Agrawal Manisha S.C. Growth, Survival and Reproduction in Chlorella vulgaris and C. variegata with Respect to Culture Age and under Different Chemical Factors. Folia Microbiol. 2007;52:399–406. doi: 10.1007/BF02932095. PubMed DOI
Gupta S., Agrawal S.C. Survival of diatoms Synedra, Gomphonema and Fragilaria species in nature and in presence of different chemical and physical stress factors. J. Algal Biomass Utlin. 2011;2:52–76.
Ceballos-Laita L., Calvo L., Bes M.T., Fillat M.F., Peleato M.L. Effects of benzene and several pharmaceuticals on the growth and microcystin production in Microcystis aeruginosa PCC 7806. Limnetica. 2015;34:237–246.
Masten L.W., Boeri R.L., Walker J.D. Strategies employed to determine the acute aquatic toxicity of ethyl benzene, a highly volatile, poorly water-soluble chemical. Ecotoxicol. Environ. Saf. 1994;27:335–348. doi: 10.1006/eesa.1994.1027. PubMed DOI
Herman D.C., Inniss W.E., Mayfield C.I. Toxicity Testing of Aromatic Hydrocarbons Utilizing a Measure of Their Impact on the Membrane Integrity of the Green Alga Selenastrum capricornutum. Bull. Environ. Contam. Toxicol. 1991;47:874–881. doi: 10.1007/BF01689518. PubMed DOI
Liu Z., Cui F., Ma H., Fan Z., Zhao Z., Hou Z., Liu D., Jia X. The interaction between nitrobenzene and Microcystis aeruginosa and its potential to impact water quality. Chemosphere. 2013;92:1201–1206. doi: 10.1016/j.chemosphere.2013.03.064. PubMed DOI
Liu Z., Cui F., Ma H., Fan Z., Zhao Z. The role of nitrobenzene on the yield of trihalomethane formation potential in aqueous solutions with Microcystis aeruginosa. Water Res. 2011;45:6489–6495. doi: 10.1016/j.watres.2011.09.043. PubMed DOI
Christensen E.R., Kusk K.O., Nyholm N. Dose-response regressions for algal growth and similar continuous endpoints: Calculation of effective concentrations. Environ. Toxicol. Chem. 2009;28:826–835. doi: 10.1897/08-068R.1. PubMed DOI
Singh B.B., Chandra R. Comparative Chronic Toxicity of Pyridine, α-Picoline, and β-Picoline to Lemna minor L. and Chlorella vulgaris B. Bull. Environ. Contam. Toxicol. 2005;75:482–489. doi: 10.1007/s00128-005-0778-9. PubMed DOI
Semple K.T., Cain R.B., Schmidt S. Biodegradation of aromatic compounds by microalgae. FEMS Microbiol. Lett. 1999;170:291–300. doi: 10.1111/j.1574-6968.1999.tb13386.x. DOI
Semple K.T. Biodegradation of phenols by a eukaryotic alga. Res. Microbial. 1997;148:365–367. doi: 10.1016/S0923-2508(97)81592-6. PubMed DOI
Papazi A., Assimakopoulos K., Kotzabasis K. Bioenergetic Strategy for the Biodegradation of p-Cresol by the Unicellular Green Alga Scenedesmus obliquus. PLoS ONE. 2012;12:e51852. doi: 10.1371/journal.pone.0051852. PubMed DOI PMC
Papazi A., Kotzabasis K. Inductive and resonance effects of substituents adjust the microalgal biodegradation of toxical phenolic compounds. J. Biotechnol. 2008;135:366–373. doi: 10.1016/j.jbiotec.2008.05.009. PubMed DOI
Pham T.P.T., Cho C.W., Min J., Yun Y.S. Alkyl-Chain Length Effects of Imidazolium and Pyridinium Ionic Liquids on Photosynthetic Response of Pseudokirchneriella subcapitata. J. Biosci. Bioeng. 2008;105:425–428. doi: 10.1263/jbb.105.425. PubMed DOI
Pham T.P.T., Cho C.W., Yun Y.S. Structural effects of ionic liquids on microalgal growth inhibition and microbial degradation. Environ. Sci. Pollut. Res. 2016;23:4294–4300. doi: 10.1007/s11356-015-5287-8. PubMed DOI
Pretti C., Chiappe C., Baldetti I., Brunini S., Monni G., Intorre L. Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol. Environ. Saf. 2009;72:1170–1176. doi: 10.1016/j.ecoenv.2008.09.010. PubMed DOI
Tsarpali V., Harbi K., Dailianis S. Physiological response of the green microalgae Dunaliella tertiolecta against imidazolium ionic liquids [bmim][BF4] and/or [omim][BF4]: The role of salinity on the observed effects. J. Appl. Phycol. 2016;28:979–990. doi: 10.1007/s10811-015-0613-6. DOI
Tsarpali V., Dailianis S. Toxicity of two imidazolium ionic liquids, [bmim][BF4] and [omim][BF4], to standard aquatic test organisms: Role of acetone in the induced toxicity. Ecotoxicol. Environ. Saf. 2015;117:62–71. doi: 10.1016/j.ecoenv.2015.03.026. PubMed DOI
Ma J.M., Cai L.L., Zhang B.J., Hu L.W., Li X.Y., Wang J.J. Acute toxicity and effects of 1-alkyl-3-methylimidazolium bromide ionic liquids on green algae. Ecotoxicol. Environ. Saf. 2010;73:1465–1469. doi: 10.1016/j.ecoenv.2009.10.004. PubMed DOI
Wells A.S., Coombe V.T. On the Freshwater Ecotoxicity and Biodegradation Properties of Some Common Ionic Liquids. Org. Process Res. Dev. 2006;10:794–798. doi: 10.1021/op060048i. DOI
Ventura S.P.M., Gurbisz M., Ghavre M., Ferreira F.M.M., Gonçalves F., Beadham I., Quilty B., Coutinho J.A.P., Gathergood N. Imidazolium and Pyridinium Ionic Liquids from Mandelic Acid Derivatives: Synthesis and Bacteria and Algae Toxicity Evaluation. ACS Sustain. Chem. Eng. 2013;1:393–402. doi: 10.1021/sc3001299. DOI
Santos J.I., Goncalves A.M.M., Pereira J.L., Figueiredo B.F.H.T., Silva F.A., Coutinho J.A.P., Ventura S.P.M., Goncalves F. Environmental safety of cholinium-based ionic liquids: Assessing structure-ecotoxicity relationships. Green Chem. 2015;17:4657–4668. doi: 10.1039/C5GC01129A. DOI
Cho C.W., Pham T.P.T., Jeon Y.C., Yun Y.S. Influence of anions on the toxic effects of ionic liquids to a phytoplankton Selenastrum capricornutum. Green Chem. 2008;10:67–72. doi: 10.1039/B705520J. DOI
Stolte S., Matzke M., Arning J., Boschen A., Pitner W.R., Welz-Biermann U., Jastorff B., Ranke J. Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem. 2007;9:1170–1179. doi: 10.1039/b711119c. DOI
Stolte S., Schulz T., Cho C.W., Arning J., Strassner T. Synthesis, Toxicity, and Biodegradation of Tunable Aryl Alkyl Ionic Liquids (TAAILs) ACS Sustain. Chem. Eng. 2013;1:410–418. doi: 10.1021/sc300146t. DOI
Samori C., Campisi T., Fagnoni M., Galletti P., Pasteris A., Pezzolesi L., Protti S., Ravelli D., Tagliavini E. Pyrrolidinium-based Ionic Liquids: Aquatic Ecotoxicity, Biodegradability, and Algal Subinhibitory Stimulation. ACS Sustain. Chem. Eng. 2015;3:1860–1865. doi: 10.1021/acssuschemeng.5b00458. DOI
Chen H., Zou Y., Zhang L., Wen Y., Liu W. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methylimidazolium lactate to aquatic algae. Aquat. Toxicol. 2014;154:114–120. doi: 10.1016/j.aquatox.2014.05.010. PubMed DOI
Liu H., Zhang X., Dong Y., Chen C., Zhu S., Ma X. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methylimidazolium tartrate on Scenedesmus obliquus. Aquat. Toxicol. 2015;169:179–187. doi: 10.1016/j.aquatox.2015.10.024. PubMed DOI
Liu H., Zhang X., Chen C., Du S., Dong Y. Effects of imidazolium chloride ionic liquids and their toxicity to Scenedesmus obliquus. Ecotoxicol. Environ. Saf. 2015;122:83–90. doi: 10.1016/j.ecoenv.2015.07.010. PubMed DOI
Kulacki K.J., Lamberti G.A. Toxicity of imidazolium ionic liquids to freshwater algae. Green Chem. 2008;10:104–110. doi: 10.1039/B709289J. DOI
Latała A., Nedzia M., Stepnowski P. Toxicity of imidazolium ionic liquids towards algae. Influence of salinity variations. Green Chem. 2010;12:60–64. doi: 10.1039/B918355H. DOI
Samori C., Sciutto G., Pezzolesi L., Galletti P., Guerrini F., Mazzeo R., Pistocchi R., Prati S., Tagliavini E. Effects of Imidazolium Ionic Liquids on Growth, Photosynthetic Efficiency, and Cellular Components of the Diatoms Skeletonema marinoi and Phaeodactylum tricornutum. Chem. Res. Toxicol. 2011;24:392–401. doi: 10.1021/tx100343p. PubMed DOI
Yoo B., Jing B., Jones S.E., Lamberti G.A., Zhu Y., Shah J.K., Maginn E.J. Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach. Sci. Rep. 2016;6:19889. doi: 10.1038/srep19889. PubMed DOI PMC
Deng X.Y., Gao K., Pei F., Wang C.H., Cao K.W. Effects of a functionalized ionic liquid on the growth and antioxidant enzymes of Synechococcus sp. PCC7942. Afr. J. Microbiol. Res. 2013;29:3824–3830.
Deng X.Y., Cheng J., Hu X.L., Gao K., Wang C.H. Physiological and biochemical responses of a marine diatom Phaeodactylum tricornutum exposed to 1-octyl-3-methylimidazolium bromide. Aquat. Biol. 2015;24:109–115. doi: 10.3354/ab00643. DOI
Deng X.Y., Hu X.L., Cheng J., Ma Z.X., Gao K. Growth inhibition and oxidative stress induced by 1-octyl-3-methylimidazolium bromide on the marine diatom Skeletonema costatum. Ecotoxicol. Environ. Saf. 2016;132:170–177. doi: 10.1016/j.ecoenv.2016.06.009. PubMed DOI
Deng Y., Beadham I., Wu J., Chen X.D., Hu L., Gu J. Chronic effects of the ionic liquid [C4mim][Cl] towards the microalga Scenedesmus quadricauda. Environ. Pollut. 2015;204:248–255. doi: 10.1016/j.envpol.2015.05.011. PubMed DOI
Yang F., Xiang W., Sun X., Wu H., Li T., Long L. A Novel Lipid Extraction Method from Wet Microalga Picochlorum sp. at Room Temperature. Mar. Drugs. 2014;12:1258–1270. doi: 10.3390/md12031258. PubMed DOI PMC
Hejazi M.A., Kleinegris D., Wijffels R.H. Mechanism of extraction of beta-carotene from microalga Dunaliellea salina in two-phase bioreactors. Biotechnol. Bioeng. 2004;88:593–600. doi: 10.1002/bit.20238. PubMed DOI
Ramachandra T.V., Mahapatra D.M., Karthick B. Milking Diatoms for Sustainable Energy: Biochemical Engineering versus Gasoline-Secreting Diatom Solar Panels. Ind. Eng. Chem. Res. 2009;48:8769–8788. doi: 10.1021/ie900044j. DOI
Vinayak V., Manoylov K.M., Gateau H., Blanckaert V., Hérault J., Pencréac’h G., Marchand J., Gordon R., Schoefs B. Diatom Milking: A Review and New Approaches. Mar. Drugs. 2015;13:2629–2665. doi: 10.3390/md13052629. PubMed DOI PMC
Mojaat M., Foucault A., Pruvost J., Legrand J. Optimal selection of organic solvents for biocompatible extraction of B-carotene from Dunaliella salina. J. Biotechnol. 2008;133:433–441. doi: 10.1016/j.jbiotec.2007.11.003. PubMed DOI
Zhang F., Cheng L.H., Xu X.H., Zhang L., Chen H.L. Screening of biocompatible organic solvents for enhancement of lipid milking from Nannochloropsis sp. Process Biochem. 2011;46:1934–1941. doi: 10.1016/j.procbio.2011.06.024. DOI
Nezammahalleh H., Nosrati M., Ghanati F., Shojaosadati S.A. Exergy-based screening of biocompatible solvents for in situ lipid extraction from Chlorella vulgaris. J. Appl. Phycol. 2017 doi: 10.1007/s10811-016-0921-5. DOI
Atta M., Bukhari A., Idris A. Enhanced lipid selective extraction from Chlorella vulgaris without cell sacrifice. Algal Res. 2016;20:7–15. doi: 10.1016/j.algal.2016.09.014. DOI
Kleinegris D.M.M., van Es M.A., Janssen M., Brandenburg W.A., Wijffels R.H. Phase toxicity of dodecane on the microalga Dunaliella salina. J. Appl. Phycol. 2011;23:949–958. doi: 10.1007/s10811-010-9615-6. PubMed DOI PMC
Griehl C., Kleinert C., Griehl C., Bieler S. Design of a continuous milking bioreactor for non-destructive hydrocarbon extraction from Botryococcus braunii. J. Appl. Phycol. 2015;27:1833–1843. doi: 10.1007/s10811-014-0472-6. DOI
Moheimani N.R., Cord-Ruwisch R., Raes E., Borowitzka M.A. Non-destructive oil extraction from Botryococcus braunii (Chlorophyta) J. Appl. Phycol. 2013;25:1653–1661. doi: 10.1007/s10811-013-0012-9. DOI
Hidalgo P., Ciudad G., Navia R. Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production. Bioresour. Technol. 2016;201:360–364. doi: 10.1016/j.biortech.2015.11.031. PubMed DOI
Anthony R., Stuart B. Solvent extraction and characterization of neutral lipids in Oocystis sp. Front. Energy Res. 2015;2:64. doi: 10.3389/fenrg.2014.00064. DOI
Olkiewicz M., Caporgno M.P., Font J., Legrand J., Lepine O., Plechkova N.V., Pruvost J., Seddond K.R., Bengoa C. A novel recovery process for lipids from microalgae for biodiesel production using a hydrated phosphonium ionic liquid. Green Chem. 2015;17:2813–2824. doi: 10.1039/C4GC02448F. DOI
Bi Z., He B.B., McDonald A.G. Biodiesel Production from Green Microalgae Schizochytrium limacinum via in Situ Transesterification. Energy Fuels. 2015;29:5018–5027. doi: 10.1021/acs.energyfuels.5b00559. DOI
Desai R.K., Streefland M., Wijffels R.H., Eppink M.H.M. Novel astaxanthin extraction from Haematococcus pluvialis using cell permeabilising ionic liquids. Green Chem. 2016;18:1261–1267. doi: 10.1039/C5GC01301A. DOI
Yap B.H.J., Crawford S.A., Dumsday G.J., Scales P.J., Martin G.J.O. A mechanistic study of algal cell disruption and its effect on lipid recovery by solvent extraction. Algal Res. 2014;5:112–120. doi: 10.1016/j.algal.2014.07.001. DOI
Choi W.Y., Lee H.Y. Effective production of bioenergy from marine Chlorella sp. by high-pressure homogenization. Biotechnol. Biotechnol. Equip. 2016;30:81–89. doi: 10.1080/13102818.2015.1081407. DOI
Doucha J., Lívanský K. Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl. Microbiol. Biotechnol. 2008;81:431–440. doi: 10.1007/s00253-008-1660-6. PubMed DOI
Cho S.C., Choi W.Y., Oh S.H., Lee C.G., Seo Y.C., Kim J.S., Song C.H., Kim G.V., Lee S.Y., Kang D.H., et al. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process. J. Biomed. Biotechnol. 2012;2012:359432. doi: 10.1155/2012/359432. PubMed DOI PMC
Ibanez E., Herrero M., Mendiola J.A., Castro-Puyana M. Extraction and Characterization of Bioactive Compounds with Health Benefits from Marine Resources: Macro and Micro Algae, Cyanobacteria, and Invertebrates. In: Hayes M., editor. Marine Bioactive Compounds: Sources, Characterization and Applications. Springer Science+Business Media, LLC; New York, NY, USA: 2012. Chapter 2.
Herrero M., Ibanez E. Green processes and sustainability: An overview on the extraction of high added-value products from seaweeds and microalgae. J. Supercrit. Fluids. 2015;96:211–216. doi: 10.1016/j.supflu.2014.09.006. DOI
Pico Y. Ultrasound-assisted extraction for food and environmental samples. Trends Anal. Chem. 2013;43:84–99. doi: 10.1016/j.trac.2012.12.005. DOI
Ma Y.A., Cheng Y.M., Huang J.W., Jen J.F., Huang Y.S., Yu C.C. Effects of ultrasonic and microwave pretreatments on lipid extraction of microalgae. Bioprocess Biosyst. Eng. 2014;37:1543–1549. doi: 10.1007/s00449-014-1126-4. PubMed DOI
Pasquet V., Chérouvrier J.R., Farhat F., Thiéry V., Piot J.M., Bérard J.B., Kaas R., Serive B., Patrice T., Cadoret J.P., et al. Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochem. 2011;46:59–67. doi: 10.1016/j.procbio.2010.07.009. DOI
Plaza M., Santoyo S., Jaime L., Avalo B., Cifuentes A., Reglero G., Garcia-Blairsy Reina G., Senorans F.J., Ibanez E. Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. LWT Food Sci. Technol. 2012;46:245–253. doi: 10.1016/j.lwt.2011.09.024. DOI
Tatke P., Jaiswal Y. An Overview of Microwave Assisted Extraction and Its Applications in Herbal Drug Research. Res. J. Med. Plants. 2011;5:21–31. doi: 10.3923/rjmp.2011.21.31. DOI
Veggi P.C., Martinez J., Meireles M.A.A. Fundamentals of Microwave Extraction. In: Chemat F., Cravotto G., editors. Microwave-Assisted Extraction for Bioactive Compounds. Theory and Practice. Springer Science+Business Media; New York, NY, USA: 2013. Chapter 2.
Lin C.Y., Lin B.Y. Fatty Acid Characteristics of Isochrysis galbana Lipids Extracted Using a Microwave-Assisted Method. Energies. 2015;8:1154–1165. doi: 10.3390/en8021154. DOI
Pan J., Muppaneni T., Sun Y., Reddy H.K., Fu J., Lu X., Deng S. Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4] Fuel. 2016;178:49–55. doi: 10.1016/j.fuel.2016.03.037. DOI
Gilbert-Lopez B., Barranco A., Herrero M., Cifuentes A., Ibanez E. Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Res. Int. 2016 doi: 10.1016/j.foodres.2016.04.022. PubMed DOI
Capuzzo A., Maffei M.E., Occhipinti A. Supercritical Fluid Extraction of Plant Flavors and Fragrances. Molecules. 2013;18:7194–7238. doi: 10.3390/molecules18067194. PubMed DOI PMC
Uquiche E., Antilaf I., Millao S. Enhancement of pigment extraction from B. braunii pretreated using CO2 rapid depressurization. Braz. J. Microbiol. 2016;47:497–505. doi: 10.1016/j.bjm.2016.01.020. PubMed DOI PMC
Cardoso L.C., Serrano C.M., Rodríguez M.R., Martínez de la Ossa E.J., Lubián L.M. Extraction of Carotenoids and Fatty Acids from Microalgae Using Supercritical Technology. Am. J. Anal Chem. 2012;3:877–883. doi: 10.4236/ajac.2012.312A116. DOI
Reyes F.A., Mendiola J.A., Ibanez E., del Valle J.M. Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol. J. Supercrit. Fluids. 2014;92:75–83. doi: 10.1016/j.supflu.2014.05.013. DOI
Ansari F.A., Shriwastav A., Gupta S.K., Rawat I., Bux F. Exploration of Microalgae Biorefinery by Optimizing Sequential Extraction of Major Metabolites from Scenedesmus obliquus. Ind. Eng. Chem. Res. 2017;56:3407–3412. doi: 10.1021/acs.iecr.6b04814. DOI
Bozhkov A.I., Menzyanova N.G. Influence of ethanol on metabolism of algae. Metabolism of nucleic acids and protein in cells of Dunaliella viridis Teod. Int. J. Algae. 2002;4:65–74. doi: 10.1615/InterJAlgae.v4.i3.40. DOI
Menzyanova N.G., Bozhkov A.I. Influence of ethanol on metabolism of algae. Growth dynamics, content of nucleic acids, proteins, and lipids in Chlorella vulgaris Beijer and Spirulina platensis (Nordst.) Geitl. Cells. Int. J. Algae. 2003;5:64–73. doi: 10.1615/InterJAlgae.v5.i3.50. DOI
Menzyanova N.G., Bozhkov A.I., Sotnik N.N. Influence of ethanol on the growth dynamics and metabolism of triacylglycerides and B-carotene in Dunaliella viridis Teod. Int. J. Algae. 2002;4:99–111. doi: 10.1615/InterJAlgae.v4.i2.80. DOI
Masojidek J., Papacek S., Sergejevova M., Jirka V., Cerveny J., Kunc J., Korecko J., Verbovikova O., Kopecky J., Stys D., et al. A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: Basic design and performance. J. Appl. Phycol. 2003;15:239–248. doi: 10.1023/A:1023849117102. DOI
Abdel-Raouf N., Al-Homaidan A.A., Ibraheem I.B.M. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012;19:257–275. doi: 10.1016/j.sjbs.2012.04.005. PubMed DOI PMC
Jerez C.G., Navarro E., Malpartida I., Rico R.M., Masojidek J., Abdala R., Figueroa F.L. Hydrodynamics and photosynthesis performance of Chlorella fusca (Chlorophyta) grown in a thin-layer cascade (TLC) system. Aquat. Biol. 2014;22:111–122. doi: 10.3354/ab00603. DOI
Bumbak F., Cook S., Zachleder V., Hauser S., Kovar K. Best practices in heterotrophic high-cell-density microalgal processes: Achievements, potential and possible limitations. Appl. Microbiol. Biotechnol. 2011;91:31–46. doi: 10.1007/s00253-011-3311-6. PubMed DOI PMC
Zhu Z., Luan G., Tan X., Zhang H., Lu X. Rescuing ethanol photosynthetic production of cyanobacteria in non-sterilized outdoor cultivations with a bicarbonate-based pH-rising strategy. Biotechnol. Biofuels. 2017;10:93. doi: 10.1186/s13068-017-0765-5. PubMed DOI PMC
Taylor M., Ramond J.B., Tuffin M., Burton S., Eley K., Cowan D. Mechanisms and Applications of Microbial Solvent Tolerance. In: Liu Z.L., editor. Microbial Stress Tolerance for Biofuels, Microbiology Monographs 22. Springer; Berlin/Heidelberg, Germany: 2012. DOI
Gallego A., Gemini V.L., Fortunato M.S., Dabas P., Rossi S.L., Gomez C.E., Vescina C., Planes E.I., Korol S.E. Degradation and Detoxification of Cresols in Synthetic and Industrial Wastewater by an Indigenous Strain of Pseudomonas putida in Aerobic Reactors. Environ. Toxicol. 2008;23:664–671. doi: 10.1002/tox.20365. PubMed DOI
Neumegen R.A., Fernandez-Alba A.R., Chisti Y. Toxicities of Triclosan, Phenol, and Copper Sulfate in Activated Sludge. Environ. Toxicol. 2005;20:160–164. doi: 10.1002/tox.20090. PubMed DOI
Ehimen E.A., Connaughton S., Sun Z., Carrington G.C. Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass. GCB Bioenergy. 2009;1:371–381. doi: 10.1111/j.1757-1707.2009.01029.x. DOI
Bohutskyi P., Ketter B., Chow S., Adams K.J., Betenbaugh M.J., Allnutt F.C.T., Bouwer E.J. Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery. Bioresour. Technol. 2015;183:229–239. doi: 10.1016/j.biortech.2015.02.012. PubMed DOI
Zhao B., Ma J., Zhao Q., Laurens L., Jarvis E., Chen S., Frear C. Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Bioresour. Technol. 2014;161:423–430. doi: 10.1016/j.biortech.2014.03.079. PubMed DOI
Golmakani M.-T., Mendiola J.A., Rezaei K., Ibanez E. Pressurized limonene as an alternative bio-solvent for the extraction of lipids from marine microorganisms. J. Supercrit. Fluids. 2014;92:1–7. doi: 10.1016/j.supflu.2014.05.001. DOI
Gilbert-Lopez B., Mendiola J.A., Fontecha J., van Den Broek L.A.M., Sijtsma L., Cifuentes A., Herrero M., Ibanez E. Downstream processing of Isochrysis galbana: A step towards microalgal biorefinery. Green Chem. 2015;17:4599–4609. doi: 10.1039/C5GC01256B. DOI
Castro-Puyana M., Herrero M., Urreta I., Mendiola J.A., Cifuentes A., Ibanez E., Suarez-Alvarez S. Optimization of clean extraction methods to isolate carotenoids from the microalga Neochloris oleoabundans and subsequent chemical characterization using liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2013;405:4607–4616. doi: 10.1007/s00216-012-6687-y. PubMed DOI
Castro-Puyana M., Perez-Sanchez A., Valdes A., Ibrahim O.H.M., Suarez-Alvarez S., Ferragut J.A., Micol V., Cifuentes A., Ibanez E., Garcia-Canas V. Pressurized liquid extraction of Neochloris oleoabundans for the recovery of bioactive carotenoids with anti-proliferative activity against human colon cancer cells. Food Res. Int. 2016 doi: 10.1016/j.foodres.2016.05.021. PubMed DOI
Gilbert-Lopez B., Mendiola J.A., van den Broek L.A.M., Houweling-Tan B., Sijtsma L., Cifuentes A., Herrero M., Ibanez E. Green compressed fluid technologies for downstream processing of Scenedesmus obliquus in a biorefinery approach. Algal Res. 2017;24:111–121. doi: 10.1016/j.algal.2017.03.011. DOI