Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review

. 2017 Jul 04 ; 18 (7) : . [epub] 20170704

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28677659

In this review, the effect of organic solvents on microalgae cultures from molecular to industrial scale is presented. Traditional organic solvents and solvents of new generation-ionic liquids (ILs), are considered. Alterations in microalgal cell metabolism and synthesis of target products (pigments, proteins, lipids), as a result of exposure to organic solvents, are summarized. Applications of organic solvents as a carbon source for microalgal growth and production of target molecules are discussed. Possible implementation of various industrial effluents containing organic solvents into microalgal cultivation media, is evaluated. The effect of organic solvents on extraction of target compounds from microalgae is also considered. Techniques for lipid and carotenoid extraction from viable microalgal biomass (milking methods) and dead microalgal biomass (classical methods) are depicted. Moreover, the economic survey of lipid and carotenoid extraction from microalgae biomass, by means of different techniques and solvents, is conducted.

Zobrazit více v PubMed

Heimann K., Huerlimann R. Microalgal Classification: Major Classes and Genera of Commercial Microalgal Species. In: Kim S.-K., editor. Handbook of Marine Microalgae. Elsevier Inc.; Amsterdam, The Netherlands: 2015. DOI

O’Neill E.C., Trick M., Henrissat B., Field R.A. Euglena in time: Evolution, controlof central metabolic processes andmulti-domain proteins in carbohydrateand natural product biochemistry. Perspect. Sci. 2015;6:84–93. doi: 10.1016/j.pisc.2015.07.002. DOI

Yamada K., Suzuki H., Takeuchi T., Kazama Y., Mitra S., Abe T., Goda K., Suzuki K., Iwata O. Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting. Sci. Rep. 2016;6:26327. doi: 10.1038/srep26327. PubMed DOI PMC

Lloyd D., Chance B. Electron Transport in Mitochondria Isolated from the Flagellate Polytomella caeca. Biochem. J. 1968;107:829–837. doi: 10.1042/bj1070829. PubMed DOI PMC

Miazek K., Remacle C., Richel A., Goffin D. Effect of Lignocellulose Related Compounds on Microalgae Growth and Product Biosynthesis: A Review. Energies. 2014;7:4446–4481. doi: 10.3390/en7074446. DOI

Chen P., Min M., Chen Y., Wang L., Li Y., Chen Q., Wang C., Wan Y., Wang X., Cheng Y., et al. Review of the biological and engineering aspects of algae to fuels approach. Int. J. Agric. Biol. Eng. 2009;2:2–30. doi: 10.3965/j.issn.1934-6344.2009.04.001-030. DOI

Guedes A.C., Amaro H.M., Malcata F.X. Microalgae as Sources of Carotenoids. Mar. Drugs. 2011;9:625–644. doi: 10.3390/md9040625. PubMed DOI PMC

Christenson L., Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 2011;29:686–702. doi: 10.1016/j.biotechadv.2011.05.015. PubMed DOI

Úbeda B., Gálvez J.Á., Michel M., Bartual A. Microalgae cultivation in urban wastewater: Coelastrum cf. pseudomicroporum as a novel carotenoid source and a potential microalgae harvesting tool. Bioresour. Technol. 2017;228:210–217. doi: 10.1016/j.biortech.2016.12.095. PubMed DOI

Ji M.K., Yun H.S., Hwang B.S., Kabra A.N., Jeon B.H., Choi J. Mixotrophic cultivation of Nephroselmis sp. using industrial wastewater for enhanced microalgal biomass production. Ecol. Eng. 2016;95:527–533. doi: 10.1016/j.ecoleng.2016.06.017. DOI

Gupta S.K., Ansari F.A., Shriwastav A., Sahoo N.K., Rawat I., Bux F. Dual role of Chlorella sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass production for bio-fuels. J. Clean. Prod. 2016;115:255–264. doi: 10.1016/j.jclepro.2015.12.040. DOI

Edmundson S.J., Wilkie A.C. Landfill leachate—A water and nutrient resource for algae-based biofuels. Environ. Technol. 2013;34:1849–1857. doi: 10.1080/09593330.2013.826256. PubMed DOI

Guo J., Selby K., Boxall A.B.A. Effects of Antibiotics on the Growth and Physiology of Chlorophytes, Cyanobacteria, and a Diatom. Arch. Environ. Contam. Toxicol. 2016 doi: 10.1007/s00244-016-0305-5. PubMed DOI PMC

Ma J., Wang P., Chen J., Sun Y., Che J. Differential Response of Green Algal Species Pseudokirchneriella subcapitata, Scenedesmus quadricauda, Scenedesmus obliquus, Chlorella vulgaris and Chlorella pyrenoidosa to Six Pesticides. Pol. J. Environ. Stud. 2007;16:847–851.

Miazek K., Iwanek W., Remacle C., Richel A., Goffin D. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review. Int. J. Mol. Sci. 2015;16:23929–23969. doi: 10.3390/ijms161023929. PubMed DOI PMC

Chen C.Y., Wang Y.J., Yang C.F. Estimating low-toxic-effect concentrations in closed-system algal toxicity tests. Ecotoxicol. Environ. Saf. 2009;72:1514–1522. doi: 10.1016/j.ecoenv.2009.02.011. PubMed DOI

Pham T.P., Cho C.W., Yun Y.S. Environmental fate and toxicity of ionic liquids: A review. Water Res. 2010;44:352–372. doi: 10.1016/j.watres.2009.09.030. PubMed DOI

Grodowska K., Parczewski A. Organic Solvents in the Pharmaceutical Industry. Acta Poloniae Pharm. Drug Res. 2010;67:3–12. PubMed

Ghandi K. A Review of Ionic Liquids, Their Limits and Applications. Green Sustain. Chem. 2014;4:44–53. doi: 10.4236/gsc.2014.41008. DOI

Plechkova N.V., Seddon K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008;37:123–150. doi: 10.1039/B006677J. PubMed DOI

Orr V.C.A., Rehmann L. Ionic liquids for the fractionation of microalgae biomass. Curr. Opin. Green Sustain. Chem. 2016;2:22–27. doi: 10.1016/j.cogsc.2016.09.006. DOI

Cuellar-Bermudez S.P., Aguilar-Hernandez I., Cardenas-Chavez D.L., Ornelas-Soto N., Romero-Ogawa M.A., Parra-Saldivar R. Extraction and purification of high-value metabolites from microalgae: Essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol. 2014;8:190–209. doi: 10.1111/1751-7915.12167. PubMed DOI PMC

Amde M., Liu J.F., Pang L. Environmental Application, Fate, Effects, and Concerns of Ionic Liquids: A Review. Environ. Sci. Technol. 2015;49:12611–12627. doi: 10.1021/acs.est.5b03123. PubMed DOI

Inderjit A.C., Kakuta H. Phytotoxicity and fate of 1,1,2-trichloroethylene: A laboratory study. J. Chem. Ecol. 2003;29:1329–1335. doi: 10.1023/A:1024205201720. PubMed DOI

Rodriguez-Caballero A., Ramond J.B., Welz P.J., Cowan D.A., Odlare M., Burton S.G. Treatment of high ethanol concentration wastewater by biological sand filters: Enhanced COD removal and bacterial community dynamics. J. Environ. Manag. 2012;109:54–60. doi: 10.1016/j.jenvman.2012.05.005. PubMed DOI

Badshah M., Parawira W., Mattiasson B. Anaerobic treatment of methanol condensate from pulp mill compared with anaerobic treatment of methanol using mesophilic UASB reactors. Bioresour. Technol. 2012;125:318–327. doi: 10.1016/j.biortech.2012.08.109. PubMed DOI

Sibirny V.A., Gonchar M.V., Grabek-Lejko D., Pavlishko H.M., Csoregi E., Sibirny A.A. Photometric assay of methanol and formaldehyde in industrial waste-waters using alcohol oxidase and 3-methyl-2-benzothiazolinone hydrazine. Int. J. Environ. Anal. Chem. 2008;88:289–301. doi: 10.1080/03067310701593615. DOI

Esmaeili A., Loghmani K. Removal of Monoethylene Glycol from Gas Field Wastewater Using Aspergillus tubingensis and a New Bioreactor. Waste Biomass Valor. 2016;7:151–156. doi: 10.1007/s12649-015-9430-z. DOI

Bayat M., Mehrnia M.R., Hosseinzadeh M., Sheikh-Sofla R. Petrochemical wastewater treatment and reuse by MBR: A pilot study for ethylene oxide/ethylene glycol and olefin units. J. Ind. Eng. Chem. 2015;25:265–271. doi: 10.1016/j.jiec.2014.11.003. DOI

Tobiszewski M., Tsakovski S., Simeonov V., Namiesnik J. Chlorinated solvents in a petrochemical wastewater treatment plant: An assessment of their removal using self-organising maps. Chemosphere. 2012;87:962–968. doi: 10.1016/j.chemosphere.2012.01.057. PubMed DOI

Enright A.M., McHugh S., Collins G., O’Flaherty V. Low-temperature anaerobic biological treatment of solvent containing pharmaceutical wastewater. Water Res. 2005;39:4587–4596. doi: 10.1016/j.watres.2005.08.037. PubMed DOI

Svojitka J., Dvorak L., Studer M., Straub J.O., Fromelt H., Wintgens T. Performance of an anaerobic membrane bioreactor for pharmaceutical wastewater treatment. Bioresour. Technol. 2017;229:180–189. doi: 10.1016/j.biortech.2017.01.022. PubMed DOI

Huang C., Yang X.Y., Xiong L., Guo H.J., Luo J., Wang B., Zhang H.R., Lin X.Q., Chen X.D. Evaluating the possibility of using acetone-butanol-ethanol (ABE) fermentation wastewater for bacterial cellulose production by Gluconacetobacter xylinus. Lett. Appl. Microbiol. 2015;60:491–496. doi: 10.1111/lam.12396. PubMed DOI

Stepnowski P., Blotevogel K.H., Ganczarek P., Fischer U., Jastorff B. Total recycling of chromatographic solvents—Applied management of methanol and acetonitrile waste. Resour. Conserv. Recycl. 2002;35:163–175. doi: 10.1016/S0921-3449(01)00119-7. DOI

Neves C.M.S.S., Freire M.G., Coutinho J.A.P. Improved recovery of ionic liquids from contaminated aqueous streams using aluminium-based salts. RSC Adv. 2012;2:10882–10890. doi: 10.1039/c2ra21535g. DOI

Markiewicz M., Piszora M., Caicedo N., Jungnickel C., Stolte S. Toxicity of ionic liquid cations and anions towards activated sewage sludge organisms from different sources—Consequences for biodegradation testing and wastewater treatment plant operation. Water Res. 2013;47:2921–2928. doi: 10.1016/j.watres.2013.02.055. PubMed DOI

Gendaszewska D., Liwarska-Bizukojc E., Maton C., Stevens C.V. Influence of newly synthesized imidazolium ionic liquids on activated sludge process. Arch. Environ. Prot. 2015;41:40–48. doi: 10.1515/aep-2015-0038. DOI

Kilroy A.C., Gray N.F. The toxicity of four organic solvents commonly used in the pharmaceutical industry to activated sludge. Water Res. 1992;26:887–892. doi: 10.1016/0043-1354(92)90193-8. DOI

Cooper G.M. Transport of Small Molecules. Chapter 12. The Cell Surface. The Cell: A Molecular Approach. 2nd ed. Sinauer Associates; Sunderland, MA, USA: 2000.

Kotzabasis K., Hatziathanasiou A., Bengoa-Ruigomez M.V., Kentouri M., Divanach P. Methanol as alternative carbon source for quicker efficient production of the microalgae Chlorella minutissima: Role of the concentration and frequence of administration. J. Biotechnol. 1999;70:357–362. doi: 10.1016/S0168-1656(99)00088-7. DOI

Choi W.Y., Oh S.H., Seo Y.C., Kim G.B., Kang D.H., Lee S.Y., Jung K.H., Cho J.S., Ahn J.H., Choi G.P., et al. Effects of methanol on cell growth and lipid production from mixotrophic cultivation of Chlorella sp. Biotechnol. Bioprocess Eng. 2011;16:946–955. doi: 10.1007/s12257-010-0394-3. DOI

Stepanov S.S., Zolotareva E.K. Methanol-induced stimulation of growth, intracellular amino acids, and protein content in Chlamydomonas reinhardtii. J. Appl. Phycol. 2015;27:1509–1516. doi: 10.1007/s10811-014-0445-9. DOI

Hunt R.W., Chinnasamy S., Bhatnagar A., Das K.C. Effect of Biochemical Stimulants on Biomass Productivity and Metabolite Content of the Microalga, Chlorella sorokiniana. Appl. Biochem. Biotechnol. 2010;162:2400–2414. doi: 10.1007/s12010-010-9012-2. PubMed DOI

Navakoudis E., Ioannidis N.E., Dörnemann D., Kotzabasis K. Changes in the LHCII-mediated energy utilization and dissipation adjust the methanol-induced biomass increase. Biochim. Biophys. Acta. 2007;1767:948–955. doi: 10.1016/j.bbabio.2007.05.003. PubMed DOI

Nonomura A.M., Benson A.A. The path of carbon in photosynthesis: Improved crop yields with methanol. Proc. Natl. Acad. Sci. USA. 1992;89:9794–9798. doi: 10.1073/pnas.89.20.9794. PubMed DOI PMC

El Jay A. Toxic Effects of Organic Solvents on the Growth of Chlorella vulgaris and Selenastrum capricornutum. Bull. Environ. Contam. Toxicol. 1996;57:191–198. doi: 10.1007/s001289900174. PubMed DOI

Costa S.P.F., Pinto P.C.A.G., Saraiva M.L.M.F.S., Rocha F.R.P., Santos J.R.P., Monteiro R.T.R. The aquatic impact of ionic liquids on freshwater organisms. Chemosphere. 2015;139:288–294. doi: 10.1016/j.chemosphere.2015.05.100. PubMed DOI

Ma J., Chen J. How to accurately assay the algal toxicity of pesticides with low water solubility. Environ. Pollut. 2005;136:267–273. doi: 10.1016/j.envpol.2005.01.005. PubMed DOI

Okumura Y., Koyama J., Takaku H., Satoh H. Influence of Organic Solvents on the Growth of Marine Microalgae. Arch. Environ. Contam. Toxicol. 2001;41:123–128. doi: 10.1007/s002440010229. PubMed DOI

Yoval-Sánchez B., Jasso-Chávez R., Lira-Silva E., Moreno-Sánchez R., Rodríguez-Zavala J.S. Novel mitochondrial alcohol metabolizing enzymes of Euglena gracilis. J. Bioenerg. Biomembr. 2011;43:519–530. doi: 10.1007/s10863-011-9373-4. PubMed DOI

Ono K., Kawanaka Y., Izumi Y., Inui H., Miyatake K., Kitaoka S., Nakano Y. Mitochondrial Alcohol Dehydrogenase from Ethanol-Grown Euglena gracilis. J. Biochem. 1995;117:1178–1182. doi: 10.1093/oxfordjournals.jbchem.a124841. PubMed DOI

Fujita T., Aoyagi H., Ogbonna J.C., Tanaka H. Effect of mixed organic substrate on α-tocopherol production by Euglena gracilis in photoheterotrophic culture. Appl. Microbiol. Biotechnol. 2008;79:371–378. doi: 10.1007/s00253-008-1443-0. PubMed DOI

Mokrosnop V.M., Polishchuk A.V., Zolotareva E.K. Accumulation of α-tocopherol and β-carotene in Euglena gracilis Cells under Autotrophic and Mixotrophic Culture Conditions. Appl. Biochem. Microbiol. 2016;52:216–221. doi: 10.1134/S0003683816020101. PubMed DOI

Afiukwa C.A., Ogbonna J.C. Effects of mixed substrates on growth and vitamin production by Euglena gracilis. Afr. J. Biotechnol. 2007;6:2612–2615.

Bezerra R.P., Matsudo M.C., Pérez-Mora L.S., Sato S., Carvalho J.C.M. Ethanol effect on batch and fed-batch Arthrospira platensis growth. J. Ind. Microbiol. Biotechnol. 2014;41:687–692. doi: 10.1007/s10295-014-1404-9. PubMed DOI

Matsudo M.C., Sousa T.F., Pérez-Mora L.S., Bezerra R.P., Sato S., Carvalho J.C.M. Ethanol as complementary carbon source in Scenedesmus obliquus cultivation. J. Chem. Technol. Biotechnol. 2016 doi: 10.1002/jctb.5059. DOI

Samkhaniyani F., Najafpour G.D., Ardestani F. Evaluation of effective nutritional parameters for Scenedesmus sp. microalgae culturing in a photobioreactor for biodiesel production. Int. J. Environ. Sci. Technol. 2017 doi: 10.1007/s13762-016-1212-z. DOI

Wu C., Wang W., Yue L., Yang Z., Fu Q., Ye Q. Enhancement effect of ethanol on lipid and fatty acid accumulation and composition of Scenedesmus sp. Bioresour. Technol. 2013;140:120–125. doi: 10.1016/j.biortech.2013.04.079. PubMed DOI

Fang X., Wei C., Zhao-Ling C., Fan O. Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J. Appl. Phycol. 2004;16:499–503. doi: 10.1007/s10811-004-5520-1. DOI

Wang Y., Chen T., Qin S. Differential fatty acid profiles of Chlorella kessleri grown with organic materials. J. Chem. Technol. Biotechnol. 2013;88:651–657. doi: 10.1002/jctb.3881. DOI

Tadros M.G., Philips J., Patel H., Pandiripally V. Differential Response of Green Algal Species to Solvents. Bull. Environ. Contam. Toxicol. 1994;52:333–337. doi: 10.1007/BF00197817. PubMed DOI

Tadros M.G., Philips J., Patel H., Pandiripally V. Differential Response of Marine Diatoms to Solvents. Bull. Environ. Contam. Toxicol. 1995;54:924–929. doi: 10.1007/BF00197980. PubMed DOI

Wardas M., Wardas W., Mazurek U., Lechotycka E. The effect of some organic solvents on the growth of Chlorella algae, strain 366. Oceanologia. 1983;17:21–28.

Monfils A.K., Triemer R.E., Bellairs E.F. Characterization of paramylon morphological diversity in photosynthetic euglenoids (Euglenales, Euglenophyta) Phycologia. 2011;50:156–169. doi: 10.2216/09-112.1. DOI

Rodrıguez-Zavala J.S., Ortiz-Cruz M.A., Mendoza-Hernandez G., Moreno-Sanchez R. Increased synthesis of a-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J. Appl. Microbiol. 2010;109:2160–2172. doi: 10.1111/j.1365-2672.2010.04848.x. PubMed DOI

De Swaaf M.E., Pronk J.T., Sijtsma L. Fed-batch cultivation of the docosahexaenoic-acid-producing marine alga Crypthecodinium cohnii on ethanol. Appl. Microbiol. Biotechnol. 2003;61:40–43. doi: 10.1007/s00253-002-1118-1. PubMed DOI

Atteia A., van Lis R., Ramirez J., Gonzalez-Halphen D. Polytomella spp. growth on ethanol. Extracellular pH affects the accumulation of mitochondrial cytochrome c550. Eur. J. Biochem. 2000;267:2850–2858. doi: 10.1046/j.1432-1327.2000.01288.x. PubMed DOI

Andemichael H., Lee J.W. Toxicological study of biofuel ethanol with blue green alga Spirulina platensis. Algal Res. 2016;18:110–115. doi: 10.1016/j.algal.2016.05.032. DOI

Qiao J., Wang J., Chen L., Tian X., Huang S., Ren X., Zhang W. Quantitative iTRAQ LC-MS/MS Proteomics Reveals Metabolic Responses to Biofuel Ethanol in Cyanobacterial Synechocystis sp. PCC 6803. J. Proteome Res. 2012;11:5286–5300. doi: 10.1021/pr300504w. PubMed DOI

Bosma R., Miazek K., Willemsen S.M., Vermue M.H., Wijffels R.H. Growth Inhibition of Monodus subterraneus by Free Fatty Acids. Biotechnol. Bioeng. 2008;101:1108–1114. doi: 10.1002/bit.21963. PubMed DOI

Kämäräinen J., Knoop H., Stanford N.J., Guerrero F., Akhtar M.K., Aro E.M., Steuer R., Jones P.R. Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production. J. Biotechnol. 2012;162:67–74. doi: 10.1016/j.jbiotec.2012.07.193. PubMed DOI

Leon R., Garbayo I., Hernandez R., Vigara J., Vilchez C. Organic solvent toxicity in photoautotrophic unicellular microorganisms. Enzyme Microb. Technol. 2001;29:173–180. doi: 10.1016/S0141-0229(01)00370-2. DOI

Cho C.W., Pham T.P.T., Kim S., Kim Y.R., Jeon Y.C., Yun Y.S. Toxicity assessment of common organic solvents using a biosensor based on algal photosynthetic activity measurement. J. Appl. Phycol. 2009;21:683–689. doi: 10.1007/s10811-009-9401-5. DOI

Tsai K.P., Chen C.Y. An algal toxicity database of organic toxicants derived by a closed-system technique. Environ. Toxicol. Chem. 2007;26:1931–1939. doi: 10.1897/06-612R.1. PubMed DOI

Aruoja V., Moosus M., Kahru A., Sihtmae M., Maran U. Measurement of baseline toxicity and QSAR analysis of 50 non-polar and 58 polar narcotic chemicals for the alga Pseudokirchneriella subcapitata. Chemosphere. 2014;96:23–32. doi: 10.1016/j.chemosphere.2013.06.088. PubMed DOI

Kohler A., Hellweg S., Escher B., Hungerbuhler K. Organic pollutant removal versus toxicity reduction in industrial wastewater treatment: The example of wastewater from fluorescent whitening agent production. Environ. Sci. Technol. 2006;40:3395–3401. doi: 10.1021/es060555f. PubMed DOI

Hu L.X., Tian F., Martin F.L., Ying G.G. Biochemical alterations in duckweed and algae induced by carrier solvents: Selection of an appropriate solvent in toxicity testing. Environ. Toxicol. Chem. 2017 doi: 10.1002/etc.3804. PubMed DOI

Cho C.W., Jeon Y.C., Pham T.P.T., Vijayaraghavan K., Yun Y.S. The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicol. Environ. Saf. 2008;71:166–171. doi: 10.1016/j.ecoenv.2007.07.001. PubMed DOI

Hughes J.S., Vilkas A.G. Toxicity of N,N-Dimethylformamide Used as a Solvent in Toxicity Tests with the Green Alga, Selenastrum capricornutum. Bull. Environ. Contam. Toxicol. 1983;31:98–104. doi: 10.1007/BF01608773. PubMed DOI

Stratton G.W. Toxic Effects of Organic Solvents on the Growth of Blue-Green Algae. Bull. Environ. Contain. Toxicol. 1987;38:1012–1019. doi: 10.1007/BF01609089. PubMed DOI

McEvoy E., Wright P.C., Bustard M.T. The effect of high concentration isopropanol on the growth of a solvent-tolerant strain of Chlorella vulgaris. Enzyme Microb. Technol. 2004;35:140–146. doi: 10.1016/j.enzmictec.2004.01.012. DOI

Wise D.L. Carbon Nutrition and Metabolism of Polytomella caeca. J. Protozool. 1959;6:19–23. doi: 10.1111/j.1550-7408.1959.tb03921.x. DOI

Pillard D.A., DuFresne D.L. Toxicity of Formulated Glycol Deicers and Ethylene and Propylene Glycol to Lactuca sativa, Lolium perenne, Selenastrum capricornutum, and Lemna minor. Arch. Environ. Contam. Toxicol. 1999;37:29–35. doi: 10.1007/s002449900486. PubMed DOI

Devillers J., Chezeau A., Thybaud E., Poulsen V., Porcher J.M., Graff L., Vasseur P., Mouchet F., Ferrier V., Quiniou F. Ecotoxicity of ethylene glycol monobutyl ether and its acetate. Toxicol. Mech. Methods. 2002;12:255–263. doi: 10.1080/15376520208951162. PubMed DOI

Kishi M., Kawai M., Toda T. Heterotrophic utilization of ethylene glycol and propylene glycol by Chlorella protothecoides. Algal Res. 2015;11:428–434. doi: 10.1016/j.algal.2015.04.020. DOI

Canadian Council of Ministers of the Environment Canadian water quality guidelines for the protection of aquatic life: 1,4-Dioxane. Adapted from Bringmann G and Kuhn R. Limiting values of the harmful action of water endangering substances on bacteria (Pseudomonas putida) and green algae (Scenedesmus quadricauda) in the cell multiplication inhibition test. Z. Wasser Abwasser Forsch. 1977b;10:87–98.

Hook I.L., Ryan S., Sheridan H. Biotransformation of aliphatic and aromatic ketones, including several monoterpenoid ketones and their derivatives by five species of marine microalgae. Phytochemistry. 2003;63:31–36. doi: 10.1016/S0031-9422(02)00699-4. PubMed DOI

Wu S., Zhang H., Yu X., Qiu L. Toxicological Responses of Chlorella vulgaris to Dichloromethane and Dichloroethane. Environ. Eng. Sci. 2014;31:9–17. doi: 10.1089/ees.2013.0038. PubMed DOI PMC

Ando T., Otsuka S., Nishiyama M., Senoo K., Watanabe M.M., Matsumoto S. Toxic Effects of Dichloromethane and Trichloroethylene on the Growth of Planktonic Green Algae, Chlorella vulgaris NIES227, Selenastrum capricornutum NIES35, and Volvulina steinii NIES545. Microbes Environ. 2003;18:43–46. doi: 10.1264/jsme2.18.43. DOI

Brack W., Rottler H. Toxicity Testing of Highly Volatile—A New Assay Chemicals with Green Algae. Environ. Sci. Pollut. Res. 1994;4:223–228. doi: 10.1007/BF02986534. PubMed DOI

Bacsi I., Torok T., B-Beres V., Torok P., Tothmeresz B., Nagy A.S., Vasas G. Laboratory and microcosm experiments testing the toxicity of chlorinated hydrocarbons on a cyanobacterium strain (Synechococcus PCC 6301) and on natural phytoplankton assemblages. Hydrobiologia. 2013;710:189–203. doi: 10.1007/s10750-012-1364-x. DOI

Lukavsky J., Furnadzhieva S., Dittrt F. Toxicity of Trichloroethylene (TCE) on Some Algae and Cyanobacteria. Bull. Environ. Contam. Toxicol. 2011;86:226–231. doi: 10.1007/s00128-011-0195-1. PubMed DOI

Zhang S., Lin D., Wu F. The effect of natural organic matter on bioaccumulation and toxicity of chlorobenzenes to green algae. J. Hazard. Mater. 2016;311:186–193. doi: 10.1016/j.jhazmat.2016.03.017. PubMed DOI

Sicko-Goad L., Lazinsky D., Hall J., Simmons M.S. Effects of Chlorinated Benzenes on Diatom Fatty Acid Composition and Quantitative Morphology. I. 1,2,4-Trichlorobenzene. Arch. Environ. Contam. Toxicol. 1989;18:629–637. doi: 10.1007/BF01225001. PubMed DOI

Sicko-Goad L., Andresen N.A. Effect of Lipid Composition on the Toxicity of Trichlorobenzene Isomers to Diatoms. I. Short-Term Effects of 1,3,5-Trichlorobenzene. Arch. Environ. Contam. Toxicol. 1993;24:236–242. doi: 10.1007/BF01141353. DOI

Dunstan W.M., Atkinson L.P., Natoli J. Stimulation and Inhibition of Phytoplankton Growth by Low Molecular Weight Hydrocarbons. Mar. Biol. 1975;31:305–310. doi: 10.1007/BF00392087. DOI

Agrawal Manisha S.C. Growth, Survival and Reproduction in Chlorella vulgaris and C. variegata with Respect to Culture Age and under Different Chemical Factors. Folia Microbiol. 2007;52:399–406. doi: 10.1007/BF02932095. PubMed DOI

Gupta S., Agrawal S.C. Survival of diatoms Synedra, Gomphonema and Fragilaria species in nature and in presence of different chemical and physical stress factors. J. Algal Biomass Utlin. 2011;2:52–76.

Ceballos-Laita L., Calvo L., Bes M.T., Fillat M.F., Peleato M.L. Effects of benzene and several pharmaceuticals on the growth and microcystin production in Microcystis aeruginosa PCC 7806. Limnetica. 2015;34:237–246.

Masten L.W., Boeri R.L., Walker J.D. Strategies employed to determine the acute aquatic toxicity of ethyl benzene, a highly volatile, poorly water-soluble chemical. Ecotoxicol. Environ. Saf. 1994;27:335–348. doi: 10.1006/eesa.1994.1027. PubMed DOI

Herman D.C., Inniss W.E., Mayfield C.I. Toxicity Testing of Aromatic Hydrocarbons Utilizing a Measure of Their Impact on the Membrane Integrity of the Green Alga Selenastrum capricornutum. Bull. Environ. Contam. Toxicol. 1991;47:874–881. doi: 10.1007/BF01689518. PubMed DOI

Liu Z., Cui F., Ma H., Fan Z., Zhao Z., Hou Z., Liu D., Jia X. The interaction between nitrobenzene and Microcystis aeruginosa and its potential to impact water quality. Chemosphere. 2013;92:1201–1206. doi: 10.1016/j.chemosphere.2013.03.064. PubMed DOI

Liu Z., Cui F., Ma H., Fan Z., Zhao Z. The role of nitrobenzene on the yield of trihalomethane formation potential in aqueous solutions with Microcystis aeruginosa. Water Res. 2011;45:6489–6495. doi: 10.1016/j.watres.2011.09.043. PubMed DOI

Christensen E.R., Kusk K.O., Nyholm N. Dose-response regressions for algal growth and similar continuous endpoints: Calculation of effective concentrations. Environ. Toxicol. Chem. 2009;28:826–835. doi: 10.1897/08-068R.1. PubMed DOI

Singh B.B., Chandra R. Comparative Chronic Toxicity of Pyridine, α-Picoline, and β-Picoline to Lemna minor L. and Chlorella vulgaris B. Bull. Environ. Contam. Toxicol. 2005;75:482–489. doi: 10.1007/s00128-005-0778-9. PubMed DOI

Semple K.T., Cain R.B., Schmidt S. Biodegradation of aromatic compounds by microalgae. FEMS Microbiol. Lett. 1999;170:291–300. doi: 10.1111/j.1574-6968.1999.tb13386.x. DOI

Semple K.T. Biodegradation of phenols by a eukaryotic alga. Res. Microbial. 1997;148:365–367. doi: 10.1016/S0923-2508(97)81592-6. PubMed DOI

Papazi A., Assimakopoulos K., Kotzabasis K. Bioenergetic Strategy for the Biodegradation of p-Cresol by the Unicellular Green Alga Scenedesmus obliquus. PLoS ONE. 2012;12:e51852. doi: 10.1371/journal.pone.0051852. PubMed DOI PMC

Papazi A., Kotzabasis K. Inductive and resonance effects of substituents adjust the microalgal biodegradation of toxical phenolic compounds. J. Biotechnol. 2008;135:366–373. doi: 10.1016/j.jbiotec.2008.05.009. PubMed DOI

Pham T.P.T., Cho C.W., Min J., Yun Y.S. Alkyl-Chain Length Effects of Imidazolium and Pyridinium Ionic Liquids on Photosynthetic Response of Pseudokirchneriella subcapitata. J. Biosci. Bioeng. 2008;105:425–428. doi: 10.1263/jbb.105.425. PubMed DOI

Pham T.P.T., Cho C.W., Yun Y.S. Structural effects of ionic liquids on microalgal growth inhibition and microbial degradation. Environ. Sci. Pollut. Res. 2016;23:4294–4300. doi: 10.1007/s11356-015-5287-8. PubMed DOI

Pretti C., Chiappe C., Baldetti I., Brunini S., Monni G., Intorre L. Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotoxicol. Environ. Saf. 2009;72:1170–1176. doi: 10.1016/j.ecoenv.2008.09.010. PubMed DOI

Tsarpali V., Harbi K., Dailianis S. Physiological response of the green microalgae Dunaliella tertiolecta against imidazolium ionic liquids [bmim][BF4] and/or [omim][BF4]: The role of salinity on the observed effects. J. Appl. Phycol. 2016;28:979–990. doi: 10.1007/s10811-015-0613-6. DOI

Tsarpali V., Dailianis S. Toxicity of two imidazolium ionic liquids, [bmim][BF4] and [omim][BF4], to standard aquatic test organisms: Role of acetone in the induced toxicity. Ecotoxicol. Environ. Saf. 2015;117:62–71. doi: 10.1016/j.ecoenv.2015.03.026. PubMed DOI

Ma J.M., Cai L.L., Zhang B.J., Hu L.W., Li X.Y., Wang J.J. Acute toxicity and effects of 1-alkyl-3-methylimidazolium bromide ionic liquids on green algae. Ecotoxicol. Environ. Saf. 2010;73:1465–1469. doi: 10.1016/j.ecoenv.2009.10.004. PubMed DOI

Wells A.S., Coombe V.T. On the Freshwater Ecotoxicity and Biodegradation Properties of Some Common Ionic Liquids. Org. Process Res. Dev. 2006;10:794–798. doi: 10.1021/op060048i. DOI

Ventura S.P.M., Gurbisz M., Ghavre M., Ferreira F.M.M., Gonçalves F., Beadham I., Quilty B., Coutinho J.A.P., Gathergood N. Imidazolium and Pyridinium Ionic Liquids from Mandelic Acid Derivatives: Synthesis and Bacteria and Algae Toxicity Evaluation. ACS Sustain. Chem. Eng. 2013;1:393–402. doi: 10.1021/sc3001299. DOI

Santos J.I., Goncalves A.M.M., Pereira J.L., Figueiredo B.F.H.T., Silva F.A., Coutinho J.A.P., Ventura S.P.M., Goncalves F. Environmental safety of cholinium-based ionic liquids: Assessing structure-ecotoxicity relationships. Green Chem. 2015;17:4657–4668. doi: 10.1039/C5GC01129A. DOI

Cho C.W., Pham T.P.T., Jeon Y.C., Yun Y.S. Influence of anions on the toxic effects of ionic liquids to a phytoplankton Selenastrum capricornutum. Green Chem. 2008;10:67–72. doi: 10.1039/B705520J. DOI

Stolte S., Matzke M., Arning J., Boschen A., Pitner W.R., Welz-Biermann U., Jastorff B., Ranke J. Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem. 2007;9:1170–1179. doi: 10.1039/b711119c. DOI

Stolte S., Schulz T., Cho C.W., Arning J., Strassner T. Synthesis, Toxicity, and Biodegradation of Tunable Aryl Alkyl Ionic Liquids (TAAILs) ACS Sustain. Chem. Eng. 2013;1:410–418. doi: 10.1021/sc300146t. DOI

Samori C., Campisi T., Fagnoni M., Galletti P., Pasteris A., Pezzolesi L., Protti S., Ravelli D., Tagliavini E. Pyrrolidinium-based Ionic Liquids: Aquatic Ecotoxicity, Biodegradability, and Algal Subinhibitory Stimulation. ACS Sustain. Chem. Eng. 2015;3:1860–1865. doi: 10.1021/acssuschemeng.5b00458. DOI

Chen H., Zou Y., Zhang L., Wen Y., Liu W. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methylimidazolium lactate to aquatic algae. Aquat. Toxicol. 2014;154:114–120. doi: 10.1016/j.aquatox.2014.05.010. PubMed DOI

Liu H., Zhang X., Dong Y., Chen C., Zhu S., Ma X. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methylimidazolium tartrate on Scenedesmus obliquus. Aquat. Toxicol. 2015;169:179–187. doi: 10.1016/j.aquatox.2015.10.024. PubMed DOI

Liu H., Zhang X., Chen C., Du S., Dong Y. Effects of imidazolium chloride ionic liquids and their toxicity to Scenedesmus obliquus. Ecotoxicol. Environ. Saf. 2015;122:83–90. doi: 10.1016/j.ecoenv.2015.07.010. PubMed DOI

Kulacki K.J., Lamberti G.A. Toxicity of imidazolium ionic liquids to freshwater algae. Green Chem. 2008;10:104–110. doi: 10.1039/B709289J. DOI

Latała A., Nedzia M., Stepnowski P. Toxicity of imidazolium ionic liquids towards algae. Influence of salinity variations. Green Chem. 2010;12:60–64. doi: 10.1039/B918355H. DOI

Samori C., Sciutto G., Pezzolesi L., Galletti P., Guerrini F., Mazzeo R., Pistocchi R., Prati S., Tagliavini E. Effects of Imidazolium Ionic Liquids on Growth, Photosynthetic Efficiency, and Cellular Components of the Diatoms Skeletonema marinoi and Phaeodactylum tricornutum. Chem. Res. Toxicol. 2011;24:392–401. doi: 10.1021/tx100343p. PubMed DOI

Yoo B., Jing B., Jones S.E., Lamberti G.A., Zhu Y., Shah J.K., Maginn E.J. Molecular mechanisms of ionic liquid cytotoxicity probed by an integrated experimental and computational approach. Sci. Rep. 2016;6:19889. doi: 10.1038/srep19889. PubMed DOI PMC

Deng X.Y., Gao K., Pei F., Wang C.H., Cao K.W. Effects of a functionalized ionic liquid on the growth and antioxidant enzymes of Synechococcus sp. PCC7942. Afr. J. Microbiol. Res. 2013;29:3824–3830.

Deng X.Y., Cheng J., Hu X.L., Gao K., Wang C.H. Physiological and biochemical responses of a marine diatom Phaeodactylum tricornutum exposed to 1-octyl-3-methylimidazolium bromide. Aquat. Biol. 2015;24:109–115. doi: 10.3354/ab00643. DOI

Deng X.Y., Hu X.L., Cheng J., Ma Z.X., Gao K. Growth inhibition and oxidative stress induced by 1-octyl-3-methylimidazolium bromide on the marine diatom Skeletonema costatum. Ecotoxicol. Environ. Saf. 2016;132:170–177. doi: 10.1016/j.ecoenv.2016.06.009. PubMed DOI

Deng Y., Beadham I., Wu J., Chen X.D., Hu L., Gu J. Chronic effects of the ionic liquid [C4mim][Cl] towards the microalga Scenedesmus quadricauda. Environ. Pollut. 2015;204:248–255. doi: 10.1016/j.envpol.2015.05.011. PubMed DOI

Yang F., Xiang W., Sun X., Wu H., Li T., Long L. A Novel Lipid Extraction Method from Wet Microalga Picochlorum sp. at Room Temperature. Mar. Drugs. 2014;12:1258–1270. doi: 10.3390/md12031258. PubMed DOI PMC

Hejazi M.A., Kleinegris D., Wijffels R.H. Mechanism of extraction of beta-carotene from microalga Dunaliellea salina in two-phase bioreactors. Biotechnol. Bioeng. 2004;88:593–600. doi: 10.1002/bit.20238. PubMed DOI

Ramachandra T.V., Mahapatra D.M., Karthick B. Milking Diatoms for Sustainable Energy: Biochemical Engineering versus Gasoline-Secreting Diatom Solar Panels. Ind. Eng. Chem. Res. 2009;48:8769–8788. doi: 10.1021/ie900044j. DOI

Vinayak V., Manoylov K.M., Gateau H., Blanckaert V., Hérault J., Pencréac’h G., Marchand J., Gordon R., Schoefs B. Diatom Milking: A Review and New Approaches. Mar. Drugs. 2015;13:2629–2665. doi: 10.3390/md13052629. PubMed DOI PMC

Mojaat M., Foucault A., Pruvost J., Legrand J. Optimal selection of organic solvents for biocompatible extraction of B-carotene from Dunaliella salina. J. Biotechnol. 2008;133:433–441. doi: 10.1016/j.jbiotec.2007.11.003. PubMed DOI

Zhang F., Cheng L.H., Xu X.H., Zhang L., Chen H.L. Screening of biocompatible organic solvents for enhancement of lipid milking from Nannochloropsis sp. Process Biochem. 2011;46:1934–1941. doi: 10.1016/j.procbio.2011.06.024. DOI

Nezammahalleh H., Nosrati M., Ghanati F., Shojaosadati S.A. Exergy-based screening of biocompatible solvents for in situ lipid extraction from Chlorella vulgaris. J. Appl. Phycol. 2017 doi: 10.1007/s10811-016-0921-5. DOI

Atta M., Bukhari A., Idris A. Enhanced lipid selective extraction from Chlorella vulgaris without cell sacrifice. Algal Res. 2016;20:7–15. doi: 10.1016/j.algal.2016.09.014. DOI

Kleinegris D.M.M., van Es M.A., Janssen M., Brandenburg W.A., Wijffels R.H. Phase toxicity of dodecane on the microalga Dunaliella salina. J. Appl. Phycol. 2011;23:949–958. doi: 10.1007/s10811-010-9615-6. PubMed DOI PMC

Griehl C., Kleinert C., Griehl C., Bieler S. Design of a continuous milking bioreactor for non-destructive hydrocarbon extraction from Botryococcus braunii. J. Appl. Phycol. 2015;27:1833–1843. doi: 10.1007/s10811-014-0472-6. DOI

Moheimani N.R., Cord-Ruwisch R., Raes E., Borowitzka M.A. Non-destructive oil extraction from Botryococcus braunii (Chlorophyta) J. Appl. Phycol. 2013;25:1653–1661. doi: 10.1007/s10811-013-0012-9. DOI

Hidalgo P., Ciudad G., Navia R. Evaluation of different solvent mixtures in esterifiable lipids extraction from microalgae Botryococcus braunii for biodiesel production. Bioresour. Technol. 2016;201:360–364. doi: 10.1016/j.biortech.2015.11.031. PubMed DOI

Anthony R., Stuart B. Solvent extraction and characterization of neutral lipids in Oocystis sp. Front. Energy Res. 2015;2:64. doi: 10.3389/fenrg.2014.00064. DOI

Olkiewicz M., Caporgno M.P., Font J., Legrand J., Lepine O., Plechkova N.V., Pruvost J., Seddond K.R., Bengoa C. A novel recovery process for lipids from microalgae for biodiesel production using a hydrated phosphonium ionic liquid. Green Chem. 2015;17:2813–2824. doi: 10.1039/C4GC02448F. DOI

Bi Z., He B.B., McDonald A.G. Biodiesel Production from Green Microalgae Schizochytrium limacinum via in Situ Transesterification. Energy Fuels. 2015;29:5018–5027. doi: 10.1021/acs.energyfuels.5b00559. DOI

Desai R.K., Streefland M., Wijffels R.H., Eppink M.H.M. Novel astaxanthin extraction from Haematococcus pluvialis using cell permeabilising ionic liquids. Green Chem. 2016;18:1261–1267. doi: 10.1039/C5GC01301A. DOI

Yap B.H.J., Crawford S.A., Dumsday G.J., Scales P.J., Martin G.J.O. A mechanistic study of algal cell disruption and its effect on lipid recovery by solvent extraction. Algal Res. 2014;5:112–120. doi: 10.1016/j.algal.2014.07.001. DOI

Choi W.Y., Lee H.Y. Effective production of bioenergy from marine Chlorella sp. by high-pressure homogenization. Biotechnol. Biotechnol. Equip. 2016;30:81–89. doi: 10.1080/13102818.2015.1081407. DOI

Doucha J., Lívanský K. Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers. Appl. Microbiol. Biotechnol. 2008;81:431–440. doi: 10.1007/s00253-008-1660-6. PubMed DOI

Cho S.C., Choi W.Y., Oh S.H., Lee C.G., Seo Y.C., Kim J.S., Song C.H., Kim G.V., Lee S.Y., Kang D.H., et al. Enhancement of Lipid Extraction from Marine Microalga, Scenedesmus Associated with High-Pressure Homogenization Process. J. Biomed. Biotechnol. 2012;2012:359432. doi: 10.1155/2012/359432. PubMed DOI PMC

Ibanez E., Herrero M., Mendiola J.A., Castro-Puyana M. Extraction and Characterization of Bioactive Compounds with Health Benefits from Marine Resources: Macro and Micro Algae, Cyanobacteria, and Invertebrates. In: Hayes M., editor. Marine Bioactive Compounds: Sources, Characterization and Applications. Springer Science+Business Media, LLC; New York, NY, USA: 2012. Chapter 2.

Herrero M., Ibanez E. Green processes and sustainability: An overview on the extraction of high added-value products from seaweeds and microalgae. J. Supercrit. Fluids. 2015;96:211–216. doi: 10.1016/j.supflu.2014.09.006. DOI

Pico Y. Ultrasound-assisted extraction for food and environmental samples. Trends Anal. Chem. 2013;43:84–99. doi: 10.1016/j.trac.2012.12.005. DOI

Ma Y.A., Cheng Y.M., Huang J.W., Jen J.F., Huang Y.S., Yu C.C. Effects of ultrasonic and microwave pretreatments on lipid extraction of microalgae. Bioprocess Biosyst. Eng. 2014;37:1543–1549. doi: 10.1007/s00449-014-1126-4. PubMed DOI

Pasquet V., Chérouvrier J.R., Farhat F., Thiéry V., Piot J.M., Bérard J.B., Kaas R., Serive B., Patrice T., Cadoret J.P., et al. Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochem. 2011;46:59–67. doi: 10.1016/j.procbio.2010.07.009. DOI

Plaza M., Santoyo S., Jaime L., Avalo B., Cifuentes A., Reglero G., Garcia-Blairsy Reina G., Senorans F.J., Ibanez E. Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. LWT Food Sci. Technol. 2012;46:245–253. doi: 10.1016/j.lwt.2011.09.024. DOI

Tatke P., Jaiswal Y. An Overview of Microwave Assisted Extraction and Its Applications in Herbal Drug Research. Res. J. Med. Plants. 2011;5:21–31. doi: 10.3923/rjmp.2011.21.31. DOI

Veggi P.C., Martinez J., Meireles M.A.A. Fundamentals of Microwave Extraction. In: Chemat F., Cravotto G., editors. Microwave-Assisted Extraction for Bioactive Compounds. Theory and Practice. Springer Science+Business Media; New York, NY, USA: 2013. Chapter 2.

Lin C.Y., Lin B.Y. Fatty Acid Characteristics of Isochrysis galbana Lipids Extracted Using a Microwave-Assisted Method. Energies. 2015;8:1154–1165. doi: 10.3390/en8021154. DOI

Pan J., Muppaneni T., Sun Y., Reddy H.K., Fu J., Lu X., Deng S. Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4] Fuel. 2016;178:49–55. doi: 10.1016/j.fuel.2016.03.037. DOI

Gilbert-Lopez B., Barranco A., Herrero M., Cifuentes A., Ibanez E. Development of new green processes for the recovery of bioactives from Phaeodactylum tricornutum. Food Res. Int. 2016 doi: 10.1016/j.foodres.2016.04.022. PubMed DOI

Capuzzo A., Maffei M.E., Occhipinti A. Supercritical Fluid Extraction of Plant Flavors and Fragrances. Molecules. 2013;18:7194–7238. doi: 10.3390/molecules18067194. PubMed DOI PMC

Uquiche E., Antilaf I., Millao S. Enhancement of pigment extraction from B. braunii pretreated using CO2 rapid depressurization. Braz. J. Microbiol. 2016;47:497–505. doi: 10.1016/j.bjm.2016.01.020. PubMed DOI PMC

Cardoso L.C., Serrano C.M., Rodríguez M.R., Martínez de la Ossa E.J., Lubián L.M. Extraction of Carotenoids and Fatty Acids from Microalgae Using Supercritical Technology. Am. J. Anal Chem. 2012;3:877–883. doi: 10.4236/ajac.2012.312A116. DOI

Reyes F.A., Mendiola J.A., Ibanez E., del Valle J.M. Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol. J. Supercrit. Fluids. 2014;92:75–83. doi: 10.1016/j.supflu.2014.05.013. DOI

Ansari F.A., Shriwastav A., Gupta S.K., Rawat I., Bux F. Exploration of Microalgae Biorefinery by Optimizing Sequential Extraction of Major Metabolites from Scenedesmus obliquus. Ind. Eng. Chem. Res. 2017;56:3407–3412. doi: 10.1021/acs.iecr.6b04814. DOI

Bozhkov A.I., Menzyanova N.G. Influence of ethanol on metabolism of algae. Metabolism of nucleic acids and protein in cells of Dunaliella viridis Teod. Int. J. Algae. 2002;4:65–74. doi: 10.1615/InterJAlgae.v4.i3.40. DOI

Menzyanova N.G., Bozhkov A.I. Influence of ethanol on metabolism of algae. Growth dynamics, content of nucleic acids, proteins, and lipids in Chlorella vulgaris Beijer and Spirulina platensis (Nordst.) Geitl. Cells. Int. J. Algae. 2003;5:64–73. doi: 10.1615/InterJAlgae.v5.i3.50. DOI

Menzyanova N.G., Bozhkov A.I., Sotnik N.N. Influence of ethanol on the growth dynamics and metabolism of triacylglycerides and B-carotene in Dunaliella viridis Teod. Int. J. Algae. 2002;4:99–111. doi: 10.1615/InterJAlgae.v4.i2.80. DOI

Masojidek J., Papacek S., Sergejevova M., Jirka V., Cerveny J., Kunc J., Korecko J., Verbovikova O., Kopecky J., Stys D., et al. A closed solar photobioreactor for cultivation of microalgae under supra-high irradiance: Basic design and performance. J. Appl. Phycol. 2003;15:239–248. doi: 10.1023/A:1023849117102. DOI

Abdel-Raouf N., Al-Homaidan A.A., Ibraheem I.B.M. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012;19:257–275. doi: 10.1016/j.sjbs.2012.04.005. PubMed DOI PMC

Jerez C.G., Navarro E., Malpartida I., Rico R.M., Masojidek J., Abdala R., Figueroa F.L. Hydrodynamics and photosynthesis performance of Chlorella fusca (Chlorophyta) grown in a thin-layer cascade (TLC) system. Aquat. Biol. 2014;22:111–122. doi: 10.3354/ab00603. DOI

Bumbak F., Cook S., Zachleder V., Hauser S., Kovar K. Best practices in heterotrophic high-cell-density microalgal processes: Achievements, potential and possible limitations. Appl. Microbiol. Biotechnol. 2011;91:31–46. doi: 10.1007/s00253-011-3311-6. PubMed DOI PMC

Zhu Z., Luan G., Tan X., Zhang H., Lu X. Rescuing ethanol photosynthetic production of cyanobacteria in non-sterilized outdoor cultivations with a bicarbonate-based pH-rising strategy. Biotechnol. Biofuels. 2017;10:93. doi: 10.1186/s13068-017-0765-5. PubMed DOI PMC

Taylor M., Ramond J.B., Tuffin M., Burton S., Eley K., Cowan D. Mechanisms and Applications of Microbial Solvent Tolerance. In: Liu Z.L., editor. Microbial Stress Tolerance for Biofuels, Microbiology Monographs 22. Springer; Berlin/Heidelberg, Germany: 2012. DOI

Gallego A., Gemini V.L., Fortunato M.S., Dabas P., Rossi S.L., Gomez C.E., Vescina C., Planes E.I., Korol S.E. Degradation and Detoxification of Cresols in Synthetic and Industrial Wastewater by an Indigenous Strain of Pseudomonas putida in Aerobic Reactors. Environ. Toxicol. 2008;23:664–671. doi: 10.1002/tox.20365. PubMed DOI

Neumegen R.A., Fernandez-Alba A.R., Chisti Y. Toxicities of Triclosan, Phenol, and Copper Sulfate in Activated Sludge. Environ. Toxicol. 2005;20:160–164. doi: 10.1002/tox.20090. PubMed DOI

Ehimen E.A., Connaughton S., Sun Z., Carrington G.C. Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass. GCB Bioenergy. 2009;1:371–381. doi: 10.1111/j.1757-1707.2009.01029.x. DOI

Bohutskyi P., Ketter B., Chow S., Adams K.J., Betenbaugh M.J., Allnutt F.C.T., Bouwer E.J. Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery. Bioresour. Technol. 2015;183:229–239. doi: 10.1016/j.biortech.2015.02.012. PubMed DOI

Zhao B., Ma J., Zhao Q., Laurens L., Jarvis E., Chen S., Frear C. Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Bioresour. Technol. 2014;161:423–430. doi: 10.1016/j.biortech.2014.03.079. PubMed DOI

Golmakani M.-T., Mendiola J.A., Rezaei K., Ibanez E. Pressurized limonene as an alternative bio-solvent for the extraction of lipids from marine microorganisms. J. Supercrit. Fluids. 2014;92:1–7. doi: 10.1016/j.supflu.2014.05.001. DOI

Gilbert-Lopez B., Mendiola J.A., Fontecha J., van Den Broek L.A.M., Sijtsma L., Cifuentes A., Herrero M., Ibanez E. Downstream processing of Isochrysis galbana: A step towards microalgal biorefinery. Green Chem. 2015;17:4599–4609. doi: 10.1039/C5GC01256B. DOI

Castro-Puyana M., Herrero M., Urreta I., Mendiola J.A., Cifuentes A., Ibanez E., Suarez-Alvarez S. Optimization of clean extraction methods to isolate carotenoids from the microalga Neochloris oleoabundans and subsequent chemical characterization using liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2013;405:4607–4616. doi: 10.1007/s00216-012-6687-y. PubMed DOI

Castro-Puyana M., Perez-Sanchez A., Valdes A., Ibrahim O.H.M., Suarez-Alvarez S., Ferragut J.A., Micol V., Cifuentes A., Ibanez E., Garcia-Canas V. Pressurized liquid extraction of Neochloris oleoabundans for the recovery of bioactive carotenoids with anti-proliferative activity against human colon cancer cells. Food Res. Int. 2016 doi: 10.1016/j.foodres.2016.05.021. PubMed DOI

Gilbert-Lopez B., Mendiola J.A., van den Broek L.A.M., Houweling-Tan B., Sijtsma L., Cifuentes A., Herrero M., Ibanez E. Green compressed fluid technologies for downstream processing of Scenedesmus obliquus in a biorefinery approach. Algal Res. 2017;24:111–121. doi: 10.1016/j.algal.2017.03.011. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...