Study of Copper and Purine-Copper Complexes on Modified Carbon Electrodes by Cyclic and Elimination Voltammetry
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27879715
PubMed Central
PMC3681135
DOI
10.3390/s8010429
PII: s8010429
Knihovny.cz E-zdroje
- Klíčová slova
- Anodic and cathodic stripping techniques, Confidence ellipse, Copper-purine complexes, Elimination voltammetry, Mercuryfilm electrode, Paraffin-impregnated graphite electrode,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Using a paraffin impregnated graphite electrode (PIGE) and mercury-modifiedpyrolytic graphite electrode with basal orientation (Hg-PGEb) copper(II) and Cu(II)-DNApurine base solutions have been studied by cyclic (CV) and linear sweep voltammetry(LSV) in connection with elimination voltammetry with linear scan (EVLS). In chlorideand bromide solutions (pH 6), the redox process of Cu(II) proceeded on PIGE with twocathodic and two anodic potentially separated signals. According to the eliminationfunction E4, the first cathodic peak corresponds to the reduction Cu(II) e⁻ → Cu(I) withthe possibility of fast disproportionation 2Cu(I) → Cu(II) Cu(0). The E4 of the secondcathodic peak signalized an electrode process controlled by a surface reaction. Theelectrode system of Cu(II) on Hg-PGEb in borate buffer (pH 9.2) was characterized by onecathodic and one anodic peak. Anodic stripping voltammetry (ASV) on PIGE and cathodicstripping voltammetry (CSV) on Hg-PGEb were carried out at potentials where thereduction of copper ions took place and Cu(I)-purine complexes were formed. By usingASV and CSV in combination with EVLS, the sensitivity of Cu(I)-purine complexdetection was enhanced relative to either ASV or CSV alone, resulting in higher peakcurrents of more than one order of magnitude. The statistical treatment of CE data wasused to determine the reproducibility of measurements. Our results show that EVLS inconnection with the stripping procedure is useful for both qualitative and quantitativemicroanalysis of purine derivatives and can also reveal details of studied electrodeprocesses.
Department of Chemistry Faculty of Science Masaryk University Kotlarska 2 611 37 Brno Czech Republic
Zobrazit více v PubMed
Palecek E., Jelen F. Electrochemistry of Nucleic Acids. Elsevier; Amsterdam: 2005. pp. 74–173.
Fadrna R., Yosypchuk B., Fojta M., Navratil T., Novotny L. Voltammetric determination of adenine, guanine, and DNA using liquid mercury free polished silver solid amalgam electrode. Anal. Lett. 2004;37:399–413.
Farias P.A.M., Wagener A.D., Castro A.A. Ultratrace determination of adenine in the presence of copper by adsorptive stripping voltammetry. Talanta. 2001;55:281–290. PubMed
Hason S., Jelen F., Fojt L., Vetterl V. Determination of picogram quantities of oligodeoxynucleotides by stripping voltammetry at mercury modified graphite electrode surfaces. J. Electroanal. Chem. 2005;577:263–272.
Jelen F., Kourilova A., Pecinka P., Palecek E. Microanalysis of DNA by stripping transfer voltammetry. Bioelectrochemistry. 2004;63:249–252. PubMed
Wang J., Kawde A.B. Amplified label-free electrical detection of DNA hybridization. Analyst. 2002;127:383–386. PubMed
dosSantos M.M.C., Lopes C.M.L.F., Goncalves M.L.S. Voltammetric studies of purine bases and purine nucleosides with copper. Bioelectrochem. Bioenerg. 1996;39:55–60.
Glodowski S., Bilewicz R., Kublik Z. Determination of traces of purine by cathodic stripping voltammetry at the hanging copper amalgam drop. Anal. Chim. Acta. 1986;186:39–47.
McCreery R.L., K. C.K. Carbon Electrodes. Marcel Dekker; 1996. pp. 293–332.
Cui H., Zou G.Z., Lin X.Q. Electrochemiluminescence of luminol in alkaline solution at a paraffin-impregnated graphite electrode. Anal. Chem. 2003;75:324–331. PubMed
Gong J.M., Lin X.G. Facilitated electron transfer of hemoglobin embedded in nanosized Fe3O4 matrix based on paraffin impregnated graphite electrode and electrochemical catalysis for trichloroacetic acid. Microchem. J. 2003;75:51–57.
Komorsky-Lovric S. Redox kinetics of adriamycin adsorbed on the surface of graphite and mercury electrodes. Bioelectrochemistry. 2006;69:82–87. PubMed
Walcarius A. Zeolite-modified paraffin-impregnated graphite electrode. J. Solid State Electrochem. 2006;10:469–478.
Orinakova R., Streckova M., Trnkova L., Rozik R., Galova M. Comparison of chloride and sulphate electrolytes in nickel electrodeposition on a paraffin impregnated graphite electrode. J. Electroanal. Chem. 2006;594:152–159.
Orinakova R., Trnkova L., Galova M., Supicova M. Application of elimination voltammetry in the study of electroplating processes on the graphite electrode. Electrochim. Acta. 2004;49:3587–3594.
Rozik R., Trnkova L. Cadmium reduction process on paraffin impregnated graphite electrode studied by elimination voltammetry with linear scan. J. Electroanal. Chem. 2006;593:247–257.
Streckova M., Orinakova R., Rozik R., Trnkova L., Galova M. A study of nickel electrodeposition on paraffin-impregnated graphite electrode. Helvetica Chim. Acta. 2006;89:622–634.
McCreery R.L. Electron Transfer Kinetics at Carbon Electrodes. Marcel Dekker; 1991. pp. 221–374.
Dryhurst G., Elving P.J. Electrochemical Oxidation of Adenine - Reaction Products and Mechanisms. J. Electrochem. Soc. 1968;115:1014–1020.
Goyal R.N., Brajtertoth A., Dryhurst G. Further Insights into the Electrochemical Oxidation of Uric-Acid. J. Electroanal. Chem. 1982;131:181–202.
Goyal R.N., Rajeshwari I., Mathur N.C. Electrochemical Oxidation of Uric-Acid and 6-Thiouric Acid. Bioelectrochem. Bioenerg. 1990;24:355–360.
Ibrahim M.S., Temerk Y.M., Kamal M.M., Ahmed G.A.W., Ibrahim H.S.M. Ultra-sensitive anodic stripping voltammetry for the determination of xanthine at a glassy carbon electrode. Microchim. Acta. 2004;144:249–256.
Kachoosangi R.T., Banks C.E., Compton R.G. Simultaneous determination of uric acid and ascorbic acid using edge plane pyrolytic graphite electrodes. Electroanalysis. 2006;18:741–747.
Shiraishi H., Takahashi R. Accumulation of Adenine and Guanine as Cu+ Compounds at Glassy-Carbon Electrodes Followed by Anodic-Stripping Voltammetry. Bioelectrochem. Bioenerg. 1993;31:203–213.
Safavi A., Maleki N., Shams E., Shahbaazi H.R. Determinaton of copper by adsorptive stripping voltammetry of its complex with adenine. Electroanalysis. 2002;14:929–934.
Farias P.A.M., Wagener A.D.R., Bastos M.B.R., da Silva A.T., Castro A.A. Cathodic adsorptive stripping voltammetric behaviour of guanine in the presence of copper at the static mercury drop electrode. Talanta. 2003;61:829–835. PubMed
Farias P.A.M., Castro A.A., Wagener A.D.R., Junqueira A.A. DNA determination in the presence of copper in diluted alkaline electrolyte by adsorptive stripping voltammetry at the mercury film electrode. Electroanalysis. 2007;19:1207–1212.
Jelen F., Yosypchuk B., Kourilova A., Novotny L., Palecek E. Label-Free Determination of Picogram Quantities of DNA by Stripping Voltammetry with Solid Copper Amalgam or Mercury Electrodes in the Presence of Copper. Anal. Chem. 2002;74:4788–4793. PubMed
Trnkova L., Dracka O. Elimination voltammetry. Experimental verification and extension of theoretical results. J. Electroanal. Chem. 1996;413:123–129.
Palecek E. Oszillographische Polarographie der Nucleinsauren und ihrer Bestandteile. Naturwiss. 1958;45:186–187.
Trnkova L., Jelen F., Postbieglova I. Application of elimination voltammetry to the resolution of adenine and cytosine signals in oligonucleotides. I. Homooligodeoxynucleotides dA(9) and dC(9) Electroanalysis. 2003;15:1529–1535.
Trnkova L., Jelen F., Postbieglova I. Application of elimination voltammetry to the resolution of adenine and cytosine signals in oligonucleotides II. Hetero-oligodeoxynucleotides with different sequences of adenine and cytosine nucleotides. Electroanalysis. 2006;18:662–669.
Galus Z. Fundamentals of Electrochemical analysis. Polish Scientific Publisher PWN; 1994.
Scholz F. Electroanalytical Methods, Guide to Experiment and Applications. Springer; Heidelberg, Germany: 2002.
Scholz F., Meyer B. Electrochemical solid state analysis: state of the art. Chem. Soc. Rev. 1994;23:341–347.
Dracka O. Theory of current elimination in linear scan voltammetry. J. Electroanal. Chem. 1996;402:19–28.
Supicova M., Rozik R., Trnkova L., Orinakova R., Galova M. Influence of boric acid on the electrochemical deposition of Ni. J. Solid State Electrochem. 2005;10:61–68.
Trnkova L. Elektrochemické eliminační metody. Chem. Listy. 2001;95:518–527.
Trnkova L. Identification of current nature by elimination voltammetry with linear scan. J. Electroanal. Chem. 2005;582:258–266.
Trnkova L., Friml J., Dracka O. Elimination voltammetry of adenine and cytosine mixtures. Bioelectrochem. 2001;54:131–136. PubMed
Trnkova L., Kizek R., Dracka O. Application of elimination voltammetry to adsorptive stripping of DNA. Electroanalysis. 2000;12:905–911.
Trnkova L., Kizek R., Dracka O. Appplication of elimination methods in electrochemical study of DNA. J. Biomol. Struct. Dynam. 2000;17:1169–70.
Trnkova L., Kizek R., Dracka O. Elimination voltammetry of nucleic acids on silver electrodes. Bioelectrochem. 2002;55:131–133. PubMed
Trnkova L., Postbieglova I., Holik M. Electroanalytical determination of d(GCGAAGC) hairpin. Bioelectrochem. 2004;63:25–30. PubMed
Mikelova R., Trnkova L., Jelen F., Adam V., Kizek R. Resolution of overlapped reduction signals in short hetero-oligonucleotides by elimination voltammetry. Electroanalysis. 2007;19:348–355.
Holik M., Halamek J. Transformation of a Free-Wilson Matrix into Fourier Coefficients. Quant. Struct.-Act. Relat. 2002;20:422–428.
Souto R.M., Saakes M., Sluyters-Rehbach M., Sluyters J.H. The catalysis of the electrochemical reduction of camium ions by chloride ions. J. Electroanal. Chem. 1988;245:167–189.
Grujicic D., Pesic B. Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon. Electrochim. Acta. 2005;50:4426–4443.
Jagner D., Sahlin E., Renman L. Experimental and Computational Study of Species Formed During Electrochemical Stripping Oxidation of Copper in Chloride Media - Determination of Copper(Ii) in the Ng 1(-1) Range by Stripping Potentiometry. Talanta. 1995;42:1447–1455. PubMed
Hason S., Vetterl V. Amplified oligonucleotide sensing in microliter volumes containing copper ions by solution streaming. Anal. Chem. 2006;78:5179–5183. PubMed
Hason S., Vetterl V. Microanalysis of oligodeoxynucleotides by cathodic stripping voltammetry at amalgam-alloy surfaces in the presence of copper ions. Talanta. 2006;69:572–580. PubMed
Jelen F., Hason S., Trnkova L. Microanalysis of nucleic acids bases and oligonucleotides by electrochemical stripping techniques. Research Signpost; 2007. pp. 153–171.
Holik M., Halamek J. Calculation of the tilts of curved lines. Chemometrics Intell. Lab. Syst. 2003;1382:1–9.
Bilewicz R., Glodowski S., Kublik Z. The influence of adenine on the electrochemical behaviour of the Cu/II/ / Cu/0/ system. J. Electroanal. Chem. 1989;274:201–212.
Bilewicz R., Muszalska E. Voltammetric behaviour of copper complexes with the antitumour drug 6-mercaptopurine. J. Electroanal. Chem. 1991;300:147–157.
Palecek E., Fojta M. Detecting DNA hybridization and damage. Anal. Chem. 2001;73:74A–83A. PubMed
Thorp H.H. Cutting out the middleman: DNA biosensors based on electrochemical oxidation. Trends Biotechnol. 1998;16:117–121.
Thorp H.H. Reagentless detection of DNA sequences on chemically modified electrodes. Trends Biotechnol. 2003;21:522–524. PubMed
Wang J. Towards genoelectronics: Electrochemical biosensing of DNA hybridization. Chem.- Eur. J. 1999;5:1681–1685.
Utilization of Electrochemical Sensors and Biosensors in Biochemistry and Molecular Biology