Functionalized solid electrodes for electrochemical biosensing of purine nucleobases and their analogues: a review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
25594595
PubMed Central
PMC4327092
DOI
10.3390/s150101564
PII: s150101564
Knihovny.cz E-zdroje
- MeSH
- biosenzitivní techniky metody MeSH
- elektrochemické techniky metody MeSH
- elektrody MeSH
- oxidace-redukce MeSH
- povrchové vlastnosti MeSH
- puriny analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- purine MeSH Prohlížeč
- puriny MeSH
Interest in electrochemical analysis of purine nucleobases and few other important purine derivatives has been growing rapidly. Over the period of the past decade, the design of electrochemical biosensors has been focused on achieving high sensitivity and efficiency. The range of existing electrochemical methods with carbon electrode displays the highest rate in the development of biosensors. Moreover, modification of electrode surfaces based on nanomaterials is frequently used due to their extraordinary conductivity and surface to volume ratio. Different strategies for modifying electrode surfaces facilitate electron transport between the electrode surface and biomolecules, including DNA, oligonucleotides and their components. This review aims to summarize recent developments in the electrochemical analysis of purine derivatives, as well as discuss different applications.
Zobrazit více v PubMed
Robak T. Novel drugs for chronic lymphoid leukemias: Mechanism of action and therapeutic activity. Curr. Med. Chem. 2009;16:2212–2234. PubMed
Robak T., Korycka A., Kasznicki M., Wrzesien-Kus A., Smolewski P. Purine nucleoside analogues for the treatment of hematological malignancies: Pharmacology and clinical applications. Curr. Cancer Drug Targets. 2005;5:421–444. PubMed
Palecek E., Jelen F. Electrochemistry of nucleic acids and development of DNA sensors. Crit. Rev. Anal. Chem. 2002;32:261–270.
Palecek E., Jelen F. Electrochemistry of nucleic acids. In: Palecek E., Scheller F., Wang J., editors. Electrochemistry of Nucleic Acids and Proteins. Towards Electrochemical Sensors for Genomics and Proteomics. Volume 1. Elsevier; New York, NY, USA: 2005. pp. 74–173.
Oliveira-Brett A.M., Piedade J.A.P., Silva L.A., Diculescu V.C. Voltammetric determination of all DNA nucleotides. Anal. Biochem. 2004;332:321–329. PubMed
Stempkowska I., Ligaj M., Jasnowska J., Langer J., Filipiak M. Electrochemical response of oligonucleotides on carbon paste electrode. Bioelectrochemistry. 2007;70:488–494. PubMed
Wang J. Stripping Analysis. Principles, Instrumentation and Applications. VCH; Deerfield Beach, FL, USA: 1985.
Wang J. Electroanalysis and biosensors. Anal. Chem. 1999;71:328R–332R. PubMed
Dryhurst G. Electrochemistry of Biological Molecules. Academic Press; New York, NY, USA: 1977.
Goyal R.N., Bishnoi S., Singh R.K. Electrochemical sensor for the simultaneous voltammetric determination of adenosine and adenine. Indian J. Chem. 2011;50:1026–1034.
Goncalves L.M., Batchelor-McAuley C., Barros A.A., Compton R.G. Electrochemical oxidation of adenine: A mixed adsorption and diffusion response on an edge-plane pyrolytic graphite electrode. J. Phys. Chem. C. 2010;114:14213–14219.
Goyal R.N., Chatterjee S., Bishnoi S. Voltammetric determination of 2′-deoxyadenosine and adenine in urine of patients with hepatocellular carcinoma using fullerene-C-60-modified glassy carbon electrode. Electroanalysis. 2009;21:1369–1378.
Goyal R.N., Kumar A., Mittal A. Oxidation chemistry of adenine and hydroxyadenines at pyrolytic—graphite electrodes. J. Chem. Soc.-Perkin Trans. 1991;2:1369–1375.
Oliveira-Brett A.M., Diculescu V., Piedade J.A.P. Electrochemical oxidation mechanism of guanine and adenine using a glassy carbon microelectrode. Bioelectrochemistry. 2002;55:61–62. PubMed
Goyal R.N., Sangal A. Electrochemical investigations of adenosine at solid electrodes. J. Electroanal. Chem. 2002;521:72–80.
Goyal R.N., Sangal A. Electrochemical oxidation of adenosine monophosphate at a pyrolytic graphite electrode. J. Electroanal. Chem. 2003;557:147–155.
Li Q., Batchelor-Mcauley C., Compton R.G. Electrochemical oxidation of guanine: Electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses. J. Phys. Chem. B. 2010;114:7423–7428. PubMed
Qin X., Liu X., Hong-Bo L., Li-Na Y., Xiaoya H. Electrochemical determination of purine and pyrimidine DNA bases based on the recognition properties of azocalix[4]arene. Biosens. Bioelectron. 2013;42:355–361. PubMed
Svorc L., Kalcher K. Modification-free electrochemical approach for sensitive monitoring of purine DNA bases: Simultaneous determination of guanine and adenine in biological samples using boron-doped diamond electrode. Sens. Actuators B Chem. 2014;194:332–342.
Muti M., Erdem A., Karagozler A.E., Soysal M. 5-Amino-2-mercapto-1,3,4-thidiazole modified single-use sensors for electrochemical DNA analysis. Colloids Surf. B-Biointerfac. 2012;93:116–120. PubMed
Liu X., Luo L., Ding Y., Wu Q., Wei Y., Ye D. A highly sensitive method for determination of guanine, adenine and epinephrine using poly-melamine film modified glassy carbon electrode. J. Electroanal. Chem. 2012;675:47–53.
Brahman P.K., Dar R.A., Pitre K.S. Voltammetric study of ds-DNA-flutamide interaction at carbon paste electrode. Arab. J. Chem. 2012 doi: 10.1016/j.arabjc.2012.08.007. DOI
Zou L.N., Li Y.M., Ye B.X. Voltammetric sensing of guanine and adenine using a glassy carbon electrode modified with a tetraoxocalix[2]arene[2]triazine Langmuir-Blodgett film. Microchim. Acta. 2011;173:285–291.
Song Y., Li J.Z. Direct electrochemical determination of adenine using hpmft-modified glassy carbon electrode in comercial pharmaceutical products. Instrum. Sci. Technol. 2011;39:261–272.
Feng L.J., Zhang X.H., Liu P., Xiong H.Y., Wang S.F. An electrochemical sensor based on single-stranded DNA-poly(sulfosalicylic acid) composite film for simultaneous determination of adenine, guanine, and thymine. Anal. Biochem. 2011;419:71–75. PubMed
Sonmez M., Elebi M., Yardm Y., Enturk Z. Palladium(II) and platinum(II) complexes of a symmetric Schiff base derived from 2,6-diformyl-4-methylphenol with N-aminopyrimidine: Synthesis, characterization and detection of DNA interaction by voltammetry. Eur. J. Med. Chem. 2010;45:4215–4220. PubMed
Rawson F.J., Jackson S.K., Hart J.P. Voltammetric behavior of DNA and its derivatives using screen printed carbon electrodes and its possible application in genotoxicity screening. Anal. Lett. 2010;43:1790–1800.
Ferancova A., Rengaraj S., Kim Y., Labuda J., Sillanpaa M. Electrochemical determination of guanine and adenine by CdS microspheres modified electrode and evaluation of damage to DNA purine bases by UV radiation. Biosens. Bioelectron. 2010;26:314–320. PubMed
Zhang R., Jin G.D., Hu X.Y. Sensitive determination of adenine on poly(amidosulfonic acid)-modified glassy carbon electrode. J. Solid State Electrochem. 2009;13:1545–1552.
Xu Q., Sun M., Du Q., Bian X., Chen D., Hu X. Tailoring the electrode by cysteic acid for sensitive determination of adenine in vitamin B4 tablet. Curr. Pharm. Anal. 2009;5:190–196.
Navratil T., Yosypchuk B., Barek J. A multisensor for electrochemical sequential autonomous automatic measurements. Chem. Anal. 2009;54:3–17.
Kamel A.H., Moreira F.T.C., Delerue-Matos C., Sales M.G.F. Electrochemical determination of antioxidant capacities in flavored waters by guanine and adenine biosensors. Biosens. Bioelectron. 2008;24:591–599. PubMed
Zari N., Mohammedi H., Amine A., Ennaji M.M. DNA hydrolysis and voltammetric determination of guanine and adenine using different electrodes. Anal. Lett. 2007;40:1698–1713.
Honeychurch K.C., O'Donovan M.R., Hart J.P. Voltammetric behaviour of DNA bases at a screen-printed carbon electrode and its application to a simple and rapid voltammetric method for the determination of oxidative damage in double stranded DNA. Biosens. Bioelectron. 2007;22:2057–2064. PubMed
Dolinnaya N.G., Jan M.R., Kawde A.N., Oretskaya T.S., Tashlitsky V.N., Wang J. Electrochemical detection of abasic site-containing DNA. Electroanalysis. 2006;18:399–404.
Bagni G., Ravera M., Osella D., Mascini M. Electrochemical biosensors as a screening tool of in vitro DNA-drug interaction. Curr. Pharm. Anal. 2005;1:217–224.
Karadeniz H., Gulmez B., Sahinci F., Erdem A., Kaya G.I., Unver N., Kivcak B., Ozsoz M. Disposable electrochemical biosensor for the detection of the interaction between DNA and lycorine based on guanine and adenine signals. J. Pharm. Biomed. Anal. 2003;33:295–302. PubMed
Ivandini T.A., Sarada B.V., Rao T.N., Fujishima A. Electrochemical oxidation of underivatized-nucleic acids at highly boron-doped diamond electrodes. Analyst. 2003;128:924–929. PubMed
Golea D.A., Diculescu V.C., Enache A.T., Butu A., Tugulea L., Brett A.M.O. Electrochemical evaluation of dsDNA—Liposomes interactions. Dig. J. Nanomater. Biostruct. 2012;7:1333–1342.
Yan F.F., Wang F., Chen Z.L. Aptamer-based electrochemical biosensor for label-free voltammetric detection of thrombin and adenosine. Sens. Actuators B Chem. 2011;160:1380–1385.
Gao H.W., Duan Y.Y., Xi M.Y., Sun W. Voltammetric detection of guanosine and adenosine using a carbon paste electrode modified with 1-ethyl-3-methylimidazolium ethylsulfate. Microchim. Acta. 2011;172:57–64.
Sun W., Duan Y.Y., Li Y.Z., Zhan T.R., Jiao K. Electrochemistry and Voltammetric Determination of Adenosine with N-Hexylpyridinium Hexafluorophosphate Modified Electrode. Electroanalysis. 2009;21:2667–2673.
Topkaya S.N., Ozkan-Ariksoysal D., Kosova B., Ozel R., Ozsoz M. Electrochemical DNA biosensor for detecting cancer biomarker related to glutathione S-transferase P1 (GSTP1) hypermethylation in real samples. Biosens. Bioelectron. 2012;31:516–522. PubMed
Dogan-Topal B., Uslu B., Ozkan S.A. Voltammetric studies on the HIV-1 inhibitory drug Efavirenz: The interaction between dsDNA and drug using electrochemical DNA biosensor and adsorptive stripping voltammetric determination on disposable pencil graphite electrode. Biosens. Bioelectron. 2009;24:2358–2364. PubMed
Yardim Y., Senturk Z., Ozsoz M., Ozdemir K., Atalan E. Trace determination of DNA in an amaryllidaceae plant, Narcissus tazetta by square-wave stripping voltammetry based on guanine signal. Fabad J. Pharm. Sci. 2007;32:159–165.
Nowicka A.M., Zabost E., Donten M., Mazerska Z., Stojek Z. Electroanalytical and spectroscopic procedures for examination of interactions between double stranded DNA and intercalating drugs. Anal. Bioanal. Chem. 2007;389:1931–1940. PubMed
Abbaspour A., Baramakeh L., Nabavizadeh S.M. Development of a disposable sensor for electrocatalytic detection of guanine and ss-DNA using a modified sol-gel screen-printed carbon electrode. Electrochim. Acta. 2007;52:4798–4803.
Yabuki S., Sato Y., Niwa O. Measurement of DNA amount on gold plate based on the oxidation current of guanine. Bunseki Kagaku. 2006;55:975–978.
Bagni G., Osella D., Sturchio E., Mascini M. Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies. Anal. Chim. Acta. 2006;573–574:81–89. PubMed
Ozsoz M., Erdem A., Ozkan D., Kara P., Karadeniz H., Meric B., Kerman K., Girousi S. Allele-specific genotyping by using guanine and gold electrochemical oxidation signals. Bioelectrochemistry. 2005;67:199–203. PubMed
Wang J., Chen G., Muck A., Shin D.C., Fujishima A. Microchip capillary electrophoresis with a boron-doped diamond electrode for rapid separation and detection of purines. J. Chromatogr. A. 2004;1022:207–212. PubMed
Ferapontova E.E. Electrochemistry of guanine and 8-oxoguanine at gold electrodes. Electrochim. Acta. 2004;49:1751–1759.
Ozsoz M., Erdem A., Kara P., Kerman K., Ozkan D. Electrochemical biosensor for the detection of interaction between arsenic trioxide and DNA based on guanine signal. Electroanalysis. 2003;15:613–619.
Kerman K., Morita Y., Takamura Y., Tamiya E. Label-free electrochemical detection of DNA hybridization on gold electrode. Electrochem. Commun. 2003;5:887–891.
Goyal R.N., Gupta V.K., Oyama M., Bachheti N. Voltammetric determination of adenosine and guanosine using fullerene-C(60)-modified glassy carbon electrode. Talanta. 2007;71:1110–1117. PubMed
Yao T., Taniguchi Y., Wasa T., Musha S. Anodic voltammetry and its analytical application to the detection and simultaneous determination of hypoxanthine, xanthine, and uric acid. Bull. Chem. Soc. Jpn. 1978;51:2937–2941.
Goyal R.N. Electrochemical Oxidation at Solid Electrodes. Indian J. Chem. 1989;28:467–471.
Ibrahim M.S., Temerk Y.M., Kamal M.M., Ahmed G.A.W., Ibrahim H.S.M. Ultra-sensitive anodic stripping voltammetry for the determination of xanthine at a glassy carbon electrode. Microchim. Acta. 2004;144:249–256.
Ojani R., Alinezhad A., Abedi Z. A highly sensitive electrochemical sensor for simultaneous detection of uric acid, xanthine and hypoxanthine based on poly(l-methionine) modified glassy carbon electrode. Sens. Actuators B Chem. 2013;188:621–630.
Dou Z.Y., Cui L.L., He X.Q. Electrochimical determination of uric acid, xanthine and hypoxanthine by poly(xylitol) modified glassy carbon electrode. J. Cent. South Univ. 2014;21:870–876.
Devi R., Batra B., Lata S., Yadav S., Pundir C.S. A method for determination of xanthine in meat by amperometric biosensor based on silver nanoparticles/cysteine modified Au electrode. Process Biochem. 2013;48:242–249.
Thangaraj R., Kumar A.S. Graphitized mesoporous carbon modified glassy carbon electrode for selective sensing of xanthine, hypoxanthine and uric acid. Anal. Methods. 2012;4:2162–2171.
Pundir C.S., Devi R., Narang J., Singh S., Nehra J., Chaudhry S. Fabrication of an amperometric xanthine biosensor based on polyvinylchloride membrane. J. Food Biochem. 2012;36:21–27.
Liu Y., Li W., Wei C., Lu L. Preparation of a xanthine sensor based on the immobilization of xanthine oxidase on a chitosan modified electrode by cross-linking. Chin. J. Chem. 2012;30:1601–1604.
Liu L., Wang H., Bo X., Yang L., Guo L. Electrochemistry and simultaneous detection of metabolites of purine nucleotide based on large mesoporous carbon modified electrode. Electroanalysis. 2012;24:1401–1408.
Wang Y., Tong L.L. Electrochemical sensor for simultaneous determination of uric acid, xanthine and hypoxanthine based on poly (bromocresol purple) modified glassy carbon electrode. Sens. Actuators B Chem. 2010;150:43–49.
Lin L., Song C., Xie L., Yu L., Wu L., Zhang M., Yang S., Gao H., Li X. Electrochemical determination of xanthine and hypoxanthine in rat striatum with an acetylene black-dihexadecyl hydrogen phosphate composite film modified electrode by HPLC coupled with in vivo microdialysis. Microchim. Acta. 2010;170:47–52.
Revin S.B., John S.A. Selective determination of inosine in the presence of uric acid and hypoxanthine using modified electrode. Anal. Biochem. 2012;421:278–284. PubMed
Ivandini T.A., Honda K., Rao T.N., Fujishima A., Einaga Y. Simultaneous detection of purine and pyrimidine at highly boron-doped diamond electrodes by using liquid chromatography. Talanta. 2007;71:648–655. PubMed
Deng C.Y., Xia Y.L., Xiao C.H., Nie Z., Yang M.H., Si S.H. Electrochemical oxidation of purine and pyrimidine bases based on the boron-doped nanotubes modified electrode. Biosens. Bioelectron. 2012;31:469–474. PubMed
Hason S., Pivonkova H., Vetterl V., Fojta M. Label-free sequence-specific DNA sensing using copper-enhanced anodic stripping of purine bases at boron-doped diamond electrodes. Anal. Chem. 2008;80:2391–2399. PubMed
Bowden E.F., Hawkridge F.M., Chlebowski J.F., Bancroft E.E., Thorpe C., Blount H.N. Cyclic voltammetry and derivative cyclic voltabsorptometry of purified horse heart cytochrome c at tin-doped indium oxide optically transparent electrodes. J. Am. Chem. Soc. 1982;104:7641–7644.
Johnston D.H., Glasgow K.C., Thorp H.H. Electrochemical measurement of the solvent accessibility of nucleobases using electron transfer between DNA and metal complexes. J. Am. Chem. Soc. 1995;117:8933–8938.
Thorp H.H. Cutting out the middleman: DNA biosensors based on electrochemical oxidation. Trends Biotechnol. 1998;16:117–121.
Moses S., Brewer S.H., Kraemer S., Fuierer R.R., Lowe L.B., Agbasi C., Sauthier M., Franzen S. Detection of DNA hybridization on indium tin oxide surfaces. Sens. Actuators B Chim. 2007;125:574–580.
Sistare M.F., Holmberg R.C., Thorp H.H. Electrochemical studies of polynucleotide binding and oxidation by metal complexes: Effects of scan rate, concentration, and sequence. J. Phys. Chem. B. 1999;103:10718–10728.
Armistead P.M., Thorp H.H. Oxidation kinetics of guanine in DNA molecules adsorbed onto indium tin oxide electrodes. Anal. Chem. 2001;73:558–564. PubMed
Hong W., Li H., Yao S., Sun F., Xu Z.H. Mediated oxidation of guanine by [Ru(bpy)2dpp]2+ and their electrochemical assembly on the ITO electrode. Electrochim. Acta. 2009;54:3250–3254.
Guo Q.Y., Li H., Yang H.Y., Shao J.Y. Fabrication and Photoelectrochemical Properties of [Ru(bpy)2dppz]2+ on ITO Electrode Associated with the Oxidation of Guanine. Chem. Res. Chin. Univ. 2010;26:649–655.
Goyal R.N., Oyama M., Singh S.P. Simultaneous determination of adenosine and adenosine-5′-triphosphate at nanogold modified Indium tin oxide electrode by Osteryoung square-wave voltammetry. Electroanalysis. 2007;19:575–581.
Wu Y., Feng X., Zhou S.H., Shi H.Y., Wu H.M., Zhao S.J., Song W.B. Sensing epinephrine with an ITO electrode modified with an imprinted chitosan film containing multi-walled carbon nanotubes and a polymerized ionic liquid. Microchim. Acta. 2013;180:1325–1332.
Singh A., Sinsinbar G., Choudhary M., Kumar V., Pasricha R., Verma H.N., Singh S.P., Arora K. Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sens. Actuators B Chem. 2013;185:675–684.
Zhao C.Z., Zhao G.S., Zhang Z.X., Liang J.Y. Preparation and application of photoelectrochemical guanine sensor. Acta Chim. Sinica. 2012;70:1401–1406.
Tang C., Umasankar Y., Chen S.M. Simultaneous determination of adenine guanine and thymine at multi-walled carbon nanotubes incorporated with poly(new fuchsin) composite film. Anal. Chim. Acta. 2009;636:19–27. PubMed
Fang Y., Wang E. Electrochemical biosensors on platforms of graphene. Chem. Commun. 2013;49:9526–9539. PubMed
Uslu B., Ozkan S.A. Solid electrodes in electroanalytical chemistry: Present applications and prospects for high throughput screening of drug compounds. Comb. Chem. High Throughput Screen. 2007;10:495–513. PubMed
Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. PubMed
Novoselov K.S., Jiang D., Schedin F., Booth T.J., Khotkevich V.V., Morozov S.V., Geim A.K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA. 2005;102:10451–10453. PubMed PMC
Pumera M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 2010;39:4146–4157. PubMed
Pumera M. Electrochemistry of graphene, graphene oxide and other graphenoids: Review. Electrochem. Commun. 2013;36:14–18.
Geim A.K., Novoselov K.S. The rise of graphene. Nat. Mater. 2007;6:183–191. PubMed
Alwarappan S., Erdem A., Liu C., Li C.Z. Probing the Electrochemical Properties of Graphene Nanosheets for Biosensing Applications. J. Phys. Chem. C. 2009;113:8853–8857.
Ambrosi A., Pumera M. Stacked graphene nanofibers for electrochemical oxidation of DNA bases. Phys. Chem. Chem. Phys. 2010;12:8944–8948. PubMed
Segal M. Selling graphene by the ton. Nat. Nanotechnol. 2009;4:612–614. PubMed
Shang N.G., Papakonstantinou P., McMullan M., Chu M., Stamboulis A., Potenza A., Dhesi S.S., Marchetto H. Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 2008;18:3506–3514.
Allen M.J., Tung V.C., Kaner R.B. Honeycomb carbon: A review of graphene. Chem. Rev. 2009;110:132–145. PubMed
Huang K.J., Niu D.J., Sun J.Y., Han C.H., Wu Z.W., Li Y.L., Xiong X.Q. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf. B Biointerfaces. 2011;82:543–549. PubMed
Randviir E.P., Banks C.E. Electrochemical measurement of the DNA bases adenine and guanine at surfactant-free graphene modified electrodes. RSC Adv. 2012;2:5800–5805.
Fan Y., Huang K.J., Niu D.J., Yang C.P., Jing Q.S. TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine. Electrochim. Acta. 2011;56:4685–4690.
Yin H., Zhou Y., Ma Q., Ai S., Ju P., Zhu L., Lu L. Electrochemical oxidation behavior of guanine and adenine on graphene–Nafion composite film modified glassy carbon electrode and the simultaneous determination. Process Biochem. 2010;45:1707–1712.
Zhou M., Zhai Y., Dong S. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009;81:5603–5613. PubMed
Zhu X.H., Zeng L.X., Xu M.T., Liang Y., Nan J.M. A glassy carbon electrode modified with electrochemically reduced graphene for simultaneous determination of guanine and adenine. Anal. Methods. 2012;4:2935–2939.
Kang X., Wang J., Wu H., Liu J., Aksay I.A., Lin Y. A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta. 2010;81:754–759. PubMed
Liu X., Zhang L., Wei S., Chen S., Ou X., Lu Q. Overoxidized polyimidazole/graphene oxide copolymer modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid, guanine and adenine. Biosens. Bioelectron. 2014;57:232–238. PubMed
Wang H., Bo X., Guo L. Electrochemical biosensing platform based on a novel porous graphene nanosheet. Sens. Actuators B Chem. 2014;192:181–187.
Areshkin D.A., Gunlycke D., White C.T. Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects. Nano Lett. 2007;7:204–210. PubMed
Rivas G.A., Rubianes M.D., Rodríguez M.C., Ferreyra N.F., Luque G.L., Pedano M.L., Miscoria S.A., Parrado C. Carbon nanotubes for electrochemical biosensing. Talanta. 2007;74:291–307. PubMed
Carrara S., Baj-Rossi C., Boero C., de Micheli G. Do Carbon nanotubes contribute to electrochemical biosensing? Electrochim. Acta. 2014;128:102–112.
Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58.
Jacobs C.B., Peairs M.J., Venton B.J. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta. 2010;662:105–127. PubMed
Gao C., Guo Z., Liu J.H., Huang X.J. The new age of carbon nanotubes: An updated review of functionalized carbon nanotubes in electrochemical sensors. Nanoscale. 2012;4:1948–1963. PubMed
Odom T.W., Huang J.L., Kim P., Lieber C.M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature. 1998;391:62–64.
Wilder J.W.G., Venema L.C., Rinzler A.G., Smalley R.E., Dekker C. Electronic structure of atomically resolved carbon nanotubes. Nature. 1998;391:59–62.
Wang J. Carbon-Nanotube Based Electrochemical Biosensors: A Review. Electroanalysis. 2005;17:7–14.
Huang J.S., Liu Y., You T.Y. Carbon nanofiber based electrochemical biosensors: A review. Anal. Methods. 2010;2:202–211.
Gooding J.J. Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochim. Acta. 2005;50:3049–3060.
Lota G., Fic K., Frackowiak E. Carbon nanotubes and their composites in electrochemical applications. Energy Environ. Sci. 2011;4:1592–1605.
Yanez-Sedeno P., Riu J., Pingarron J.M., Rius F.X. Electrochemical sensing based on carbon nanotubes. TrAC Trends Anal. Chem. 2010;26:939–953.
Yun Y.H., Dong Z.Y., Shanov V., Heineman W.R., Halsall H.B., Bhattacharya A., Conforti L., Narayan R.K., Ball W.S., Schulz M.J. Nanotube electrodes and biosensors. Nano Today. 2007;2:30–37.
Wang Z., Xiao S., Chen Y. β-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine. J. Electroanal. Chem. 2006;589:237–242.
Wu K.B., Fei J.J., Bai W., Hu S.S. Direct electrochemistry of DNA, guanine and adenine at a nanostructured film-modified electrode. Anal. Bioanal. Chem. 2003;376:205–209. PubMed
Wang P., Wu H., Dai Z., Zou X.Y. Simultaneous detection of guanine, adenine, thymine and cytosine at choline monolayer supported multiwalled carbon nanotubes film. Biosens. Bioelectron. 2011;26:3339–3345. PubMed
Kawde A.N., Saleh T.A. Electrochemical investigation of glassy carbon paste electrode and its application for guanine and ssDNA detection. Chem. Sens. 2011;1:18–24.
Goyal R.N., Bishnoi S. Sensitive voltammetric sensor for the determination of oxidative DNA damage in calf thymus DNA. Biosens. Bioelectron. 2010;26:463–469. PubMed
Goyal R.N., Chatterjee S., Rana A.R.S. Electrochemical sensor based on oxidation of 2,8-dihydroxyadenine to monitor dna damage in calf thymus DNA. Electroanalysis. 2011;23:1383–1390.
Belding S.R., Campbell F.W., Dickinson E.J.F., Compton R.G. Nanoparticle-modified electrodes. Phys. Chem. Chem. Phys. 2010;12:11208–11221. PubMed
Campbell F.W., Compton R.G. The use of nanoparticles in electroanalysis: an updated review. Anal. Bioanal. Chem. 2010;396:241–259. PubMed
Anker J.N., Hall W.P., Lyandres O., Shah N.C., Zhao J., van Duyne R.P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008;7:442–453. PubMed
Luo X., Morrin A., Killard A.J., Smyth M.R. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis. 2006;18:319–326.
Wang J., Xu D., Kawde A.-N., Polsky R. Metal Nanoparticle-Based Electrochemical Stripping Potentiometric Detection of DNA Hybridization. Anal. Chem. 2001;73:5576–5581. PubMed
Peng H., Zhang L., Soeller C., Travas-Sejdic J. Conducting polymers for electrochemical DNA sensing. Biomaterials. 2009;30:2132–2148. PubMed
Guo S., Wang E. Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta. 2007;598:181–192. PubMed
Rashid M.H., Bhattacharjee R.R., Kotal A., Mandal T.K. Synthesis of Spongy Gold Nanocrystals with Pronounced Catalytic Activities. Langmuir. 2006;22:7141–7143. PubMed
Daniel M.-C., Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2003;104:293–346. PubMed
Wang J. Electrochemical biosensing based on noble metal nanoparticles. Microchim. Acta. 2012;177:245–270.
Gole A., Dash C., Ramakrishnan V., Sainkar S.R., Mandale A.B., Rao M., Sastry M. Pepsin-Gold Colloid Conjugates: Preparation, Characterization, and Enzymatic Activity. Langmuir. 2001;17:1674–1679.
Goyal R.N., Oyama M., Tyagi A. Simultaneous determination of guanosine and guanosine-5′-triphosphate in biological sample using gold nanoparticles modified indium tin oxide electrode. Anal. Chim. Acta. 2007;581:32–36. PubMed
El-Said W.A., Choi J.W. Electrochemical Biosensor consisted of conducting polymer layer on gold nanodots patterned Indium Tin Oxide electrode for rapid and simultaneous determination of purine bases. Electrochim. Acta. 2014;123:51–57.
Li H., Wang X., Yu Z. Electrochemical biosensor for sensitively simultaneous determination of dopamine, uric acid, guanine, and adenine based on poly-melamine and nano Ag hybridized film-modified electrode. J. Solid State Electrochem. 2014;18:105–113.
Thangaraj R., Nellaiappan S., Sudhakaran R., Kumar A.S. A flow injection analysis coupled dual electrochemical detector for selective and simultaneous detection of guanine and adenine. Electrochim. Acta. 2014;123:485–493.
Pogacean F., Biris A.R., Coros M., Watanabe F., Biris A.S., Clichici S., Filip A., Pruneanu S. Electrochemical oxidation of adenine using platinum electrodes modified with carbon nanotubes. Phys. E. 2014;59:181–185.
Biris A.R., Pruneanu S., Pogacean F., Lazar M.D., Borodi G., Ardelean S., Dervishi E., Watanabe F., Biris A.S. Few-layer graphene sheets with embedded gold nanoparticles for electrochemical analysis of adenine. Int. J. Nanomed. 2013;8:1429. PubMed PMC
Niu L.M., Lian K.Q., Shi H.M., Wu Y.B., Kang W.J., Bi S.Y. Characterization of an ultrasensitive biosensor based on a nano-Au/DNA/nano-Au/poly (SFR) composite and its application in the simultaneous determination of dopamine, uric acid, guanine, and adenine. Sens. Actuators B Chem. 2013;178:10–18.
Arvand M., Motaghed Mazhabi R., Niazi A. Simultaneous determination of guanine, adenine and thymine using a modified carbon paste electrode by TiO2 nanoparticles-magnesium(II) doped natrolite zeolite. Electrochim. Acta. 2013;89:669–679.
Thangaraj R., Kumar A.S. Simultaneous detection of guanine and adenine in DNA and meat samples using graphitized mesoporous carbon modified electrode. J. Solid State Electrochem. 2013;17:583–590.
Toh R.J., Bonanni A., Pumera M. Oxidation of DNA bases is influenced by their position in the DNA strand. Electrochem. Commun. 2012;22:207–210.
Goh M.S., Pumera M. Oxidation of DNA bases influenced by the presence of other bases. Electroanalysis. 2012;24:1147–1152.
Goh M.S., Pumera M. Number of graphene layers exhibiting an influence on oxidation of DNA bases: Analytical parameters. Anal. Chim. Acta. 2012;711:29–31. PubMed
Abbaspour A., Noori A. A cyclodextrin host-guest recognition approach to a label-free electrochemical DNA hybridization biosensor. Analyst. 2012;137:1860–1865. PubMed
Pan H.C., Li D.N., Liu J.T., Li J.P., Zhu W.Y., Zhao Y.X. Sensing thermally denatured DNA by inhibiting the growth of au nanoparticles: Spectral and electrochemical studies. J. Phys. Chem. C. 2011;115:14461–14468.
Liu T., Zhu X., Cui L., Ju P., Qu X., Ai S. Simultaneous determination of adenine and guanine utilizing PbO 2-carbon nanotubes-ionic liquid composite film modified glassy carbon electrode. J. Electroanal. Chem. 2011;651:216–221.
Goh M.S., Bonanni A., Ambrosi A., Sofer Z., Pumera M. Chemically-modified graphenes for oxidation of DNA bases: Analytical parameters. Analyst. 2011;136:4738–4744. PubMed
Goyal R.N., Chatterjee S., Rana A.R.S., Chasta H. Application of modified pyrolytic graphite electrode as a sensor in the simultaneous assay of adenine and adenosine monophosphate. Sens. Actuators B Chem. 2011;156:198–203.
Cui J.J., Sun D.H., Zhou W.J., Liu H., Hu P.G., Ren N., Qin H.M., Huang Z., Lin J.J., Ma H.Y. Electrocatalytic oxidation of nucleobases by TiO2 nanobelts. Phys. Chem. Chem. Phys. 2011;13:9232–9237. PubMed
Tu X.M., Luo X.B., Luo S.L., Yan L.S., Zhang F., Xie Q.J. Novel carboxylation treatment and characterization of multiwalled carbon nanotubes for simultaneous sensitive determination of adenine and guanine in DNA. Microchim. Acta. 2010;169:33–40.
Zheng Y., Yang C., Pu W., Zhang J. Carbon nanotube-based DNA biosensor for monitoring phenolic pollutants. Microchim. Acta. 2009;166:21–26.
Shen Q., Wang X.M. Simultaneous determination of adenine, guanine and thymine based on beta-cyclodextrin/MWNTs modified electrode. J. Electroanal. Chem. 2009;632:149–153.
Xiao F., Ruan C., Li J., Liu L., Zhao F., Zeng B. Voltammetric determination of xanthine with a single-walled carbon nanotube-ionic liquid paste modified glassy carbon electrode. Electroanalysis. 2008;20:361–366.
Fang B., Zhang W., Wang G.F., Liu H.Y., Wei S.P. Microwave-assisted preparation of a carbon nanotube/La(OH)(3) nanocomposite, and its application to electrochemical determination of adenine and guanine. Microchim. Acta. 2008;162:175–180.
Umasankar Y., Thiagarajan S., Chen S.M. Pinecone shape hydroxypropyl-β-cyclodextrin on a film of multi-walled carbon nanotubes coated with gold particles for the simultaneous determination of tyrosine, guanine, adenine and thymine. Carbon. 2007;45:2783–2796.
Wang Z.H., Zhao Z.J. Fabrication of nanometer electrochemical interface and the voltammetric behaviour of deoxyribonucleic acid bases. Chin. J. Anal. Chem. 2006;34:87–90.
Ye Y.K., Ju H.X. Rapid detection of ssDNA and RNA using multi-walled carbon nanotubes modified screen-printed carbon electrode. Biosens. Bioelectron. 2005;21:735–741. PubMed
Wang J.X., Li M.X., Shi Z.J., Li N.Q., Gu Z.N. Electrochemistry of DNA at single-wall carbon nanotubes. Electroanalysis. 2004;16:140–144.
Wang J., Li M., Shi Z., Li N., Gu Z. Electrochemistry of DNA at Single-Wall Carbon Nanotubes. Electroanalysis. 2004;16:140–144.
Goyal R.N., Singh S.P. Voltammetric quantification of adenine and guanine at C 60 modified glassy carbon electrodes. J. Nanosci. Nanotechnol. 2006;6:3699–3704. PubMed
Lim C.S., Chua C.K., Pumera M. Detection of biomarkers with graphene nanoplatelets and nanoribbons. Analyst. 2014;139:1072–1080. PubMed
Khezrian S., Salimi A., Teymourian H., Hallaj R. Label-free electrochemical IgE aptasensor based on covalent attachment of aptamer onto multiwalled carbon nanotubes/ionic liquid/chitosan nanocomposite modified electrode. Biosens. Bioelectron. 2013;43:218–225. PubMed
Chatterjee S., Chen A.C. Facile electrochemical approach for the effective detection of guanine. Electrochem. Commun. 2012;20:29–32.
Yumak T., Kuralay F., Muti M., Sinag A., Erdem A., Abaci S. Preparation and characterization of zinc oxide nanoparticles and their sensor applications for electrochemical monitoring of nucleic acid hybridization. Colloids Surf. B Biointerfac. 2011;86:397–403. PubMed
Hallaj R., Salimi A. Nanomolar detection of guanine based on a novel cobalt oxide nanostructure-modified glassy carbon electrode. Anal. Methods. 2011;3:911–918.
Balan I., David I.G., David V., Stoica A.I., Mihailciuc C., Stamatin I., Ciucu A.A. Electrocatalytic voltammetric determination of guanine at a cobalt phthalocyanine modified carbon nanotubes paste electrode. J. Electroanal. Chem. 2011;654:8–12.
Muti M., Kuralay F., Erdem A., Abaci S., Yumak T., Sinag A. Tin oxide nanoparticles-polymer modified single-use sensors for electrochemical monitoring of label-free DNA hybridization. Talanta. 2010;82:1680–1686. PubMed
Zhang X., Jiao K., Liu S., Hu Y. Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes. Anal. Chem. 2009;81:6006–6012. PubMed
Wu D.M., Fu G.L., Fang H.Z., Hu L., Li J.L., Yuan X., Zhang Z.Y. Studies on the origin of the voltammetric response of the PC-3 cell suspension. Talanta. 2009;78:602–607. PubMed
Erdem A., Karadeniz H., Caliskan A. Single-walled carbon nanotubes modified graphite electrodes for electrochemical monitoring of nucleic acids and biomolecular interactions. Electroanalysis. 2009;21:464–471.
Mazloum Ardakani M., Taleat Z., Beitollahi H., Salavati-Niasari M., Mirjalili B.B.F., Taghavinia N. Electrocatalytic oxidation and nanomolar determination of guanine at the surface of a molybdenum (VI) complex-TiO2 nanoparticle modified carbon paste electrode. J. Electroanal. Chem. 2008;624:73–78.
Koehne J.E., Chen H., Cassell A.M., Yi Q., Han J., Meyyappan M., Li J. Miniaturized multiplex label-free electronic chip for rapid nucleic acid analysis based on carbon nanotube nanoelectrode arrays. Clin. Chem. 2004;50:1886–1893. PubMed
Koehne J., Chen H., Li J., Cassell A.M., Ye Q., Ng H.T., Han J., Meyyappan M. Ultrasensitive label-free DNA analysis using an electronic chip based on carbon nanotube nanoelectrode arrays. Nanotechnology. 2003;14:1239–1245. PubMed
Amiri-Aref M., Raoof J.B., Ojani R. A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode. Sens. Actuators B Chem. 2014;192:634–641.
Gao Y., Shen C., Di J., Tu Y. Fabrication of amperometric xanthine biosensors based on direct chemistry of xanthine oxidase. Mater. Sci. Eng. C. 2009;29:2213–2216.
Mu S., Shi Q. Xanthine biosensor based on the direct oxidation of xanthine at an electrogenerated oligomer film. Biosens. Bioelectron. 2013;47:429–435. PubMed
Liu H.P., Wang Z.H., Zhao X.L. Fabrication of single-wall carbon nanotube compound conducting polymer film modified electrode and simultaneous voltammetric determination of purine derivatives. Chin. J. Anal. Chem. 2011;39:471–475.
Kumar A.S., Shanmugam R. Simple method for simultaneous detection of uric acid, xanthine and hypoxanthine in fish samples using a glassy carbon electrode modified with as commercially received multiwalled carbon nanotubes. Anal. Methods. 2011;3:2088–2094.
Raj M.A., John S.A. Simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in human blood serum and urine samples using electrochemically reduced graphene oxide modified electrode. Anal. Chim. Acta. 2013;771:14–20. PubMed
Zhang F., Wang Z., Zhang Y., Zheng Z., Wang C., Du Y., Ye W. Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on poly(l-arginine)/graphene composite film modified electrode. Talanta. 2012;93:320–325. PubMed
Xiao F., Zhao F., Li J., Liu L., Zeng B. Characterization of hydrophobic ionic liquid-carbon nanotubes-gold nanoparticles composite film coated electrode and the simultaneous voltammetric determination of guanine and adenine. Electrochim. Acta. 2008;53:7781–7788.
Love J.C., Estroff L.A., Kriebel J.K., Nuzzo R.G., Whitesides G.M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005;105:1103–1170. PubMed
Vahlberg C., Linares M., Villaume S., Norman P., Uvdal K. Noradrenaline and a thiol analogue on gold surfaces: An infrared reflection-absorption spectroscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure spectroscopy study. J. Phys. Chem. C. 2011;115:165–175.
Cossaro A., Mazzarello R., Rousseau R., Casalis L., Verdini A., Kohlmeyer A., Floreano L., Scandolo S., Morgante A., Klein M.L., et al. X-ray diffraction and computation yield the structure of alkanethiols on gold(111) Science. 2008;321:943–946. PubMed
Sowerby S.J., Edelwirth M., Heckl W.M. Self-assembly at the prebiotic solid-liquid interface: Structures of self-assembled monolayers of adenine and guanine bases formed on inorganic surfaces. J. Phys. Chem. B. 1998;102:5914–5922.
John Jeevagan A., John S.A. Electrochemical sensor for guanine using a self-assembled monolayer of 1,8,15,22-tetraaminophthalocyanatonickel(II) on glassy carbon electrode. Anal. Biochem. 2012;424:21–26. PubMed
Dracka O. Theory of current elimination in linear voltammetry. J. Electroanal. Chem. 1996;402:18–28.
Trnkova L. Application of elimination voltammetry with linear scan in biochemistry. In: Adam V., Kizek R., editors. Utilizing of Bio-Electrochemical and Mathematical Methods in Biological Research. Volume 4. Research Signpost; Kerala, India: 2007. pp. 51–74.
Trnkova L., Dracka O. Elimination voltammetry. Experimental verification and extension of theoretical results. J. Electroanal. Chem. 1996;413:123–129.
Trnkova L., Kizek R., Dracka O. Application of elimination voltammetry to adsorptive stripping of DNA. Electroanalysis. 2000;12:905–911.
Trnkova L. Identification of current nature by elimination voltammetry with linear scan. J. Electroanal. Chem. 2005;582:258–266.
Trnkova L., Zerzankova L., Dycka F., Mikelova R., Jelen F. Study of copper and purine-copper complexes on modified carbon electrodes by cyclic and elimination voltammetry. Sensors. 2008;8:429–444. PubMed PMC
Aladag N., Trnkova L., Kourilova A., Ozsoz M., Jelen F. Voltammetric Study of Aminopurines on Pencil Graphite Electrode in the Presence of Copper Ions. Electroanalysis. 2010;22:1675–1681.
Navratil R., Jelen F., Kayran U.Y., Trnkova L. A pencil graphite electrode in situ modified by monovalent copper: A promising tool for the determination of methylxanthines. Electroanalysis. 2014;26:952–961.
Serrano N., Alberich A., Trnkova L. Oxidation of 6-Benzylaminopurine-Copper(I) Complex on Pencil Graphite Electrode. Electroanalysis. 2012;24:955–960.
Klosova K., Serrano N., Salyk O., Trnkova L. Template-assisted fabrication and characterization of nanostructured copper electrode for adenine detection. Curr. Nanosci. 2011;7:984–994.