Photopic light-mediated down-regulation of local α1A-adrenergic signaling protects blood-retina barrier in experimental autoimmune uveoretinitis

. 2019 Feb 20 ; 9 (1) : 2353. [epub] 20190220

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30787395
Odkazy

PubMed 30787395
PubMed Central PMC6382936
DOI 10.1038/s41598-019-38895-y
PII: 10.1038/s41598-019-38895-y
Knihovny.cz E-zdroje

We have reported the gateway reflex, which describes specific neural activations that regulate immune cell gateways at specific blood vessels in the central nervous system (CNS). Four types of gateway reflexes exist, all of which induce alterations in endothelial cells at specific vessels of the blood-brain barrier followed by inflammation in the CNS in the presence of CNS-autoreactive T cells. Here we report a new gateway reflex that suppresses the development of retinal inflammation by using an autoreactive T cell-mediated ocular inflammation model. Exposure to photopic light down-regulated the adrenoceptor pathway to attenuate ocular inflammation by suppressing breaching of the blood-retina barrier. Mechanistic analysis showed that exposure to photopic light down-regulates the expression of α1A-adrenoceptor (α1AAR) due to high levels of norepinephrine and epinephrine, subsequently suppressing inflammation. Surgical ablation of the superior cervical ganglion (SCG) did not negate the protective effect of photopic light, suggesting the involvement of retinal noradrenergic neurons rather than sympathetic neurons from the SCG. Blockade of α1AAR signaling under mesopic light recapitulated the protective effect of photopic light. Thus, targeting regional adrenoceptor signaling might represent a novel therapeutic strategy for autoimmune diseases including those that affect organs separated by barriers such as the CNS and eyes.

Zobrazit více v PubMed

Tracey KJ. Immune cells exploit a neural circuit to enter the CNS. Cell. 2012;148:392–394. doi: 10.1016/j.cell.2012.01.025. PubMed DOI PMC

Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. The Journal of experimental medicine. 2012;209:1057–1068. doi: 10.1084/jem.20120571. PubMed DOI PMC

Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity. 2014;40:463–475. doi: 10.1016/j.immuni.2014.04.001. PubMed DOI

Tracey KJ. Reflexes in Immunity. Cell. 2016;164:343–344. doi: 10.1016/j.cell.2016.01.018. PubMed DOI

Pavlov VA, Tracey KJ. Neural regulation of immunity: molecular mechanisms and clinical translation. Nature neuroscience. 2017;20:156–166. doi: 10.1038/nn.4477. PubMed DOI

Arima, Y. et al. Regional neural activation defines a gateway for autoreactive T cells to cross the blood-brain barrier. Cell148, 447–457, https://doi.org/S0092-8674(12)00088-8 (2012). PubMed

Andersson U, Tracey KJ. Reflex principles of immunological homeostasis. Annu Rev Immunol. 2012;30:313–335. doi: 10.1146/annurev-immunol-020711-075015. PubMed DOI PMC

Arima Y, et al. A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model. eLife. 2015;4:e08733. doi: 10.7554/eLife.08733. PubMed DOI PMC

Arima Y, et al. Brain micro-inflammation at specific vessels dysregulates organ-homeostasis via the activation of a new neural circuit. eLife. 2017;6:e25517. doi: 10.7554/eLife.25517. PubMed DOI PMC

Sabharwal L, et al. The Gateway Reflex, which is mediated by the inflammation amplifier, directs pathogenic immune cells into the CNS. J Biochem. 2014;156:299–304. doi: 10.1093/jb/mvu057. PubMed DOI

Ohki T, Kamimura D, Arima Y, Murakami M. Gateway reflex, a new paradigm of neuro-immune interaction. Clin Exp Neuroimmunol. 2017;8:23–32. doi: 10.1111/cen3.12378. DOI

Ogura H, et al. Interleukin-17 Promotes Autoimmunity by Triggering a Positive-Feedback Loop via Interleukin-6 Induction. Immunity. 2008;29:628–636. doi: 10.1016/j.immuni.2008.07.018. PubMed DOI

Atsumi T, et al. Inflammation amplifier, a new paradigm in cancer biology. Cancer research. 2014;74:8–14. doi: 10.1158/0008-5472.CAN-13-2322. PubMed DOI

Nakagawa I, Kamimura D, Atsumi T, Arima Y, Murakami M. Role of Inflammation Amplifier-Induced Growth Factor Expression in the Development of Inflammatory Diseases. Critical reviews in immunology. 2015;35:365–378. doi: 10.1615/CritRevImmunol.v35.i5.20. PubMed DOI

Murakami, M. et al. Local microbleeding facilitates IL-6- and IL-17-dependent arthritis in the absence of tissue antigen recognition by activated T cells. The Journal of experimental medicine208, 103–114, https://doi.org/jem.20100900 (2011). PubMed PMC

Murakami M, et al. Disease-association analysis of an inflammation-related feedback loop. Cell reports. 2013;3:946–959. doi: 10.1016/j.celrep.2013.01.028. PubMed DOI

Lee J, et al. IL-6 amplifier activation in epithelial regions of bronchi after allogeneic lung transplantation. Int Immunol. 2013;25:319–332. doi: 10.1093/intimm/dxs158. PubMed DOI

Harada M, et al. Temporal expression of growth factors triggered by epiregulin regulates inflammation development. Journal of immunology. 2015;194:1039–1046. doi: 10.4049/jimmunol.1400562. PubMed DOI

Meng J, et al. Breakpoint Cluster Region-Mediated Inflammation Is Dependent on Casein Kinase II. Journal of immunology. 2016;197:3111–3119. doi: 10.4049/jimmunol.1601082. PubMed DOI

Atsumi T, et al. Rbm10 regulates inflammation development via alternative splicing of Dnmt3b. Int Immunol. 2017;29:581–591. doi: 10.1093/intimm/dxx067. PubMed DOI

Okuyama Y, et al. Bmi1 Regulates IkappaBalpha Degradation via Association with the SCF Complex. Journal of immunology. 2018;201:2264–2272. doi: 10.4049/jimmunol.1701223. PubMed DOI

Tanaka Y, et al. Presenilin 1 Regulates NF-kappaB Activation via Association with Breakpoint Cluster Region and Casein Kinase II. Journal of immunology. 2018;201:2256–2263. doi: 10.4049/jimmunol.1701446. PubMed DOI

Fujita, M. et al. NEDD4 Is Involved in Inflammation Development during Keloid Formation. The Journal of investigative dermatology, 10.1016/j.jid.2018.07.044 (2018). PubMed

Bierhaus A, et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci USA. 2003;100:1920–1925. doi: 10.1073/pnas.0438019100. PubMed DOI PMC

Perez DM, Papay RS, Shi T. alpha1-Adrenergic receptor stimulates interleukin-6 expression and secretion through both mRNA stability and transcriptional regulation: involvement of p38 mitogen-activated protein kinase and nuclear factor-kappaB. Mol Pharmacol. 2009;76:144–152. doi: 10.1124/mol.108.054320. PubMed DOI PMC

Crane IJ, Liversidge J. Mechanisms of leukocyte migration across the blood-retina barrier. Semin Immunopathol. 2008;30:165–177. doi: 10.1007/s00281-008-0106-7. PubMed DOI PMC

Prete M, et al. Autoimmune uveitis: a retrospective analysis of 104 patients from a tertiary reference center. J Ophthalmic Inflamm Infect. 2014;4:17. doi: 10.1186/s12348-014-0017-9. PubMed DOI PMC

Horai R, Caspi RR. Cytokines in autoimmune uveitis. J Interferon Cytokine Res. 2011;31:733–744. doi: 10.1089/jir.2011.0042. PubMed DOI PMC

Haselton FR, Dworska EJ, Hoffman LH. Glucose-induced increase in paracellular permeability and disruption of beta-receptor signaling in retinal endothelium. Invest Ophthalmol Vis Sci. 1998;39:1676–1684. PubMed

Bohmer T, et al. The alpha(1)B -adrenoceptor subtype mediates adrenergic vasoconstriction in mouse retinal arterioles with damaged endothelium. Br J Pharmacol. 2014;171:3858–3867. doi: 10.1111/bph.12743. PubMed DOI PMC

McDougal DH, Gamlin PD. Autonomic control of the eye. Compr Physiol. 2015;5:439–473. doi: 10.1002/cphy.c140014. PubMed DOI PMC

Park DH, Joh TH, Anwar M, Ruggiero DA. Biochemical evidence for presence of dopamine beta-hydroxylase in rat retina. Brain Res. 1988;460:352–355. doi: 10.1016/0006-8993(88)90380-0. PubMed DOI

Hadjiconstantinou M, Cohen J, Neff NH. Epinephrine: a potential neurotransmitter in retina. J Neurochem. 1983;41:1440–1444. doi: 10.1111/j.1471-4159.1983.tb00843.x. PubMed DOI

Ishimoto I, et al. Co-localization of adrenergic receptors and vitamin-D-dependent calcium-binding protein (calbindin) in the dopaminergic amacrine cells of the rat retina. Neurosci Res. 1989;7:257–263. doi: 10.1016/0168-0102(89)90020-5. PubMed DOI

Chen Z, Jia W, Kaufman PL, Cynader M. Immunohistochemical localization of dopamine-beta-hydroxylase in human and monkey eyes. Curr Eye Res. 1999;18:39–48. doi: 10.1076/ceyr.18.1.39.5391. PubMed DOI

Yau KW, Hardie RC. Phototransduction motifs and variations. Cell. 2009;139:246–264. doi: 10.1016/j.cell.2009.09.029. PubMed DOI PMC

Witkovsky P, et al. Activity-dependent phosphorylation of tyrosine hydroxylase in dopaminergic neurons of the rat retina. J Neurosci. 2004;24:4242–4249. doi: 10.1523/JNEUROSCI.5436-03.2004. PubMed DOI PMC

Avichezer D, Silver PB, Chan CC, Wiggert B, Caspi RR. Identification of a new epitope of human IRBP that induces autoimmune uveoretinitis in mice of the H-2b haplotype. Invest Ophthalmol Vis Sci. 2000;41:127–131. PubMed

Peng Y, et al. Characterization of IL-17+ interphotoreceptor retinoid-binding protein-specific T cells in experimental autoimmune uveitis. Invest Ophthalmol Vis Sci. 2007;48:4153–4161. doi: 10.1167/iovs.07-0251. PubMed DOI PMC

Liu X, Lee YS, Yu CR, Egwuagu CE. Loss of STAT3 in CD4+ T cells prevents development of experimental autoimmune diseases. Journal of immunology. 2008;180:6070–6076. doi: 10.4049/jimmunol.180.9.6070. PubMed DOI PMC

Hohki S, et al. Blockade of interleukin-6 signaling suppresses experimental autoimmune uveoretinitis by the inhibition of inflammatory Th17 responses. Exp Eye Res. 2010;91:162–170. doi: 10.1016/j.exer.2010.04.009. PubMed DOI

Mori Y, et al. Early pathological alterations of lower lumbar cords detected by ultrahigh-field MRI in a mouse multiple sclerosis model. Int Immunol. 2014;26:93–101. doi: 10.1093/intimm/dxt044. PubMed DOI

Xu H, et al. A clinical grading system for retinal inflammation in the chronic model of experimental autoimmune uveoretinitis using digital fundus images. Exp Eye Res. 2008;87:319–326. doi: 10.1016/j.exer.2008.06.012. PubMed DOI

Baetge EE, Behringer RR, Messing A, Brinster RL, Palmiter RD. Transgenic mice express the human phenylethanolamine N-methyltransferase gene in adrenal medulla and retina. Proc Natl Acad Sci USA. 1988;85:3648–3652. doi: 10.1073/pnas.85.10.3648. PubMed DOI PMC

Kralj-Hans I, Tibber M, Jeffery G, Mobbs P. Differential effect of dopamine on mitosis in early postnatal albino and pigmented rat retinae. J Neurobiol. 2006;66:47–55. doi: 10.1002/neu.20200. PubMed DOI

Rokosh DG, et al. Alpha1-adrenergic receptor subtype mRNAs are differentially regulated by alpha1-adrenergic and other hypertrophic stimuli in cardiac myocytes in culture and in vivo. Repression of alpha1B and alpha1D but induction of alpha1C. The Journal of biological chemistry. 1996;271:5839–5843. doi: 10.1074/jbc.271.10.5839. PubMed DOI

Bengtsson T, Cannon B, Nedergaard J. Differential adrenergic regulation of the gene expression of the beta-adrenoceptor subtypes beta1, beta2 and beta3 in brown adipocytes. The Biochemical journal. 2000;347(Pt 3):643–651. doi: 10.1042/bj3470643. PubMed DOI PMC

Lei B, Zhang Y, Han C. Sustained norepinephrine stimulation induces different regulation of expression in three alpha1-adrenoceptor subtypes. Life Sci. 2001;69:301–308. doi: 10.1016/S0024-3205(01)01115-8. PubMed DOI

Akinaga J, et al. Differential phosphorylation, desensitization, and internalization of alpha1A-adrenoceptors activated by norepinephrine and oxymetazoline. Mol Pharmacol. 2013;83:870–881. doi: 10.1124/mol.112.082313. PubMed DOI

Ruiz-Moreno JM, Misiuk-Hojlo M, Thillaye B, de Kozak Y. Suppression of experimental autoimmune uveoretinitis by prazosin, an alpha 1-adrenergic receptor antagonist. Curr Eye Res. 1992;11(Suppl):135–140. doi: 10.3109/02713689208999523. PubMed DOI

Xu H, et al. Reduction in shear stress, activation of the endothelium, and leukocyte priming are all required for leukocyte passage across the blood–retina barrier. Journal of leukocyte biology. 2004;75:224–232. doi: 10.1189/jlb.1002479. PubMed DOI

Yoshida K, Kawamura K, Imaki J. Differential expression of c-fos mRNA in rat retinal cells: regulation by light/dark cycle. Neuron. 1993;10:1049–1054. doi: 10.1016/0896-6273(93)90053-T. PubMed DOI

Usui Y, et al. Neurovascular crosstalk between interneurons and capillaries is required for vision. J Clin Invest. 2015;125:2335–2346. doi: 10.1172/JCI80297. PubMed DOI PMC

Do MT, et al. Photon capture and signalling by melanopsin retinal ganglion cells. Nature. 2009;457:281–287. doi: 10.1038/nature07682. PubMed DOI PMC

Asteriti S, Gargini C, Cangiano L. Mouse rods signal through gap junctions with cones. eLife. 2014;3:e01386. doi: 10.7554/eLife.01386. PubMed DOI PMC

Zele AJ, Cao D. Vision under mesopic and scotopic illumination. Front Psychol. 2014;5:1594. doi: 10.3389/fpsyg.2014.01594. PubMed DOI PMC

Masland RH. The neuronal organization of the retina. Neuron. 2012;76:266–280. doi: 10.1016/j.neuron.2012.10.002. PubMed DOI PMC

Cinamon G, Shinder V, Alon R. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nature immunology. 2001;2:515–522. doi: 10.1038/88710. PubMed DOI

Heck DA, Bylund DB. Mechanism of down-regulation of alpha-2 adrenergic receptor subtypes. J Pharmacol Exp Ther. 1997;282:1219–1227. PubMed

Leeb-Lundberg LM, Cotecchia S, DeBlasi A, Caron MG, Lefkowitz RJ. Regulation of adrenergic receptor function by phosphorylation. I. Agonist-promoted desensitization and phosphorylation of alpha 1-adrenergic receptors coupled to inositol phospholipid metabolism in DDT1 MF-2 smooth muscle cells. The Journal of biological chemistry. 1987;262:3098–3105. PubMed

Singh VK, Biswas S, Anand R, Agarwal SS. Experimental autoimmune uveitis as animal model for human posterior uveitis. Indian J Med Res. 1998;107:53–67. PubMed

Smith JA, et al. Epidemiology and course of disease in childhood uveitis. Ophthalmology. 2009;116(1544–1551):1551 e1541. doi: 10.1016/j.ophtha.2009.05.002. PubMed DOI PMC

Chung H, Choi DG. Clinical analysis of uveitis. Korean J Ophthalmol. 1989;3:33–37. doi: 10.3341/kjo.1989.3.1.33. PubMed DOI

Lavoie MP, et al. Evidence of a biological effect of light therapy on the retina of patients with seasonal affective disorder. Biol Psychiatry. 2009;66:253–258. doi: 10.1016/j.biopsych.2008.11.020. PubMed DOI

Geneva II. Photobiomodulation for the treatment of retinal diseases: a review. Int J Ophthalmol. 2016;9:145–152. doi: 10.18240/ijo.2016.01.24. PubMed DOI PMC

Merry GF, Munk MR, Dotson RS, Walker MG, Devenyi RG. Photobiomodulation reduces drusen volume and improves visual acuity and contrast sensitivity in dry age-related macular degeneration. Acta Ophthalmol. 2017;95:e270–e277. doi: 10.1111/aos.13354. PubMed DOI PMC

Beirne K, Rozanowska M, Votruba M. Photostimulation of mitochondria as a treatment for retinal neurodegeneration. Mitochondrion. 2017;36:85–95. doi: 10.1016/j.mito.2017.05.002. PubMed DOI

Lucas RJ, et al. Measuring and using light in the melanopsin age. Trends in neurosciences. 2014;37:1–9. doi: 10.1016/j.tins.2013.10.004. PubMed DOI PMC

Okamoto K, Tashiro A, Chang Z, Bereiter DA. Bright light activates a trigeminal nociceptive pathway. Pain. 2010;149:235–242. doi: 10.1016/j.pain.2010.02.004. PubMed DOI PMC

Paques M, et al. Panretinal, high-resolution color photography of the mouse fundus. Invest Ophthalmol Vis Sci. 2007;48:2769–2774. doi: 10.1167/iovs.06-1099. PubMed DOI

Srienc, A. I., Kurth-Nelson, Z. L. & Newman, E. A. Imaging retinal blood flow with laser speckle flowmetry. Front Neuroenergetics2, 10.3389/fnene.2010.00128 (2010). PubMed PMC

Kawamoto T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch Histol Cytol. 2003;66:123–143. doi: 10.1679/aohc.66.123. PubMed DOI

Zhang Y, et al. Production of interleukin-11 in bone-derived endothelial cells and its role in the formation of osteolytic bone metastasis. Oncogene. 1998;16:693–703. doi: 10.1038/sj.onc.1201581. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...