Depletion of Retinal Dopaminergic Activity in a Mouse Model of Rod Dysfunction Exacerbates Experimental Autoimmune Uveoretinitis: A Role for the Gateway Reflex

. 2021 Dec 31 ; 23 (1) : . [epub] 20211231

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35008877

Grantová podpora
GACR 18 11795Y Grant Agency of the Czech Republic
PRIMUS/17/MED/7 Charles University
Progres Q35 Charles University
GAUK 378421 Charles University
260533/SVV/2021 Charles University
"PharmaBrain" CZ.02.1.01/0.0/0.0/16_025/0007444 European Regional Development Fund

The gateway reflex is a mechanism by which neural inputs regulate chemokine expression at endothelial cell barriers, thereby establishing gateways for the invasion of autoreactive T cells into barrier-protected tissues. In this study, we hypothesized that rod photoreceptor dysfunction causes remodeling of retinal neural activity, which influences the blood-retinal barrier and the development of retinal inflammation. We evaluated this hypothesis using Gnat1rd17 mice, a model of night blindness with late-onset rod-cone dystrophy, and experimental autoimmune uveoretinitis (EAU). Retinal remodeling and its effect on EAU development were investigated by transcriptome profiling, target identification, and functional validation. We showed that Gnat1rd17 mice primarily underwent alterations in their retinal dopaminergic system, triggering the development of an exacerbated EAU, which was counteracted by dopamine replacement with L-DOPA administered either systemically or locally. Remarkably, dopamine acted on retinal endothelial cells to inhibit NF-κB and STAT3 activity and the expression of downstream target genes such as chemokines involved in T cell recruitment. These results suggest that rod-mediated dopamine release functions in a gateway reflex manner in the homeostatic control of immune cell entry into the retina, and the loss of retinal dopaminergic activity in conditions associated with rod dysfunction increases the susceptibility to autoimmune uveitis.

Zobrazit více v PubMed

Suttorp-Schulten M.S., Rothova A. The possible impact of uveitis in blindness: A literature survey. Br. J. Ophthalmol. 1996;80:844–848. doi: 10.1136/bjo.80.9.844. PubMed DOI PMC

Prete M., Dammacco R., Fatone M.C., Racanelli V. Autoimmune uveitis: Clinical, pathogenetic, and therapeutic features. Clin. Exp. Med. 2016;16:125–136. doi: 10.1007/s10238-015-0345-6. PubMed DOI

Lee R.W., Nicholson L.B., Sen H.N., Chan C.C., Wei L., Nussenblatt R.B., Dick A.D. Autoimmune and autoinflammatory mechanisms in uveitis. Semin. Immunopathol. 2014;36:581–594. doi: 10.1007/s00281-014-0433-9. PubMed DOI PMC

Rothova A., Suttorp-van Schulten M.S., Frits Treffers W., Kijlstra A. Causes and frequency of blindness in patients with intraocular inflammatory disease. Br. J. Ophthalmol. 1996;80:332–336. doi: 10.1136/bjo.80.4.332. PubMed DOI PMC

Dick A.D., Tundia N., Sorg R., Zhao C., Chao J., Joshi A., Skup M. Risk of ocular complications in patients with noninfectious intermediate uveitis, posterior uveitis, or panuveitis. Ophthalmology. 2016;123:655–662. doi: 10.1016/j.ophtha.2015.10.028. PubMed DOI

Hirose T., Katsumi O., Pruett R.C., Sakaue H., Mehta M. Retinal function in birdshot retinochoroidopathy. Acta Ophthalmol. 1991;69:327–337. doi: 10.1111/j.1755-3768.1991.tb04823.x. PubMed DOI

Moschos M.M., Gouliopoulos N.S., Kalogeropoulos C. Electrophysiological examination in uveitis: A review of the literature. Clin. Ophthalmol. 2014;8:199–214. doi: 10.2147/OPTH.S54838. PubMed DOI PMC

Koestinger A., Guex-Crosier Y., Borruat F.X. Autoimmune retinal dysfunction in sarcoid chorioretinopathy. Klin. Mon. Augenheilkd. 2006;223:428–430. doi: 10.1055/s-2006-926580. PubMed DOI

Sevgi D.D., Davoudi S., Comander J., Sobrin L. Retinal pigmentary changes in chronic uveitis mimicking retinitis pigmentosa. Graefes Arch. Clin. Exp. Ophthalmol. 2017;255:1801–1810. doi: 10.1007/s00417-017-3689-7. PubMed DOI

Hartong D.T., Berson E.L., Dryja T.P. Retinitis pigmentosa. Lancet. 2006;368:1795–1809. doi: 10.1016/S0140-6736(06)69740-7. PubMed DOI

Dutta Majumder P., Menia N., Roy R., Sen P., George A.E., Ganesh S.K., Biswas J. Uveitis in Patients with Retinitis Pigmentosa: 30 Years’ Consecutive Data. Ocul. Immunol. Inflamm. 2018;26:1283–1288. doi: 10.1080/09273948.2017.1348527. PubMed DOI

Lichtinger A., Chowers I., Amer R. Usher syndrome associated with Fuchs’ heterochromic uveitis. Graefes Arch. Clin. Exp. Ophthalmol. 2010;248:1481–1485. doi: 10.1007/s00417-010-1429-3. PubMed DOI

Turan-Vural E., Torun-Acar B., Tükenmez N., Sevim M.Ş., Buttanri B., Acar S. Usher syndrome associated with Fuchs’ heterochromic uveitis: A case report. Clin. Ophthalmol. 2011;5:557–559. doi: 10.2147/OPTH.S19525. PubMed DOI PMC

Benson M.D., MacDonald I.M. Bilateral uveitis and Usher syndrome: A case report. J. Med. Case Rep. 2015;9:60. doi: 10.1186/s13256-015-0534-7. PubMed DOI PMC

Bharadwaj A.S., Appukuttan B., Wilmarth P.A., Pan Y., Stempel A.J., Chipps T.J., Benedetti E.E., Zamora D.O., Choi D., David L.L., et al. Role of the retinal vascular endothelial cell in ocular disease. Prog. Retin. Eye Res. 2013;32:102–180. doi: 10.1016/j.preteyeres.2012.08.004. PubMed DOI PMC

Vinores S.A., Küchle M., Derevjanik N.L., Henderer J.D., Mahlow J., Green W.R., Campochiaro P.A. Blood-retinal barrier breakdown in retinitis pigmentosa: Light and electron microscopic immunolocalization. Histol. Histopathol. 1995;10:913–923. PubMed

McCarron J.G., Wilson C., Heathcote H.R., Zhang X., Buckley C., Lee M.D. Heterogeneity and emergent behaviour in the vascular endothelium. Curr. Opin. Pharmacol. 2019;45:23–32. doi: 10.1016/j.coph.2019.03.008. PubMed DOI PMC

Arima Y., Harada M., Kamimura D., Park J.H., Kawano F., Yull F.E., Kawamoto T., Iwakura Y., Betz U.A., Márquez G., et al. Regional neural activation defines a gateway for autoreactive T cells to cross the blood-brain barrier. Cell. 2012;148:447–457. doi: 10.1016/j.cell.2012.01.022. PubMed DOI

Arima Y., Kamimura D., Atsumi T., Harada M., Kawamoto T., Nishikawa N., Stofkova A., Ohki T., Higuchi K., Morimoto Y., et al. A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model. Elife. 2015;4:e08733. doi: 10.7554/eLife.08733. PubMed DOI PMC

Arima Y., Ohki T., Nishikawa N., Higuchi K., Ota M., Tanaka Y., Nio-Kobayashi J., Elfeky M., Sakai R., Mori Y., et al. Brain micro-inflammation at specific vessels dysregulates organ-homeostasis via the activation of a new neural circuit. Elife. 2017;6:e25517. doi: 10.7554/eLife.25517. PubMed DOI PMC

Stofkova A., Kamimura D., Ohki T., Ota M., Arima Y., Murakami M. Photopic light-mediated down-regulation of local α1A-adrenergic signaling protects blood-retina barrier in experimental autoimmune uveoretinitis. Sci. Rep. 2019;9:2353. doi: 10.1038/s41598-019-38895-y. PubMed DOI PMC

Nakagawa I., Kamimura D., Atsumi T., Arima Y., Murakami M. Role of Inflammation Amplifier-Induced Growth Factor Expression in the Development of Inflammatory Diseases. Crit. Rev. Immunol. 2015;35:365–378. doi: 10.1615/CritRevImmunol.v35.i5.20. PubMed DOI

Murakami M., Kamimura D., Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity. 2019;50:812–831. doi: 10.1016/j.immuni.2019.03.027. PubMed DOI

Stofkova A., Murakami M. Neural activity regulates autoimmune diseases through the gateway reflex. Bioelectron. Med. 2019;5:14. doi: 10.1186/s42234-019-0030-2. PubMed DOI PMC

Kamimura D., Tanaka Y., Hasebe R., Murakami M. Bidirectional communication between neural and immune systems. Int. Immunol. 2020;32:693–701. doi: 10.1093/intimm/dxz083. PubMed DOI

Uchida M., Yamamoto R., Matsuyama S., Murakami K., Hasebe R., Hojyo S., Tanaka Y., Murakami M. Gateway reflexes, neuronal circuits that regulate the gateways for autoreactive T cells in organs that have blood barriers. Int. Immunol. 2021:dxab022. doi: 10.1093/intimm/dxab022. Advance online publication. PubMed DOI

Murakami K., Tanaka Y., Murakami M. The gateway reflex: Breaking through the blood barriers. Int. Immunol. 2021;33:743–748. doi: 10.1093/intimm/dxab064. PubMed DOI

Xu H., Koch P., Chen M., Lau A., Reid D.M., Forrester J.V. A clinical grading system for retinal inflammation in the chronic model of experimental autoimmune uveoretinitis using digital fundus images. Exp. Eye. Res. 2008;87:319–326. doi: 10.1016/j.exer.2008.06.012. PubMed DOI

Bansal S., Barathi V.A., Iwata D., Agrawal R. Experimental autoimmune uveitis and other animal models of uveitis: An update. Indian J. Ophthalmol. 2015;63:211–218. doi: 10.4103/0301-4738.156914. PubMed DOI PMC

The Jackson Laboratory [(accessed on 25 November 2021)]. Available online: https://www.jax.org/strain/008811.

Chang B., Hawes N.L., Hurd R.E., Wang J., Davisson M.T., Nusinowitz S., Heckenlively J.R. A new mouse model of retinal degeneration (rd17); Proceedings of the ARVO Annual Meeting Abstract; Fort Lauderdale, FL, USA. 6–10 May 2007.

Yao K., Qiu S., Wang Y.V., Park S., Mohns E.J., Mehta B., Liu X., Chang B., Zenisek D., Crair M.C., et al. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas. Nature. 2018;560:484–488. doi: 10.1038/s41586-018-0425-3. PubMed DOI PMC

Collin G.B., Gogna N., Chang B., Damkham N., Pinkney J., Hyde L.F., Stone L., Naggert J.K., Nishina P.M., Krebs M.P. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells. 2020;9:931. doi: 10.3390/cells9040931. PubMed DOI PMC

Miyamoto M., Imai R., Sugimoto S., Aoki M., Nagai H., Ando T. Visual electrophysiological features of two naturally occurring mouse models with retinal dysfunction. Curr. Eye Res. 2006;31:329–335. doi: 10.1080/02713680600599438. PubMed DOI

Miyamoto M., Aoki M., Hirai K., Sugimoto S., Kawasaki K., Imai R. A nonsense mutation in Gnat1, encoding the alpha subunit of rod transducin, in spontaneous mouse models of retinal dysfunction. Exp. Eye Res. 2010;90:63–69. doi: 10.1016/j.exer.2009.09.010. PubMed DOI

Miyamoto M., Aoki M., Sugimoto S., Kawasaki K., Imai R. IRD1 and IRD2 mice, naturally occurring models of hereditary retinal dysfunction, show late-onset and progressive retinal degeneration. Curr. Eye Res. 2010;35:137–145. doi: 10.3109/02713680903447900. PubMed DOI

Carrigan M., Duignan E., Humphries P., Palfi A., Kenna P.F., Farrar G.J. A novel homozygous truncating GNAT1 mutation implicated in retinal degeneration. Br. J. Ophthalmol. 2016;100:495–500. doi: 10.1136/bjophthalmol-2015-306939. PubMed DOI PMC

Méjécase C., Laurent-Coriat C., Mayer C., Poch O., Mohand-Saïd S., Prévot C., Antonio A., Boyard F., Condroyer C., Michiels C., et al. Identification of a Novel Homozygous Nonsense Mutation Confirms the Implication of GNAT1 in Rod-Cone Dystrophy. PLoS ONE. 2016;11:e0168271. doi: 10.1371/journal.pone.0168271. PubMed DOI PMC

Abdeljalil J., Hamid M., Abdel-Mouttalib O., Stéphane R., Raymond R., Johan A., José S., Pierre C., Serge P. The optomotor response: A robust first-line visual screening method for mice. Vis. Res. 2005;45:1439–1446. doi: 10.1016/j.visres.2004.12.015. PubMed DOI

Schmucker C., Seeliger M., Humphries P., Biel M., Schaeffel F. Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function. Investig. Ophthalmol. Vis. Sci. 2005;46:398–407. doi: 10.1167/iovs.04-0959. PubMed DOI

Hohki S., Ohguro N., Haruta H., Nakai K., Terabe F., Serada S., Fujimoto M., Nomura S., Kawahata H., Kishimoto T., et al. Blockade of interleukin-6 signaling suppresses experimental autoimmune uveoretinitis by the inhibition of inflammatory Th17 responses. Exp. Eye Res. 2010;91:162–170. doi: 10.1016/j.exer.2010.04.009. PubMed DOI

Şahin E., Karaman G., Uslu M., Karul A., Şendur N., Şavk E. Adiponectin levels, insulin resistance and their relationship with serum levels of inflammatory cytokines in patients with Behçet’s disease. J. Eur. Acad. Dermatol. Venereol. 2012;26:1498–1502. doi: 10.1111/j.1468-3083.2011.04318.x. PubMed DOI

Murakami Y., Ikeda Y., Nakatake S., Fujiwara K., Tachibana T., Yoshida N., Notomi S., Hisatomi T., Yoshida S., Ishibashi T., et al. C-Reactive protein and progression of vision loss in retinitis pigmentosa. Acta Ophthalmol. 2018;96:e174–e179. doi: 10.1111/aos.13502. PubMed DOI

Ridker P.M. From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream To Identify Novel Targets for Atheroprotection. Circ. Res. 2016;118:145–156. doi: 10.1161/CIRCRESAHA.115.306656. PubMed DOI PMC

Busetto V., Barbosa I., Basquin J., Marquenet É., Hocq R., Hennion M., Paternina J.A., Namane A., Conti E., Bensaude O., et al. Structural and functional insights into CWC27/CWC22 heterodimer linking the exon junction complex to spliceosomes. Nucleic Acids Res. 2020;48:5670–5683. doi: 10.1093/nar/gkaa267. PubMed DOI PMC

Bertrand R.E., Wang J., Li Y., Cheng X., Wang K., Stoilov P., Chen R. Cwc27, associated with retinal degeneration, functions as a splicing factor in vivo. Hum. Mol. Genet. 2021:ddab319. doi: 10.1093/hmg/ddab319. Advance online publication. PubMed DOI PMC

Vial D., Piomelli D. Dopamine D2 receptors potentiate arachidonate release via activation of cytosolic, arachidonate-specific phospholipase A2. J. Neurochem. 1995;64:2765–2772. doi: 10.1046/j.1471-4159.1995.64062765.x. PubMed DOI

Hussain T., Lokhandwala M.F. Dopamine-1 receptor G-protein coupling and the involvement of phospholipase A2 in dopamine-1 receptor mediated cellular signaling mechanisms in the proximal tubules of SHR. Clin. Exp. Hypertens. 1997;19:131–140. doi: 10.3109/10641969709080810. PubMed DOI

Gnegy M.E. Catecholamines. In: Brady S.T., Siegel G.J., Albers R.W., Price D., editors. Basic Neurochemistry: Principles of Molecular, Cellular and Medical Neurobiology. 8th ed. Elsevier Academic Press; Cambridge, MA, USA: 2012. pp. 283–299.

Moens U., Kostenko S., Sveinbjørnsson B. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation. Genes. 2013;4:101–133. doi: 10.3390/genes4020101. PubMed DOI PMC

Commodaro A.G., Bombardieri C.R., Peron J.P., Saito K.C., Guedes P.M., Hamassaki D.E., Belfort R.N., Rizzo L.V., Belfort R., Jr., de Camargo M.M. p38{alpha} MAP kinase controls IL-17 synthesis in vogt-koyanagi-harada syndrome and experimental autoimmune uveitis. Investig. Ophthalmol. Vis. Sci. 2010;51:3567–3574. doi: 10.1167/iovs.09-4393. PubMed DOI

Wei R., Dong L., Xiao Q., Sun D., Li X., Nian H. Engagement of Toll-like receptor 2 enhances interleukin (IL)-17(+) autoreactive T cell responses via p38 mitogen-activated protein kinase signalling in dendritic cells. Clin. Exp. Immunol. 2014;178:353–363. doi: 10.1111/cei.12405. PubMed DOI PMC

Oldenhof J., Vickery R., Anafi M., Oak J., Ray A., Schoots O., Pawson T., von Zastrow M., Van Tol H.H. SH3 binding domains in the dopamine D4 receptor. Biochemistry. 1998;37:15726–15736. doi: 10.1021/bi981634+. PubMed DOI

Oak J.N., Lavine N., Van Tol H.H. Dopamine D(4) and D(2L) Receptor Stimulation of the Mitogen-Activated Protein Kinase Pathway Is Dependent on trans-Activation of the Platelet-Derived Growth Factor Receptor. Mol. Pharmacol. 2001;60:92–103. doi: 10.1124/mol.60.1.92. PubMed DOI

Zhen X., Zhang J., Johnson G.P., Friedman E. D(4) dopamine receptor differentially regulates Akt/nuclear factor-kappa b and extracellular signal-regulated kinase pathways in D(4)MN9D cells. Mol. Pharmacol. 2001;60:857–864. PubMed

Sarkar C., Das S., Chakroborty D., Chowdhury U.R., Basu B., Dasgupta P.S., Basu S. Cutting Edge: Stimulation of dopamine D4 receptors induce T cell quiescence by up-regulating Kruppel-like factor-2 expression through inhibition of ERK1/ERK2 phosphorylation. J. Immunol. 2006;177:7525–7529. doi: 10.4049/jimmunol.177.11.7525. PubMed DOI

Liu X., Guo Y., Yang Y., Qi C., Xiong T., Chen Y., Wu G., Zeng C., Wang D. DRD4 (Dopamine D4 Receptor) Mitigate Abdominal Aortic Aneurysm via Decreasing P38 MAPK (mitogen-activated protein kinase)/NOX4 (NADPH Oxidase 4) Axis-Associated Oxidative Stress. Hypertension. 2021;78:294–307. doi: 10.1161/HYPERTENSIONAHA.120.16738. PubMed DOI

Zeldin D.C. Epoxygenase pathways of arachidonic acid metabolism. J. Biol. Chem. 2001;276:36059–36062. doi: 10.1074/jbc.R100030200. PubMed DOI

Innes J.K., Calder P.C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fatty Acids. 2018;132:41–48. doi: 10.1016/j.plefa.2018.03.004. PubMed DOI

Klemm S., Ruland J. Inflammatory signal transduction from the Fc epsilon RI to NF-kappa B. Immunobiology. 2006;211:815–820. doi: 10.1016/j.imbio.2006.07.001. PubMed DOI

Wheeler-Jones C., Abu-Ghazaleh R., Cospedal R., Houliston R.A., Martin J., Zachary I. Vascular endothelial growth factor stimulates prostacyclin production and activation of cytosolic phospholipase A2 in endothelial cells via p42/p44 mitogen-activated protein kinase. FEBS Lett. 1997;420:28–32. doi: 10.1016/S0014-5793(97)01481-6. PubMed DOI

Yan W., Laboulaye M.A., Tran N.M., Whitney I.E., Benhar I., Sanes J.R. Mouse Retinal Cell Atlas: Molecular Identification of over Sixty Amacrine Cell Types. J. Neurosci. 2020;40:5177–5195. doi: 10.1523/JNEUROSCI.0471-20.2020. PubMed DOI PMC

Lorton D., Bellinger D.L. Molecular mechanisms underlying β-adrenergic receptor-mediated cross-talk between sympathetic neurons and immune cells. Int. J. Mol. Sci. 2015;16:5635–5665. doi: 10.3390/ijms16035635. PubMed DOI PMC

Klitten L.L., Rath M.F., Coon S.L., Kim J.S., Klein D.C., Møller M. Localization and regulation of dopamine receptor D4 expression in the adult and developing rat retina. Exp. Eye Res. 2008;87:471–477. doi: 10.1016/j.exer.2008.08.004. PubMed DOI PMC

Lei S. Cross interaction of dopaminergic and adrenergic systems in neural modulation. J. Physiol. Pathophysiol. Pharmacol. 2014;6:137–142. PubMed PMC

Wu L., Tai Y., Hu S., Zhang M., Wang R., Zhou W., Tao J., Han Y., Wang Q., Wei W. Bidirectional Role of β2-Adrenergic Receptor in Autoimmune Diseases. Front. Pharmacol. 2018;9:1313. doi: 10.3389/fphar.2018.01313. PubMed DOI PMC

Weinstein J.E., Pepple K.L. Cytokines in uveitis. Curr. Opin. Ophthalmol. 2018;29:267–274. PubMed PMC

Zhong H., Voll R.E., Ghosh S. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell. 1998;1:661–671. doi: 10.1016/S1097-2765(00)80066-0. PubMed DOI

Okazaki T., Sakon S., Sasazuki T., Sakurai H., Doi T., Yagita H., Okumura K., Nakano H. Phosphorylation of serine 276 is essential for p65 NF-kappaB subunit-dependent cellular responses. Biochem. Biophys. Res. Commun. 2003;300:807–812. doi: 10.1016/S0006-291X(02)02932-7. PubMed DOI

Kurdi M., Booz G.W. Can the protective actions of JAK-STAT in the heart be exploited therapeutically? Parsing the regulation of interleukin-6-type cytokine signaling. J. Cardiovasc. Pharmacol. 2007;50:126–141. doi: 10.1097/FJC.0b013e318068dd49. PubMed DOI

Calvert P.D., Krasnoperova N.V., Lyubarsky A.L., Isayama T., Nicoló M., Kosaras B., Wong G., Gannon K.S., Margolskee R.F., Sidman R.L., et al. Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha -subunit. Proc. Natl. Acad. Sci. USA. 2000;97:13913–13918. doi: 10.1073/pnas.250478897. PubMed DOI PMC

Barber A.C., Hippert C., Duran Y., West E.L., Bainbridge J.W., Warre-Cornish K., Luhmann U.F., Lakowski J., Sowden J.C., Ali R.R., et al. Repair of the degenerate retina by photoreceptor transplantation. Proc. Natl. Acad. Sci. USA. 2013;110:354–359. doi: 10.1073/pnas.1212677110. PubMed DOI PMC

Cameron M.A., Pozdeyev N., Vugler A.A., Cooper H., Iuvone P.M., Lucas R.J. Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur. J. Neurosci. 2009;29:761–767. doi: 10.1111/j.1460-9568.2009.06631.x. PubMed DOI PMC

Munteanu T., Noronha K.J., Leung A.C., Pan S., Lucas J.A., Schmidt T.M. Light-dependent pathways for dopaminergic amacrine cell development and function. Elife. 2018;7:e39866. doi: 10.7554/eLife.39866. PubMed DOI PMC

Park H.n., Jabbar S.B., Tan C.C., Sidhu C.S., Abey J., Aseem F., Schmid G., Iuvone P.M., Pardue M.T. Visually-driven ocular growth in mice requires functional rod photoreceptors. Investig. Ophthalmol. Vis. Sci. 2014;55:6272–6279. doi: 10.1167/iovs.14-14648. PubMed DOI PMC

Pérez-Fernández V., Milosavljevic N., Allen A.E., Vessey K.A., Jobling A.I., Fletcher E.L., Breen P.P., Morley J.W., Cameron M.A. Rod Photoreceptor Activation Alone Defines the Release of Dopamine in the Retina. Curr. Biol. 2019;29:763–774.e5. doi: 10.1016/j.cub.2019.01.042. PubMed DOI

Zeng S., Zhang T., Madigan M.C., Fernando N., Aggio-Bruce R., Zhou F., Pierce M., Chen Y., Huang L., Natoli R., et al. Interphotoreceptor Retinoid-Binding Protein (IRBP) in Retinal Health and Disease. Front. Cell. Neurosci. 2020;14:577935. doi: 10.3389/fncel.2020.577935. PubMed DOI PMC

Luger D., Caspi R.R. New perspectives on effector mechanisms in uveitis. Semin. Immunopathol. 2008;30:135–143. doi: 10.1007/s00281-008-0108-5. PubMed DOI PMC

Egwuagu C.E., Alhakeem S.A., Mbanefo E.C. Uveitis: Molecular Pathogenesis and Emerging Therapies. Front. Immunol. 2021;12:623725. doi: 10.3389/fimmu.2021.623725. PubMed DOI PMC

Laties A.M. Central retinal artery innervation. Absence of adrenergic innervation to the intraocular branches. Arch. Ophthalmol. 1967;77:405–409. doi: 10.1001/archopht.1967.00980020407021. PubMed DOI

Flierl M.A., Rittirsch D., Huber-Lang M., Sarma J.V., Ward P.A. Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening pandora’s box? Mol. Med. 2008;14:195–204. doi: 10.2119/2007-00105.Flierl. PubMed DOI PMC

Pongratz G., Straub R.H. The sympathetic nervous response in inflammation. Arthritis. Res. Ther. 2014;16:504. doi: 10.1186/s13075-014-0504-2. PubMed DOI PMC

Tufford A.R., Onyak J.R., Sondereker K.B., Lucas J.A., Earley A.M., Mattar P., Hattar S., Schmidt T.M., Renna J.M., Cayouette M. Melanopsin retinal ganglion cells regulate cone photoreceptor lamination in the mouse retina. Cell Rep. 2018;23:2416–2428. doi: 10.1016/j.celrep.2018.04.086. PubMed DOI PMC

Djamgoz M.B., Hankins M.W., Hirano J., Archer S.N. Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Res. 1997;37:3509–3529. doi: 10.1016/S0042-6989(97)00129-6. PubMed DOI

Ogilvie J.M., Speck J.D. Dopamine has a critical role in photoreceptor degeneration in the rd mouse. Neurobiol. Dis. 2002;10:33–40. doi: 10.1006/nbdi.2002.0489. PubMed DOI

Ogilvie J.M., Hakenewerth A.M., Gardner R.R., Martak J.G., Maggio V.M. Dopamine receptor loss of function is not protective of rd1 rod photoreceptors in vivo. Mol. Vis. 2009;15:2868–2878. PubMed PMC

Chen Y.W., Huang Y.P., Wu P.C., Chiang W.Y., Wang P.H., Chen B.Y. The functional vision protection effect of danshensu via dopamine D1 receptors: In vivo study. Nutrients. 2021;13:978. doi: 10.3390/nu13030978. PubMed DOI PMC

Nir I., Harrison J.M., Haque R., Low M.J., Grandy D.K., Rubinstein M., Iuvone P.M. Dysfunctional light-evoked regulation of cAMP in photoreceptors and abnormal retinal adaptation in mice lacking dopamine D4 receptors. J. Neurosci. 2002;22:2063–2073. doi: 10.1523/JNEUROSCI.22-06-02063.2002. PubMed DOI PMC

Jackson C.R., Chaurasia S.S., Hwang C.K., Iuvone P.M. Dopamine D₄ receptor activation controls circadian timing of the adenylyl cyclase 1/cyclic AMP signaling system in mouse retina. Eur. J. Neurosci. 2011;34:57–64. doi: 10.1111/j.1460-9568.2011.07734.x. PubMed DOI PMC

Klein M.O., Battagello D.S., Cardoso A.R., Hauser D.N., Bittencourt J.C., Correa R.G. Dopamine: Functions, Signaling, and Association with Neurological Diseases. Cell. Mol. Neurobiol. 2019;39:31–59. doi: 10.1007/s10571-018-0632-3. PubMed DOI PMC

Aung M.H., Park H.N., Han M.K., Obertone T.S., Abey J., Aseem F., Thule P.M., Iuvone P.M., Pardue M.T. Dopamine deficiency contributes to early visual dysfunction in a rodent model of type 1 diabetes. J. Neurosci. 2014;34:726–736. doi: 10.1523/JNEUROSCI.3483-13.2014. PubMed DOI PMC

Kim M.K., Aung M.H., Mees L., Olson D.E., Pozdeyev N., Iuvone P.M., Thule P.M., Pardue M.T. Dopamine Deficiency Mediates Early Rod-Driven Inner Retinal Dysfunction in Diabetic Mice. Investig. Ophthalmol. Vis. Sci. 2018;59:572–581. doi: 10.1167/iovs.17-22692. PubMed DOI PMC

Motz C.T., Chesler K.C., Allen R.S., Bales K.L., Mees L.M., Feola A.J., Maa A.Y., Olson D.E., Thule P.M., Iuvone P.M., et al. Novel Detection and Restorative Levodopa Treatment for Preclinical Diabetic Retinopathy. Diabetes. 2020;69:1518–1527. doi: 10.2337/db19-0869. PubMed DOI PMC

Brilliant M.H., Vaziri K., Connor T.B., Jr., Schwartz S.G., Carroll J.J., McCarty C.A., Schrodi S.J., Hebbring S.J., Kishor K.S., Flynn H.W., Jr., et al. Mining Retrospective Data for Virtual Prospective Drug Repurposing: L-DOPA and Age-related Macular Degeneration. Am. J. Med. 2016;129:292–298. doi: 10.1016/j.amjmed.2015.10.015. PubMed DOI PMC

Laengle U.W., Court M., Markstein R., Germann P.G., Nogues V., Roman D. Effects of anti-glaucoma drugs timolol and GLC756, a novel mixed dopamine D2 receptor agonist and D1 receptor antagonist, on endotoxin-induced-uveitis and -arthritis in rats. Exp. Toxicol. Pathol. 2005;57:127–134. doi: 10.1016/j.etp.2005.02.008. PubMed DOI

Lu W., Ding Z., Liu F., Shan W., Cheng C., Xu J., He W., Huang W., Ma J., Yin Z. Dopamine delays articular cartilage degradation in osteoarthritis by negative regulation of the NF-κB and JAK2/STAT3 signaling pathways. Biomed. Pharmacother. 2019;119:109419. doi: 10.1016/j.biopha.2019.109419. PubMed DOI

Lan Y.L., Wang X., Xing J.S., Yu Z.L., Lou J.C., Ma X.C., Zhang B. Anti-cancer effects of dopamine in human glioma: Involvement of mitochondrial apoptotic and anti-inflammatory pathways. Oncotarget. 2017;8:88488–88500. doi: 10.18632/oncotarget.19691. PubMed DOI PMC

Sun C.K., Kao Y.H., Lee P.H., Wu M.C., Chen K.C., Lin Y.C., Tsai M.S., Chen P.H. Dopamine impairs functional integrity of rat hepatocytes through nuclear factor kappa B activity modulation: An in vivo, ex vivo, and in vitro study. Liver Transpl. 2015;21:1520–1532. doi: 10.1002/lt.24346. PubMed DOI

Niewiarowska-Sendo A., Kozik A., Guevara-Lora I. Influence of bradykinin B2 receptor and dopamine D2 receptor on the oxidative stress, inflammatory response, and apoptotic process in human endothelial cells. PLoS ONE. 2018;13:e0206443. doi: 10.1371/journal.pone.0206443. PubMed DOI PMC

Wang H., Yao Y., Liu J., Cao Y., Si C., Zheng R., Zeng C., Guan H., Li L. Dopamine D4 receptor protected against hyperglycemia-induced endothelial dysfunction via PI3K /eNOS pathway. Biochem. Biophys. Res. Commun. 2019;518:554–559. doi: 10.1016/j.bbrc.2019.08.080. PubMed DOI

Sarkar C., Chakroborty D., Mitra R.B., Banerjee S., Dasgupta P.S., Basu S. Dopamine in vivo inhibits VEGF-induced phosphorylation of VEGFR-2, MAPK, and focal adhesion kinase in endothelial cells. Am. J. Physiol. Heart. Circ. Physiol. 2004;287:H1554–H1560. doi: 10.1152/ajpheart.00272.2004. PubMed DOI

Basu S., Nagy J.A., Pal S., Vasile E., Eckelhoefer I.A., Bliss V.S., Manseau E.J., Dasgupta P.S., Dvorak H.F., Mukhopadhyay D. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat. Med. 2001;7:569–574. doi: 10.1038/87895. PubMed DOI

Cosgrove D., Zallocchi M. Usher protein functions in hair cells and photoreceptors. Int. J. Biochem. Cell. Biol. 2014;46:80–89. doi: 10.1016/j.biocel.2013.11.001. PubMed DOI PMC

Kobayashi M., Chandrasekhar A., Cheng C., Martinez J.A., Ng H., de la Hoz C., Zochodne D.W. Diabetic polyneuropathy, sensory neurons, nuclear structure and spliceosome alterations: A role for CWC22. Dis. Model. Mech. 2017;10:215–224. doi: 10.1242/dmm.028225. PubMed DOI PMC

Furrer P., Mayer J.M., Plazonnet B., Gurny R. Ocular tolerance of absorption enhancers in ophthalmic preparations. AAPS PharmSci. 2002;4:E2. doi: 10.1208/ps040102. PubMed DOI PMC

Ewels P., Hammarén R., Peltzer A., Moreno D., Garcia M., Panneerselvam S., Sven F., Alneberg J., Di Tommaso P., Jemt A., et al. nf-core/rnaseq: Nf-core/rnaseq Version 1.4.2. Zenodo. 2019. [(accessed on 25 November 2021)]. Available online: DOI

Krueger F. Trim Galore; Babraham Bioinformatics. [(accessed on 25 November 2021)]. Available online: http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/

Cunningham F., Achuthan P., Akanni W., Allen J., Amode M.R., Armean I.M., Bennett R., Bhai J., Billis K., Boddu S., et al. Ensembl 2019. Nucleic Acids Res. 2019;47:D745–D751. doi: 10.1093/nar/gky1113. PubMed DOI PMC

Kim D., Langmead B., Salzberg S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods. 2015;12:357–360. doi: 10.1038/nmeth.3317. PubMed DOI PMC

Liao Y., Smyth G.K., Shi W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI

Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Young M.D., Wakefield M.J., Smyth G.K., Oshlack A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010;11:R14. doi: 10.1186/gb-2010-11-2-r14. PubMed DOI PMC

MGI Gene Ontology Term Finder. [(accessed on 25 November 2021)]. Available online: http://www.informatics.jax.org/gotools/MGI_Term_Finder.html.

Kawamoto T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch. Histol. Cytol. 2003;66:123–143. doi: 10.1679/aohc.66.123. PubMed DOI

Kawamoto T., Kawamoto K. Preparation of thin frozen sections from nonfixed and undecalcified hard tissues using Kawamoto’s film method (2020) Methods Mol. Biol. 2021;2230:259–281. doi: 10.1007/978-1-0716-1028-2_15. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...