• This record comes from PubMed

High-Contrast Stimulation Potentiates the Neurotrophic Properties of Müller Cells and Suppresses Their Pro-Inflammatory Phenotype

. 2022 Aug 03 ; 23 (15) : . [epub] 20220803

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
GACR 18-11795Y Grant Agency of the Czech Republic
GAUK 378421 Charles University
PRIMUS/17/MED/7 Charles University
260533/SVV/2022 Charles University
COOPERATIO Neurosciences Charles University
COOPERATIO Diagnostics and Basic Sciences Charles University
"PharmaBrain" CZ.02.1.01/0.0/0.0/16_025/0007444 European Regional Development Fund

High-contrast visual stimulation promotes retinal regeneration and visual function, but the underlying mechanism is not fully understood. Here, we hypothesized that Müller cells (MCs), which express neurotrophins such as brain-derived neurotrophic factor (BDNF), could be key players in this retinal plasticity process. This hypothesis was tested by conducting in vivo and in vitro high-contrast stimulation of adult mice and MCs. Following stimulation, we examined the expression of BDNF and its inducible factor, VGF, in the retina and MCs. We also investigated the alterations in the expression of VGF, nuclear factor kappa B (NF-κB) and pro-inflammatory mediators in MCs, as well as their capacity to proliferate and develop a neurogenic or reactive gliosis phenotype after high-contrast stimulation and treatment with BDNF. Our results showed that high-contrast stimulation upregulated BDNF levels in MCs in vivo and in vitro. The additional BDNF treatment significantly augmented VGF production in MCs and their neuroprotective features, as evidenced by increased MC proliferation, neurodifferentiation, and decreased expression of the pro-inflammatory factors and the reactive gliosis marker GFAP. These results demonstrate that high-contrast stimulation activates the neurotrophic and neuroprotective properties of MCs, suggesting their possible direct involvement in retinal neuronal survival and improved functional outcomes in response to visual stimulation.

See more in PubMed

Izumi Y., Kirby C.O., Beny A.M., Olney J.W., Zorumski C.F. Müller cell swelling, glutamate uptake, and excitotoxic neurodegeneration in the isolated rat retina. Glia. 1999;25:379–389. doi: 10.1002/(SICI)1098-1136(19990215)25:4<379::AID-GLIA7>3.0.CO;2-7. PubMed DOI

Bringmann A., Grosche A., Pannicke T., Reichenbach A. GABA and Glutamate Uptake and Metabolism in Retinal Glial (Müller) Cells. Front. Endocrinol. (Lousanne) 2013;4:48. doi: 10.3389/fendo.2013.00048. PubMed DOI PMC

Poitry Yamate C.L., Poitry S., Tasacopoulos M. Lactate released by Müller glial cells is metabolized by photoreceptors from mammalian retina. J. Neurosci. 1995;15:5179–5191. doi: 10.1523/JNEUROSCI.15-07-05179.1995. PubMed DOI PMC

Perezleon J.A., Osorio-Paz I., Francois L., Salceda R. Immunohistochemical localization of glycogen synthase and GSK3β: Control of glycogen content in retina. Neurochem. Res. 2013;38:1063–1069. doi: 10.1007/s11064-013-1017-0. PubMed DOI

Pfeifer R.L., Marc R.E., Kondo M., Terasaki H., Jones B.W. Müller cell metabolic chaos during retinal degeneration. Exp. Eye Res. 2016;150:62–70. doi: 10.1016/j.exer.2016.04.022. PubMed DOI PMC

Morshedian A., Kaylor J.J., Ng S.Y., Tsan A., Frederiksen R., Xu T., Yuan L., Sampath A.P., Radu R.A., Fain G.L., et al. Light-Driven Regeneration of Cone Visual Pigments through a Mechanism Involving RGR Opsin in Müller Glial Cells. Neuron. 2019;102:1172–1183. doi: 10.1016/j.neuron.2019.04.004. PubMed DOI PMC

Sherpa T., Fimbel S.M., Mallory D.E., Maaswinkel H., Spritzer S.D., Sand J.A., Li L., Hyde D.R., Stenkamp D.L. Ganglion cell regeneration following whole-retina destruction in zebrafish. Dev. Neurobiol. 2007;68:166–181. doi: 10.1002/dneu.20568. PubMed DOI PMC

Nagashima M., Barthel L.K., Raymond P.A. A self-renewing division of zebrafish Müller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons. Development. 2013;140:4510–4521. doi: 10.1242/dev.090738. PubMed DOI PMC

Lourenco R., Brandao A.S., Borbinha J., Gorgulho R., Jacino A. Yap Regulates Müller Glia Reprogramming in Damaged Zebrafish Retinas. Front. Cell Dev. Biol. 2021;9:667796. doi: 10.3389/fcell.2021.667796. PubMed DOI PMC

Parrilla M., Lillo C., Herrero-Turrion M.J., Arevalo R.A. Pax2+ astrocytes in the fish optic nerve head after optic nerve crush. Brain Res. 2013;1492:18–32. doi: 10.1016/j.brainres.2012.11.014. PubMed DOI

Van Dyck A., Bollaerts I., Beckers A., Vanhunsel S., Glorian N., van Houcke J., van Ham T.J., De Groef L., Andreis L., Moons L. Müller glia-myeloid cell crosstalk accelerates optic nerve regeneration in the adult zebrafish. Glia. 2021;69:1444–1463. doi: 10.1002/glia.23972. PubMed DOI

Ooto S., Akagi T., Kageyama R., Takahashi M. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc. Natl. Acad. Sci. USA. 2004;101:13654–13659. doi: 10.1073/pnas.0402129101. PubMed DOI PMC

Eastlake J., Banerjee P.J., Angbohang A., Charteris D.G., Khaw P.T., Limb G.A. Müller glia as an important source of cytokines and inflammatory factors present in the gliotic retina during proliferative vitreoretinopathy. Glia. 2015;64:495–506. doi: 10.1002/glia.22942. PubMed DOI PMC

Zhao T.T., Tian C.Y., Yin Z.Q. Activation of Müller cells occurs during retinal degeneration in RCS rats. Adv. Exp. Med. Biol. 2010;664:575–583. doi: 10.1007/978-1-4419-1399-9_66. PubMed DOI

Cotinet A., Goureau O., Thilaye-Goldenberg B., Naud M.C., de Kozak Y. Differential tumor necrosis factor and nitric oxide production in retinal Müller glial cells from C3H/HeN and C3H/HeJ mice. Ocul. Immunol. Inflamm. 1997;5:111–116. doi: 10.3109/09273949709085059. PubMed DOI

Pekny M., Pekna M. Reactive gliosis in the pathogenesis of CNS diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2016;1862:483–491. doi: 10.1016/j.bbadis.2015.11.014. PubMed DOI

Kirschenbaum B., Goldman S.A. Brain-derived neurotrophic factor promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc. Natl. Acad. Sci. USA. 1995;92:210–214. doi: 10.1073/pnas.92.1.210. PubMed DOI PMC

Huang E.J., Reichardt L.F. Neurotrophins: Roles in Neuronal Development and Function. Annu. Rev. Neurosci. 2001;24:677–736. doi: 10.1146/annurev.neuro.24.1.677. PubMed DOI PMC

Bennett J.L., Zeiler S.R., Jones K.R. Patterned expression of BDNF and NT-3 in the retina and anterior segment of the developing mammalian eye. Investig. Ophthalmol. Vis. Sci. 1999;40:2996–3005. PubMed

Tworig J.M., Feller M.B. Müller Glia in Retinal Development: From Specification to Circuit Integration. Front. Neural Circuits. 2021;15:815923. doi: 10.3389/fncir.2021.815923. PubMed DOI PMC

Chao M.V. Neurotrophins and their receptors: A convergence point for many singalling pathways. Nat. Rev. Neurosci. 2003;4:299–309. doi: 10.1038/nrn1078. PubMed DOI

Seki M., Nawa H., Fukuchi T., Abe H., Takei N. BDNF is Upregulated by Postnatal Development and Visual Experience: Quantitative and Immunohistochemical Analyses of BDNF in the Rat Retina. Investig. Ophthalmol. Vis. Sci. 2003;44:3211–3218. doi: 10.1167/iovs.02-1089. PubMed DOI

Oku H., Ikeda T., Honma Y., Sotozono C., Nishida K., Nakamura Y., Kida Y., Kinoshita S. Gene Expression of Neurotrophins and Their High-Affinity Trk Receptors in Cultured Human Müller Cells. Ophthalmic Res. 2002;34:38–42. doi: 10.1159/000048323. PubMed DOI

Ghazi-Nouri S.M., Ellis J.S., Moss S., Limb G.A., Charteris D.G. Expression and localisation of BDNF, NT4 and TrkB in proliferative vitreoretinopathy. Exp. Eye Res. 2008;86:819–827. doi: 10.1016/j.exer.2008.02.010. PubMed DOI

Koeberle P.D., Bahr M. The upregulation of GLAST-1 is an indirectantiapoptotic mechanism of GDNF and neurturin in the adult CNS. Cell Death Differ. 2008;15:471–483. doi: 10.1038/sj.cdd.4402281. PubMed DOI

Lom B., Cohen-Cory S. Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo. J. Neurosci. 1999;19:9928–9938. doi: 10.1523/JNEUROSCI.19-22-09928.1999. PubMed DOI PMC

Garcia M., Forster V., Hicks D., Vecino E. Effects of Müller Glia on Cell Survival and Neuritogenesis in Adult Porcine Retina In Vitro. Investig. Ophthalmol. Vis. Sci. 2002;48:3735–3743. PubMed

Hu L.M., Luo Y., Zhang J., Lei X., Shen J., Wu Y., Qin M., Unver Y.B., Zhong Y., Xu G.T., et al. EPO reduces reactive gliosis and stimulates neurotrophin expression in Muller Cells. Front. Biosci. 2011;3:1541–1555. doi: 10.2741/e355. PubMed DOI

Zhu M., Li N., Wang Y., Gao S., Wang J., Shen X. Regulation of inflammation by VEGF/BDNF signaling in mouse retinal Müller glial cells exposed to high glucose. Cell Tissue Res. 2022;388:521–533. doi: 10.1007/s00441-022-03622-z. PubMed DOI

Domenici L., Origlia N., Falsini B., Cerri E., Barloscio D., Fabiani C., Sanso M., Giovannini L. Rescue of retinal function by BDNF in a mouse model of glaucoma. PLoS ONE. 2014;9:e115579. doi: 10.1371/journal.pone.0115579. PubMed DOI PMC

Cerri E., Origlia N., Falsini B., Barloscio D., Fabiani C., Sanso M., Ottino S., Giovannini L., Domenici L. Conjunctivally Applied BDNF Protects Photoreceptors from Light-Induced Damage. Investig. Ophthalmol. Vis. Sci. 2015;4:1. doi: 10.1167/tvst.4.6.1. PubMed DOI PMC

Seki M., Tanaka T., Sakai Y., Fukuchi T., Abe H., Nawa H., Takei N. Muller Cells as a source of brain-derived neurotrophic factor in the retina: Noradrenaline upregulates brain-derived neurotrophic factor levels in cultured rat. Muller Cells Neurochem. Res. 2005;30:1163–1170. doi: 10.1007/s11064-005-7936-7. PubMed DOI

Mui A.M., Yang V., Aung M.H., Fu J., Adekunle A.N., Prall B.C., Sidhu C.S., Park H.N., Boatright J.H., Iuvone P.M., et al. Daily visual stimulation in the critical period enhances multiple aspects of vision through BDNF-mediated pathways in the mouse retina. PLoS ONE. 2018;13:e0192435. doi: 10.1371/journal.pone.0192435. PubMed DOI PMC

Sato T., Fujikado T., Lee T.S., Tano Y. Direct effect of electrical stimulation on induction of brain-derived neurotrophic factor from cultured retinal Müller Cells. Investig. Ophthalmol. Vis. Sci. 2008;49:4641–4646. doi: 10.1167/iovs.08-2049. PubMed DOI

Zhou W.T., Ni Y.Q., Jin Z.B., Zhang N., Wu J.H., Zhu Y., Xu G.Z., Gan D.K. Electrical stimulation ameliorates light-induced photoreceptor degeneration in vitro via suppressing the proinflammatory effect of microglia and enhancing the neurotrophic potential of Müller Cells. Exp. Neurol. 2012;238:192–208. doi: 10.1016/j.expneurol.2012.08.029. PubMed DOI

Shinoe T., Kuribayashi H., Saya H., Seiki M., Aburatani H., Watanabe S. Identification of CD44 as a cell surface marker for Müller glia precursor Cells. J. Neurochem. 2010;115:1633–1642. doi: 10.1111/j.1471-4159.2010.07072.x. PubMed DOI

Too L.K., Gracie G., Hasic E., Iwakura J.H., Cherepanoff S. Adult human retinal Müller glia display distinct peripheral and macular expression of CD117 and CD44 stem cell-associated proteins. Acta Histochem. 2017;119:142–149. doi: 10.1016/j.acthis.2016.12.003. PubMed DOI

Yang J.W., Ru J., Ma W., Gao Y., Liang Z., Liu J., Guo J.H., Li L.Y. BDNF promotes the growth of human neurons through crosstalk with the Wnt/β-catenin signaling pathway via GSK-3β. Neuropeptides. 2015;54:35–46. doi: 10.1016/j.npep.2015.08.005. PubMed DOI

Alder J., Thakker-Varia S., Bangasser D.A., Kuroiwa M., Plummer M.R., Shors T.J., Black I.B. Brain-derived neurotrophic factor-induced gene expression reveals novel actions of VGF in hippocampal synaptic plasticity. J. Neurosci. 2003;23:10800–10808. doi: 10.1523/JNEUROSCI.23-34-10800.2003. PubMed DOI PMC

Bozdagi O., Rich E., Tronel S., Sadahiro M., Patterson K., Shapiro M.L., Alberini C.M., Huntley G.W., Salton S.R. The neurotrophin-inducible gene Vgf regulates hippocampal function and behavior through a brain-derived neurotrophic factor-dependent mechanism. J. Neurosci. 2008;28:9857–9869. doi: 10.1523/JNEUROSCI.3145-08.2008. PubMed DOI PMC

Takeuchi H., Inagaki S., Morozumi W., Nakano Y., Inoue Y., Kuse Y., Mizoguchi T., Nakamura S., Funato M., Kaneko H., et al. VGF nerve growth factor inducible is involved in retinal ganglion cells death induced by optic nerve crush. Sci. Rep. 2018;8:16443. doi: 10.1038/s41598-018-34585-3. PubMed DOI PMC

Rios M.N., Marchese N.A., Guido M.E. Expression of Non-visual Opsins Opn3 and Opn5 in the Developing Inner Retinal Cells of Birds. Light Responses in Muller Glial Cells. Front. Cell Neurosci. 2019;13:376. doi: 10.3389/fncel.2019.00376. PubMed DOI PMC

Iribarne M., Hyde D.R., Masai I. TNFα Induces Müller Glia to Transition from Non-proliferative Gliosis to a Regenerative Response in Mutant Zebrafish Presenting Chronic Photoreceptor Degeneration. Front. Cell Dev. Biol. 2019;7:296. doi: 10.3389/fcell.2019.00296. PubMed DOI PMC

Shimozaki K. Sox2 transcription network acts as a molecular switch to regulate properties of neural stem Cells. World J. Stem Cells. 2014;6:485–490. doi: 10.4252/wjsc.v6.i4.485. PubMed DOI PMC

Park D., Xiang A.P., Mao F.F., Zhang L., Di C.G., Liu X.M., Shao Y., Ma B.F., Lee J.H., Ha K.S., et al. Nestin is required for the proper self-renewal of neural stem Cells. Stem Cells. 2010;28:2162–2171. doi: 10.1002/stem.541. PubMed DOI

Yang Z., Wang K.K.W. Glial fibrillary acidic protein: From intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2016;38:364–374. doi: 10.1016/j.tins.2015.04.003. PubMed DOI PMC

Rothaeusler K., Baumgarth N. Assessment of cell proliferation by 5-bromodeoxyuridine (BrdU) labeling for multicolor flow cytometry. Curr. Protoc. Cytom. 2007;7:31. doi: 10.1002/0471142956.cy0731s40. PubMed DOI

Brambilla R., Bracchi-Ricard V., Hu W.H., Frydel B., Bramwell A., Karmally S., Green E.J., Bethea J.R. Inhibition of astroglial nuclear factor kappaB reduces inflammation and improves functional recovery after spinal cord injury. J. Exp. Med. 2005;202:145–156. doi: 10.1084/jem.20041918. PubMed DOI PMC

Sticozzi C., Belmonte G., Meini A., Carbotti P., Grasso G., Palmi M. IL-1β induces GFAP expression in vitro and in vivo and protects neurons from traumatic injury-associated apoptosis in rat brain striatum via NFκB/Ca²⁺-calmodulin/ERK mitogen-activated protein kinase signaling pathway. Neuroscience. 2013;252:367–383. doi: 10.1016/j.neuroscience.2013.07.061. PubMed DOI

Trindade P., Loiola E.C., Gasparotto J., Ribeiro C.T., Cardozo P.L., Devalle S., Salerno J.A., Ornelas I.M., Ledur P.F., Ribeiro F.M., et al. Short and long TNF-alpha exposure recapitulates canonical astrogliosis events in human-induced pluripotent stem cells-derived astrocytes. Glia. 2020;68:1396–1409. doi: 10.1002/glia.23786. PubMed DOI

Todd L., Palazzp I., Suarez L., Liu X., Volkov L., Hoang T.V., Campbell W.A., Blackshaw S., Quan N., Fischer A.J. Reactive microglia and IL1β/IL-1R1-signaling mediate neuroprotection in excitotoxin-damaged mouse retina. J. Neuroinflamm. 2019;16:118. doi: 10.1186/s12974-019-1505-5. PubMed DOI PMC

Lim J.H., Stafford B.K., Nguyen P.L., Lien B.V., Wang C., Zukor K., He Z., Huberman A.D. Neural activity promotes long-distance, target-specific regeneration of adult retinal axons. Nat. Neurosci. 2016;19:1073–1084. doi: 10.1038/nn.4340. PubMed DOI PMC

Marchese N.A., Rios M.N., Guido M.E. The Intrinsic Blue Light Responses of Avian Muller Glial Cells Imply Calcium Release from Internal Stores. ASN Neuro. 2022;14:17590914221076698. doi: 10.1177/17590914221076698. PubMed DOI PMC

Karlsson M., Hallbook F. Kainic acid, tetrodotoxin and light modulate expression of brain-derived neurotrophic factor in developing avian retinal ganglion cells and their tectal target. Neuroscience. 1998;83:137–150. doi: 10.1016/S0306-4522(97)00340-0. PubMed DOI

Pollock G.S., Vernon E., Forbes M.E., Yan Q., Ma Y.T., Hsieh T., Robichon R., Frost D.O., Johnson J.E. Effects of early visual experience and diurnal rhythms on BDNF mRNA and protein levels in the visual system, hippocampus, and cerebellum. J. Neurosci. 2001;21:3923–3931. doi: 10.1523/JNEUROSCI.21-11-03923.2001. PubMed DOI PMC

Fujieda H., Sasaki H. Expression of brain-derived neurotrophic factor in cholinergic and dopaminergic amacrine cells in the rat retina and the effects of constant light rearing. Exp. Eye Res. 2008;86:335–343. doi: 10.1016/j.exer.2007.11.005. PubMed DOI

Enayati S., Chang K., Achour H., Cho K.S., Xu F., Guo S., Enayati Z.K., Xie J., Zhao E., Turunen T., et al. Electrical Stimulation Induces Retinal Müller Cell Proliferation and Their Progenitor Cell Potential. Cells. 2020;9:781. doi: 10.3390/cells9030781. PubMed DOI PMC

Levi A., Ferri G.L., Watson E., Possenti R., Salton S.R.J. Processing, distribution, and function of VGF, a neuronal and endocrine peptide precursor. Cell Mol. Neurobiol. 2004;24:517–533. doi: 10.1023/B:CEMN.0000023627.79947.22. PubMed DOI PMC

Lin W.J., Zhao Y.Z., Zheng S., Zou J.J., Warren N.A., Bali P., Wu J., Xing M., Jiang C., Tang Y., et al. An increase in VGF expression through a rapid, transcription-independent, autofeedback mechanism improves cognitive function. Transl. Psychiatry. 2021;11:388. doi: 10.1038/s41398-021-01489-2. PubMed DOI PMC

Frank L., Ventimiglia R., Anderson K., Lindsay R.M., Rudge J.S. BDNF down-regulates neurotrophin responsiveness, TrkB protein and TrkB mRNA levels in cultured rat hippocampal neurons. Eur. J. Neurosci. 1996;8:1220–1230. doi: 10.1111/j.1460-9568.1996.tb01290.x. PubMed DOI

Thakker-Varia S., Jernstedt Krol J., Nettleton J.L., Bilimoria P.M., Bangasser D.A., Shors T.J., Black R.B., Alder J. The Neuropeptide VGF Produces Antidepressant-Like Behavioral Effects and Enhances Proliferation in the Hippocampus. J. Neurosci. 2007;27:12156–12167. doi: 10.1523/JNEUROSCI.1898-07.2007. PubMed DOI PMC

Graca A.B., Hippert C., Pearson R.A. Müller Glia Reactivity and Development of Gliosis in Response to Pathological Conditions. Adv. Exp. Med. Biol. 2018;1074:303–308. doi: 10.1007/978-3-319-75402-4_37. PubMed DOI

Lewis G.P., Linberg K.A., Geller S.F., Guérin C.J., Fisher S.K. Effects of the neurotrophin brain-derived neurotrophic factor in an experimental model of retinal detachment. Invest. Ophthalmol Vis. Sci. 1999;40:153015–153044. PubMed

Caviedes A., Lafourcade C., Soto C., Wyneken U. BDNF/NF-κB Signaling in the Neurobiology of Depression. Curr. Pharm. Des. 2017;23:3154–3163. doi: 10.2174/1381612823666170111141915. PubMed DOI

Stofkova A., Zloh M., Andreanska D., Fiserova I., Kubovciak J., Hejda J., Kutilek P., Murakami M. Depletion of retinal dopaminergic activity in a mouse model of rod dysfunction exacerbates experimental autoimmune uveoretinitis: A role for the gateway reflex. Int. J. Mol. Sci. 2021;23:453. doi: 10.3390/ijms23010453. PubMed DOI PMC

Kawamoto T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch. Histol. Cytol. 2003;66:123–143. doi: 10.1679/aohc.66.123. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...